/* * Copyright 2011 Con Kolivas * Copyright 2010 Jeff Garzik * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "cpuminer-config.h" #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #endif #include #include #include #include "compat.h" #include "miner.h" #include "findnonce.h" #include "ocl.h" #define PROGRAM_NAME "minerd" #define DEF_RPC_URL "http://127.0.0.1:8332/" #define DEF_RPC_USERNAME "rpcuser" #define DEF_RPC_PASSWORD "rpcpass" #define DEF_RPC_USERPASS DEF_RPC_USERNAME ":" DEF_RPC_PASSWORD #ifdef __linux /* Linux specific policy and affinity management */ #include static inline void drop_policy(void) { struct sched_param param; #ifdef SCHED_IDLE if (unlikely(sched_setscheduler(0, SCHED_IDLE, ¶m) == -1)) #endif #ifdef SCHED_BATCH sched_setscheduler(0, SCHED_BATCH, ¶m); #endif } static inline void affine_to_cpu(int id, int cpu) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(cpu, &set); sched_setaffinity(0, sizeof(&set), &set); applog(LOG_INFO, "Binding cpu mining thread %d to cpu %d", id, cpu); } #else static inline void drop_policy(void) { } static inline void affine_to_cpu(int id, int cpu) { } #endif enum workio_commands { WC_GET_WORK, WC_SUBMIT_WORK, WC_DIE, }; struct workio_cmd { enum workio_commands cmd; struct thr_info *thr; union { struct work *work; } u; }; enum sha256_algos { ALGO_C, /* plain C */ ALGO_4WAY, /* parallel SSE2 */ ALGO_VIA, /* VIA padlock */ ALGO_CRYPTOPP, /* Crypto++ (C) */ ALGO_CRYPTOPP_ASM32, /* Crypto++ 32-bit assembly */ ALGO_SSE2_64, /* SSE2 for x86_64 */ }; static const char *algo_names[] = { [ALGO_C] = "c", #ifdef WANT_SSE2_4WAY [ALGO_4WAY] = "4way", #endif #ifdef WANT_VIA_PADLOCK [ALGO_VIA] = "via", #endif [ALGO_CRYPTOPP] = "cryptopp", #ifdef WANT_CRYPTOPP_ASM32 [ALGO_CRYPTOPP_ASM32] = "cryptopp_asm32", #endif #ifdef WANT_X8664_SSE2 [ALGO_SSE2_64] = "sse2_64", #endif }; bool opt_debug = false; bool opt_protocol = false; bool opt_ndevs = false; bool want_longpoll = true; bool have_longpoll = false; bool use_syslog = false; static bool opt_quiet = false; static int opt_retries = 10; static int opt_fail_pause = 30; static int opt_log_interval = 5; int opt_vectors; int opt_worksize; int opt_scantime = 60; static json_t *opt_config; static const bool opt_time = true; #ifdef WANT_X8664_SSE2 static enum sha256_algos opt_algo = ALGO_SSE2_64; #else static enum sha256_algos opt_algo = ALGO_C; #endif static int nDevs; static int opt_g_threads = 1; static int gpu_threads; static int opt_n_threads = 1; static int num_processors; static int scan_intensity = 4; static char *rpc_url; static char *rpc_userpass; static char *rpc_user, *rpc_pass; struct thr_info *thr_info; static int work_thr_id; int longpoll_thr_id; struct work_restart *work_restart = NULL; pthread_mutex_t time_lock; static pthread_mutex_t hash_lock; static double total_mhashes_done; static struct timeval total_tv_start, total_tv_end; static int accepted, rejected; int hw_errors; struct option_help { const char *name; const char *helptext; }; static struct option_help options_help[] = { { "help", "(-h) Display this help text" }, { "algo XXX", "(-a XXX) Specify sha256 implementation:\n" "\tc\t\tLinux kernel sha256, implemented in C (default)" #ifdef WANT_SSE2_4WAY "\n\t4way\t\ttcatm's 4-way SSE2 implementation" #endif #ifdef WANT_VIA_PADLOCK "\n\tvia\t\tVIA padlock implementation" #endif "\n\tcryptopp\tCrypto++ C/C++ implementation" #ifdef WANT_CRYPTOPP_ASM32 "\n\tcryptopp_asm32\tCrypto++ 32-bit assembler implementation" #endif #ifdef WANT_X8664_SSE2 "\n\tsse2_64\t\tSSE2 implementation for x86_64 machines" #endif }, { "config FILE", "(-c FILE) JSON-format configuration file (default: none)\n" "See example-cfg.json for an example configuration." }, { "cpu-threads N", "(-t N) Number of miner CPU threads (default: number of processors or 0 if GPU mining)" }, { "debug", "(-D) Enable debug output (default: off)" }, { "gpu-threads N", "(-g N) Number of threads per-GPU (0 - 10, default: 1)" }, { "intensity", "(-I) Intensity of scanning (0 - 14, default 4)" }, { "log", "(-l) Interval in seconds between log output (default: 5)" }, { "ndevs", "(-n) Display number of detected GPUs" }, { "no-longpoll", "Disable X-Long-Polling support (default: enabled)" }, { "pass PASSWORD", "(-p PASSWORD) Password for bitcoin JSON-RPC server " "(default: " DEF_RPC_PASSWORD ")" }, { "protocol-dump", "(-P) Verbose dump of protocol-level activities (default: off)" }, { "quiet", "(-q) Disable per-thread hashmeter output (default: off)" }, { "retries N", "(-r N) Number of times to retry, if JSON-RPC call fails\n" "\t(default: 10; use -1 for \"never\")" }, { "retry-pause N", "(-R N) Number of seconds to pause, between retries\n" "\t(default: 30)" }, { "scantime N", "(-s N) Upper bound on time spent scanning current work,\n" "\tin seconds. (default: 60)" }, #ifdef HAVE_SYSLOG_H { "syslog", "Use system log for output messages (default: standard error)" }, #endif { "url URL", "URL for bitcoin JSON-RPC server " "(default: " DEF_RPC_URL ")" }, { "userpass USERNAME:PASSWORD", "Username:Password pair for bitcoin JSON-RPC server " "(default: " DEF_RPC_USERPASS ")" }, { "user USERNAME", "(-u USERNAME) Username for bitcoin JSON-RPC server " "(default: " DEF_RPC_USERNAME ")" }, { "vectors N", "(-v N) Override detected optimal vector width (default: detected, 1,2 or 4)" }, { "worksize N", "(-w N) Override detected optimal worksize (default: detected)" }, }; static struct option options[] = { { "algo", 1, NULL, 'a' }, { "config", 1, NULL, 'c' }, { "cpu-threads", 1, NULL, 't' }, { "gpu-threads", 1, NULL, 'g' }, { "debug", 0, NULL, 'D' }, { "help", 0, NULL, 'h' }, { "intensity", 1, NULL, 'I' }, { "log", 1, NULL, 'l' }, { "ndevs", 0, NULL, 'n' }, { "no-longpoll", 0, NULL, 1003 }, { "pass", 1, NULL, 'p' }, { "protocol-dump", 0, NULL, 'P' }, { "quiet", 0, NULL, 'q' }, { "retries", 1, NULL, 'r' }, { "retry-pause", 1, NULL, 'R' }, { "scantime", 1, NULL, 's' }, #ifdef HAVE_SYSLOG_H { "syslog", 0, NULL, 1004 }, #endif { "url", 1, NULL, 1001 }, { "user", 1, NULL, 'u' }, { "vectors", 1, NULL, 'v' }, { "worksize", 1, NULL, 'w' }, { "userpass", 1, NULL, 1002 }, }; static bool jobj_binary(const json_t *obj, const char *key, void *buf, size_t buflen) { const char *hexstr; json_t *tmp; tmp = json_object_get(obj, key); if (unlikely(!tmp)) { applog(LOG_ERR, "JSON key '%s' not found", key); return false; } hexstr = json_string_value(tmp); if (unlikely(!hexstr)) { applog(LOG_ERR, "JSON key '%s' is not a string", key); return false; } if (!hex2bin(buf, hexstr, buflen)) return false; return true; } static bool work_decode(const json_t *val, struct work *work) { if (unlikely(!jobj_binary(val, "midstate", work->midstate, sizeof(work->midstate)))) { applog(LOG_ERR, "JSON inval midstate"); goto err_out; } if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) { applog(LOG_ERR, "JSON inval data"); goto err_out; } if (unlikely(!jobj_binary(val, "hash1", work->hash1, sizeof(work->hash1)))) { applog(LOG_ERR, "JSON inval hash1"); goto err_out; } if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) { applog(LOG_ERR, "JSON inval target"); goto err_out; } memset(work->hash, 0, sizeof(work->hash)); return true; err_out: return false; } static bool submit_upstream_work(CURL *curl, const struct work *work) { char *hexstr = NULL; json_t *val, *res; char s[345]; bool rc = false; struct cgpu_info *cgpu = thr_info[work->thr_id].cgpu; /* build hex string */ hexstr = bin2hex(work->data, sizeof(work->data)); if (unlikely(!hexstr)) { applog(LOG_ERR, "submit_upstream_work OOM"); goto out; } /* build JSON-RPC request */ sprintf(s, "{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n", hexstr); if (opt_debug) applog(LOG_DEBUG, "DBG: sending RPC call: %s", s); /* issue JSON-RPC request */ val = json_rpc_call(curl, rpc_url, rpc_userpass, s, false, false); if (unlikely(!val)) { applog(LOG_ERR, "submit_upstream_work json_rpc_call failed"); goto out; } res = json_object_get(val, "result"); /* Theoretically threads could race when modifying accepted and * rejected values but the chance of two submits completing at the * same time is zero so there is no point adding extra locking */ if (json_is_true(res)) { cgpu->accepted++; accepted++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: true (yay!!!)"); } else { cgpu->rejected++; rejected++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: false (booooo)"); } applog(LOG_INFO, "%sPU: %d Accepted: %d Rejected: %d HW errors: %d", cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, cgpu->accepted, cgpu->rejected, cgpu->hw_errors); json_decref(val); rc = true; out: free(hexstr); return rc; } static const char *rpc_req = "{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n"; static bool get_upstream_work(CURL *curl, struct work *work) { json_t *val; bool rc; val = json_rpc_call(curl, rpc_url, rpc_userpass, rpc_req, want_longpoll, false); if (unlikely(!val)) { applog(LOG_ERR, "Failed json_rpc_call in get_upstream_work"); return false; } rc = work_decode(json_object_get(val, "result"), work); json_decref(val); return rc; } static void workio_cmd_free(struct workio_cmd *wc) { if (!wc) return; switch (wc->cmd) { case WC_SUBMIT_WORK: free(wc->u.work); break; default: /* do nothing */ break; } memset(wc, 0, sizeof(*wc)); /* poison */ free(wc); } static void kill_work(void) { struct workio_cmd *wc; applog(LOG_INFO, "Received kill message"); wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in kill_work"); /* We're just trying to die anyway, so forget graceful */ exit (1); } wc->cmd = WC_DIE; wc->thr = 0; if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in kill_work"); exit (1); } } struct io_data{ struct workio_cmd *wc; CURL *curl; }; static pthread_t *get_thread = NULL; static pthread_t *submit_thread = NULL; static char current_block[36]; static void *get_work_thread(void *userdata) { struct io_data *io_data = (struct io_data *)userdata; struct workio_cmd *wc = io_data->wc; CURL *curl = io_data->curl; struct work *ret_work; int failures = 0; ret_work = calloc(1, sizeof(*ret_work)); if (unlikely(!ret_work)) { applog(LOG_ERR, "Failed to calloc ret_work in workio_get_work"); kill_work(); goto out; } /* obtain new work from bitcoin via JSON-RPC */ while (!get_upstream_work(curl, ret_work)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "json_rpc_call failed, terminating workio thread"); free(ret_work); kill_work(); goto out; } /* pause, then restart work-request loop */ applog(LOG_ERR, "json_rpc_call failed on get work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } /* send work to requesting thread */ if (unlikely(!tq_push(wc->thr->q, ret_work))) { applog(LOG_ERR, "Failed to tq_push work in workio_get_work"); kill_work(); free(ret_work); } out: free(io_data); workio_cmd_free(wc); return NULL; } static bool workio_get_work(struct workio_cmd *wc, CURL *curl) { struct io_data *id = malloc(sizeof(struct io_data)); if (unlikely(!id)) { applog(LOG_ERR, "Failed to malloc id in workio_get_work"); return false; } id->wc = wc; id->curl = curl; if (unlikely(!get_thread)) { /* This is only instantiated once at startup */ get_thread = malloc(sizeof(get_thread)); if (unlikely(!get_thread)) { applog(LOG_ERR, "Failed to malloc get_thread in workio_get_work"); return false; } } else pthread_join(*get_thread, NULL); if (unlikely(pthread_create(get_thread, NULL, get_work_thread, (void *)id))) { applog(LOG_ERR, "Failed to create get_work_thread"); free(id); return false; } return true; } static void *submit_work_thread(void *userdata) { struct io_data *io_data = (struct io_data *)userdata; struct workio_cmd *wc = io_data->wc; CURL *curl = io_data->curl; int failures = 0; if (unlikely(strncmp((const char *)wc->u.work->data, current_block, 36))) { applog(LOG_INFO, "Stale work detected, discarding"); goto out; } /* submit solution to bitcoin via JSON-RPC */ while (!submit_upstream_work(curl, wc->u.work)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "Failed %d retries ...terminating workio thread", opt_retries); kill_work(); goto out; } /* pause, then restart work-request loop */ applog(LOG_ERR, "json_rpc_call failed on submit_work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } out: workio_cmd_free(wc); free(io_data); return NULL; } static bool workio_submit_work(struct workio_cmd *wc, CURL *curl) { struct io_data *id = malloc(sizeof(struct io_data)); if (unlikely(!id)) { applog(LOG_ERR, "Failed to malloc id in workio_submit_work"); return false; } id->wc = wc; id->curl = curl; if (unlikely(!submit_thread)) { submit_thread = malloc(sizeof(submit_thread)); if (unlikely(!submit_thread)) { applog(LOG_ERR, "Failed to malloc submit_thread in workio_submit_work"); return false; } } else pthread_join(*submit_thread, NULL); if (unlikely(pthread_create(submit_thread, NULL, submit_work_thread, (void *)id))) { applog(LOG_ERR, "Failed to create submit_work_thread"); free(id); return false; } return true; } static void *workio_thread(void *userdata) { struct thr_info *mythr = userdata; bool ok = true; CURL *get_curl, *submit_curl; get_curl = curl_easy_init(); submit_curl = curl_easy_init(); if (unlikely(!get_curl || !submit_curl)) { applog(LOG_ERR, "CURL initialization failed"); return NULL; } while (ok) { struct workio_cmd *wc; /* wait for workio_cmd sent to us, on our queue */ wc = tq_pop(mythr->q, NULL); if (unlikely(!wc)) { ok = false; break; } /* process workio_cmd */ switch (wc->cmd) { case WC_GET_WORK: ok = workio_get_work(wc, get_curl); break; case WC_SUBMIT_WORK: ok = workio_submit_work(wc, submit_curl); break; case WC_DIE: default: ok = false; break; } } tq_freeze(mythr->q); curl_easy_cleanup(submit_curl); curl_easy_cleanup(get_curl); return NULL; } static void hashmeter(int thr_id, struct timeval *diff, unsigned long hashes_done) { struct timeval temp_tv_end, total_diff; double khashes, secs; double total_secs; double local_secs; static double local_mhashes_done = 0; static double rolling_local = 0; double local_mhashes = (double)hashes_done / 1000000.0; /* Don't bother calculating anything if we're not displaying it */ if (opt_quiet || !opt_log_interval) return; khashes = hashes_done / 1000.0; secs = (double)diff->tv_sec + ((double)diff->tv_usec / 1000000.0); if (opt_debug) applog(LOG_DEBUG, "[thread %d: %lu hashes, %.0f khash/sec]", thr_id, hashes_done, hashes_done / secs); gettimeofday(&temp_tv_end, NULL); timeval_subtract(&total_diff, &temp_tv_end, &total_tv_end); local_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); if (opt_n_threads + gpu_threads > 1) { /* Totals are updated by all threads so can race without locking */ pthread_mutex_lock(&hash_lock); total_mhashes_done += local_mhashes; local_mhashes_done += local_mhashes; if (total_diff.tv_sec < opt_log_interval) { /* Only update the total every opt_log_interval seconds */ pthread_mutex_unlock(&hash_lock); return; } gettimeofday(&total_tv_end, NULL); pthread_mutex_unlock(&hash_lock); } else { total_mhashes_done += local_mhashes; local_mhashes_done += local_mhashes; if (total_diff.tv_sec < opt_log_interval) return; gettimeofday(&total_tv_end, NULL); } /* Use a rolling average by faking an exponential decay over 5 * log */ rolling_local = ((rolling_local * 0.9) + local_mhashes_done) / 1.9; timeval_subtract(&total_diff, &total_tv_end, &total_tv_start); total_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); applog(LOG_INFO, "[%.2f | %.2f Mhash/s] [%d Accepted] [%d Rejected] [%d HW errors]", rolling_local / local_secs, total_mhashes_done / total_secs, accepted, rejected, hw_errors); local_mhashes_done = 0; } static bool get_work(struct work *work) { struct thr_info *thr = &thr_info[work->thr_id]; struct work *work_heap; struct workio_cmd *wc; bool ret = false; static bool first_work = true; get_new: /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) goto out; wc->cmd = WC_GET_WORK; wc->thr = thr; /* send work request to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { workio_cmd_free(wc); goto out; } /* wait for 1st response, or get cached response */ work_heap = tq_pop(thr->q, NULL); if (unlikely(!work_heap)) goto out; if (unlikely(work_restart[opt_n_threads + gpu_threads].restart)) { work_restart[opt_n_threads + gpu_threads].restart = 0; free(work_heap); if (opt_debug) applog(LOG_DEBUG, "New block detected, discarding old work"); goto get_new; } if (unlikely(first_work)) { first_work = false; /* send for another work request for the next time get_work * is called. */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) goto out_free; wc->cmd = WC_GET_WORK; wc->thr = thr; if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { workio_cmd_free(wc); goto out_free; } } memcpy(work, work_heap, sizeof(*work)); memcpy(current_block, work->data, 36); ret = true; out_free: free(work_heap); out: return ret; } static bool submit_work_sync(struct thr_info *thr, const struct work *work_in) { struct workio_cmd *wc; /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in submit_work_sync"); return false; } wc->u.work = malloc(sizeof(*work_in)); if (unlikely(!wc->u.work)) { applog(LOG_ERR, "Failed to calloc work in submit_work_sync"); goto err_out; } wc->cmd = WC_SUBMIT_WORK; wc->thr = thr; memcpy(wc->u.work, work_in, sizeof(*work_in)); /* send solution to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in submit_work_sync"); goto err_out; } return true; err_out: workio_cmd_free(wc); return false; } bool submit_nonce(struct thr_info *thr, struct work *work, uint32_t nonce) { work->data[64+12+0] = (nonce>>0) & 0xff; work->data[64+12+1] = (nonce>>8) & 0xff; work->data[64+12+2] = (nonce>>16) & 0xff; work->data[64+12+3] = (nonce>>24) & 0xff; return submit_work_sync(thr, work); } static inline int cpu_from_thr_id(int thr_id) { return (thr_id - gpu_threads) % num_processors; } static void *miner_thread(void *userdata) { struct thr_info *mythr = userdata; const int thr_id = mythr->id; uint32_t max_nonce = 0xffffff; /* Set worker threads to nice 19 and then preferentially to SCHED_IDLE * and if that fails, then SCHED_BATCH. No need for this to be an * error if it fails */ setpriority(PRIO_PROCESS, 0, 19); drop_policy(); /* Cpu affinity only makes sense if the number of threads is a multiple * of the number of CPUs */ if (!(opt_n_threads % num_processors)) affine_to_cpu(thr_id - gpu_threads, cpu_from_thr_id(thr_id)); while (1) { struct work work __attribute__((aligned(128))); unsigned long hashes_done; struct timeval tv_start, tv_end, diff; uint64_t max64; bool rc; work.thr_id = thr_id; /* obtain new work from internal workio thread */ if (unlikely(!get_work(&work))) { applog(LOG_ERR, "work retrieval failed, exiting " "mining thread %d", mythr->id); goto out; } hashes_done = 0; gettimeofday(&tv_start, NULL); /* scan nonces for a proof-of-work hash */ switch (opt_algo) { case ALGO_C: rc = scanhash_c(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done); break; #ifdef WANT_X8664_SSE2 case ALGO_SSE2_64: { unsigned int rc5 = scanhash_sse2_64(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done); rc = (rc5 == -1) ? false : true; } break; #endif #ifdef WANT_SSE2_4WAY case ALGO_4WAY: { unsigned int rc4 = ScanHash_4WaySSE2(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done); rc = (rc4 == -1) ? false : true; } break; #endif #ifdef WANT_VIA_PADLOCK case ALGO_VIA: rc = scanhash_via(thr_id, work.data, work.target, max_nonce, &hashes_done); break; #endif case ALGO_CRYPTOPP: rc = scanhash_cryptopp(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done); break; #ifdef WANT_CRYPTOPP_ASM32 case ALGO_CRYPTOPP_ASM32: rc = scanhash_asm32(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done); break; #endif default: /* should never happen */ goto out; } /* record scanhash elapsed time */ gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashmeter(thr_id, &diff, hashes_done); /* adjust max_nonce to meet target scan time */ if (diff.tv_usec > 500000) diff.tv_sec++; if (diff.tv_sec > 0) { max64 = ((uint64_t)hashes_done * (opt_log_interval ? : opt_scantime)) / diff.tv_sec; if (max64 > 0xfffffffaULL) max64 = 0xfffffffaULL; max_nonce = max64; } /* if nonce found, submit work */ if (unlikely(rc)) { if (opt_debug) applog(LOG_DEBUG, "CPU %d found something?", cpu_from_thr_id(thr_id)); if (unlikely(!submit_work_sync(mythr, &work))) break; } } out: tq_freeze(mythr->q); return NULL; } enum { STAT_SLEEP_INTERVAL = 1, STAT_CTR_INTERVAL = 10000000, FAILURE_INTERVAL = 30, }; static _clState *clStates[16]; static inline cl_int queue_kernel_parameters(_clState *clState, dev_blk_ctx *blk) { cl_kernel *kernel = &clState->kernel; cl_int status = 0; int num = 0; status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce); if (clState->hasBitAlign == true) { /* Parameters for phatk kernel */ status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->T1); } else { /* Parameters for poclbm kernel */ status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2); } status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer), (void *)&clState->outputBuffer); return status; } static inline int gpu_from_thr_id(int thr_id) { return thr_id % nDevs; } static void *gpuminer_thread(void *userdata) { struct thr_info *mythr = userdata; struct timeval tv_start, diff; const int thr_id = mythr->id; uint32_t *res, *blank_res; size_t globalThreads[1]; size_t localThreads[1]; cl_int status; _clState *clState = clStates[thr_id]; const cl_kernel *kernel = &clState->kernel; struct work *work = malloc(sizeof(struct work)); unsigned const int threads = 1 << (15 + scan_intensity); unsigned const int vectors = clState->preferred_vwidth; unsigned const int hashes = threads * vectors; unsigned int hashes_done = 0; res = calloc(BUFFERSIZE, 1); blank_res = calloc(BUFFERSIZE, 1); if (!res || !blank_res) { applog(LOG_ERR, "Failed to calloc in gpuminer_thread"); goto out; } gettimeofday(&tv_start, NULL); globalThreads[0] = threads; localThreads[0] = clState->work_size; work_restart[thr_id].restart = 1; diff.tv_sec = 0; while (1) { struct timeval tv_end, tv_workstart; /* This finish flushes the readbuffer set with CL_FALSE later */ clFinish(clState->commandQueue); if (diff.tv_sec > opt_scantime || work->blk.nonce >= MAXTHREADS - hashes || work_restart[thr_id].restart) { /* Ignore any reads since we're getting new work and queue a clean buffer */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } memset(res, 0, BUFFERSIZE); gettimeofday(&tv_workstart, NULL); work->thr_id = thr_id; /* obtain new work from internal workio thread */ if (unlikely(!get_work(work))) { applog(LOG_ERR, "work retrieval failed, exiting " "gpu mining thread %d", mythr->id); goto out; } precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64)); work->blk.nonce = 0; work_restart[thr_id].restart = 0; if (opt_debug) applog(LOG_DEBUG, "getwork thread %d", thr_id); /* Flushes the writebuffer set with CL_FALSE above */ clFinish(clState->commandQueue); } status = queue_kernel_parameters(clState, &work->blk); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; } /* MAXBUFFERS entry is used as a flag to say nonces exist */ if (res[MAXBUFFERS]) { /* Clear the buffer again */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } if (opt_debug) applog(LOG_DEBUG, "GPU %d found something?", gpu_from_thr_id(thr_id)); postcalc_hash_async(mythr, work, res); memset(res, 0, BUFFERSIZE); clFinish(clState->commandQueue); } status = clEnqueueNDRangeKernel(clState->commandQueue, *kernel, 1, NULL, globalThreads, localThreads, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)"); goto out; } status = clEnqueueReadBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)"); goto out;} gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashes_done += hashes; work->blk.nonce += hashes; if (diff.tv_sec >= 1) { hashmeter(thr_id, &diff, hashes_done); gettimeofday(&tv_start, NULL); hashes_done = 0; } timeval_subtract(&diff, &tv_end, &tv_workstart); } out: tq_freeze(mythr->q); return NULL; } static void restart_threads(void) { int i; for (i = 0; i < opt_n_threads + gpu_threads + 1; i++) work_restart[i].restart = 1; } static void *longpoll_thread(void *userdata) { struct thr_info *mythr = userdata; CURL *curl = NULL; char *copy_start, *hdr_path, *lp_url = NULL; bool need_slash = false; int failures = 0; hdr_path = tq_pop(mythr->q, NULL); if (!hdr_path) goto out; /* full URL */ if (strstr(hdr_path, "://")) { lp_url = hdr_path; hdr_path = NULL; } /* absolute path, on current server */ else { copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path; if (rpc_url[strlen(rpc_url) - 1] != '/') need_slash = true; lp_url = malloc(strlen(rpc_url) + strlen(copy_start) + 2); if (!lp_url) goto out; sprintf(lp_url, "%s%s%s", rpc_url, need_slash ? "/" : "", copy_start); } applog(LOG_INFO, "Long-polling activated for %s", lp_url); curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialization failed"); goto out; } while (1) { json_t *val; val = json_rpc_call(curl, lp_url, rpc_userpass, rpc_req, false, true); if (likely(val)) { failures = 0; json_decref(val); applog(LOG_INFO, "LONGPOLL detected new block"); restart_threads(); } else { if (failures++ < 10) { sleep(30); applog(LOG_ERR, "longpoll failed, sleeping for 30s"); } else { applog(LOG_ERR, "longpoll failed, ending thread"); goto out; } } } out: free(hdr_path); free(lp_url); tq_freeze(mythr->q); if (curl) curl_easy_cleanup(curl); return NULL; } static void show_usage(void) { int i; printf("minerd version %s\n\n", VERSION); printf("Usage:\tminerd [options]\n\nSupported options:\n"); for (i = 0; i < ARRAY_SIZE(options_help); i++) { struct option_help *h; h = &options_help[i]; printf("--%s\n%s\n\n", h->name, h->helptext); } exit(1); } static void parse_arg (int key, char *arg) { int v, i; switch(key) { case 'a': for (i = 0; i < ARRAY_SIZE(algo_names); i++) { if (algo_names[i] && !strcmp(arg, algo_names[i])) { opt_algo = i; break; } } if (i == ARRAY_SIZE(algo_names)) show_usage(); break; case 'c': { json_error_t err; if (opt_config) json_decref(opt_config); opt_config = json_load_file(arg, &err); if (!json_is_object(opt_config)) { applog(LOG_ERR, "JSON decode of %s failed", arg); show_usage(); } break; } case 'g': v = atoi(arg); if (v < 0 || v > 10) show_usage(); opt_g_threads = v; break; case 'D': opt_debug = true; break; case 'I': v = atoi(arg); if (v < 0 || v > 14) /* sanity check */ show_usage(); scan_intensity = v; break; case 'l': v = atoi(arg); if (v < 0 || v > 9999) /* sanity check */ show_usage(); opt_log_interval = v; break; case 'p': free(rpc_pass); rpc_pass = strdup(arg); break; case 'P': opt_protocol = true; break; case 'q': opt_quiet = true; break; case 'r': v = atoi(arg); if (v < -1 || v > 9999) /* sanity check */ show_usage(); opt_retries = v; break; case 'R': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage(); opt_fail_pause = v; break; case 's': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage(); opt_scantime = v; break; case 't': v = atoi(arg); if (v < 0 || v > 9999) /* sanity check */ show_usage(); opt_n_threads = v; break; case 'u': free(rpc_user); rpc_user = strdup(arg); break; case 'v': v = atoi(arg); if (v != 1 && v != 2 && v != 4) show_usage(); opt_vectors = v; break; case 'w': v = atoi(arg); if (v < 1 || v > 9999) /* sanity check */ show_usage(); opt_worksize = v; break; case 1001: /* --url */ if (strncmp(arg, "http://", 7) && strncmp(arg, "https://", 8)) show_usage(); free(rpc_url); rpc_url = strdup(arg); break; case 1002: /* --userpass */ if (!strchr(arg, ':')) show_usage(); free(rpc_userpass); rpc_userpass = strdup(arg); break; case 1003: want_longpoll = false; break; case 1004: use_syslog = true; break; default: show_usage(); } } static void parse_config(void) { int i; json_t *val; if (!json_is_object(opt_config)) return; for (i = 0; i < ARRAY_SIZE(options); i++) { if (!options[i].name) break; if (!strcmp(options[i].name, "config")) continue; val = json_object_get(opt_config, options[i].name); if (!val) continue; if (options[i].has_arg && json_is_string(val)) { char *s = strdup(json_string_value(val)); if (!s) break; parse_arg(options[i].val, s); free(s); } else if (!options[i].has_arg && json_is_true(val)) parse_arg(options[i].val, ""); else applog(LOG_ERR, "JSON option %s invalid", options[i].name); } } static void parse_cmdline(int argc, char *argv[]) { int key; while (1) { key = getopt_long(argc, argv, "a:c:qDPr:s:t:h?", options, NULL); if (key < 0) break; parse_arg(key, optarg); } parse_config(); } int main (int argc, char *argv[]) { struct thr_info *thr; unsigned int i; char name[32]; struct cgpu_info *gpus = NULL, *cpus = NULL; #ifdef WIN32 opt_n_threads = num_processors = 1; #else num_processors = sysconf(_SC_NPROCESSORS_ONLN); opt_n_threads = num_processors; #endif /* !WIN32 */ nDevs = clDevicesNum(); if (opt_ndevs) { applog(LOG_INFO, "%i", nDevs); return nDevs; } /* Invert the value to determine if we manually set it in cmdline * or disable gpu threads */ if (nDevs) opt_n_threads = - opt_n_threads; rpc_url = strdup(DEF_RPC_URL); /* parse command line */ parse_cmdline(argc, argv); gpu_threads = nDevs * opt_g_threads; if (opt_n_threads < 0) { if (gpu_threads) opt_n_threads = 0; else opt_n_threads = -opt_n_threads; } if (!rpc_userpass) { if (!rpc_user || !rpc_pass) { applog(LOG_ERR, "No login credentials supplied"); return 1; } rpc_userpass = malloc(strlen(rpc_user) + strlen(rpc_pass) + 2); if (!rpc_userpass) return 1; sprintf(rpc_userpass, "%s:%s", rpc_user, rpc_pass); } if (unlikely(pthread_mutex_init(&time_lock, NULL))) return 1; if (unlikely(pthread_mutex_init(&hash_lock, NULL))) return 1; if (unlikely(curl_global_init(CURL_GLOBAL_ALL))) return 1; #ifdef HAVE_SYSLOG_H if (use_syslog) openlog("cpuminer", LOG_PID, LOG_USER); #endif work_restart = calloc(opt_n_threads + gpu_threads + 1, sizeof(*work_restart)); if (!work_restart) return 1; thr_info = calloc(opt_n_threads + 2 + gpu_threads, sizeof(*thr)); if (!thr_info) return 1; /* init workio thread info */ work_thr_id = opt_n_threads + gpu_threads; thr = &thr_info[work_thr_id]; thr->id = work_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start work I/O thread */ if (pthread_create(&thr->pth, NULL, workio_thread, thr)) { applog(LOG_ERR, "workio thread create failed"); return 1; } /* init longpoll thread info */ if (want_longpoll) { longpoll_thr_id = opt_n_threads + gpu_threads + 1; thr = &thr_info[longpoll_thr_id]; thr->id = longpoll_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start longpoll thread */ if (unlikely(pthread_create(&thr->pth, NULL, longpoll_thread, thr))) { applog(LOG_ERR, "longpoll thread create failed"); return 1; } pthread_detach(thr->pth); } else longpoll_thr_id = -1; gettimeofday(&total_tv_start, NULL); gettimeofday(&total_tv_end, NULL); if (opt_n_threads ) { cpus = calloc(num_processors, sizeof(struct cgpu_info)); if (unlikely(!cpus)) { applog(LOG_ERR, "Failed to calloc cpus"); return 1; } } if (gpu_threads) { gpus = calloc(nDevs, sizeof(struct cgpu_info)); if (unlikely(!gpus)) { applog(LOG_ERR, "Failed to calloc gpus"); return 1; } } /* start GPU mining threads */ for (i = 0; i < gpu_threads; i++) { int gpu = gpu_from_thr_id(i); thr = &thr_info[i]; thr->id = i; gpus[gpu].is_gpu = 1; gpus[gpu].cpu_gpu = gpu; thr->cgpu = &gpus[gpu]; thr->q = tq_new(); if (!thr->q) { applog(LOG_ERR, "tq_new failed in starting gpu mining threads"); return 1; } applog(LOG_INFO, "Init GPU thread %i", i); clStates[i] = initCl(gpu, name, sizeof(name)); if (!clStates[i]) { applog(LOG_ERR, "Failed to init GPU thread %d", i); continue; } applog(LOG_INFO, "initCl() finished. Found %s", name); if (unlikely(pthread_create(&thr->pth, NULL, gpuminer_thread, thr))) { applog(LOG_ERR, "thread %d create failed", i); return 1; } pthread_detach(thr->pth); } applog(LOG_INFO, "%d gpu miner threads started", i); /* start CPU mining threads */ for (i = gpu_threads; i < gpu_threads + opt_n_threads; i++) { int cpu = cpu_from_thr_id(i); thr = &thr_info[i]; thr->id = i; cpus[cpu].cpu_gpu = cpu; thr->cgpu = &cpus[cpu]; thr->q = tq_new(); if (!thr->q) { applog(LOG_ERR, "tq_new failed in starting cpu mining threads"); return 1; } if (unlikely(pthread_create(&thr->pth, NULL, miner_thread, thr))) { applog(LOG_ERR, "thread %d create failed", i); return 1; } pthread_detach(thr->pth); } applog(LOG_INFO, "%d cpu miner threads started, " "using SHA256 '%s' algorithm.", opt_n_threads, algo_names[opt_algo]); /* Restart count as it will be wrong till all threads are started */ pthread_mutex_lock(&hash_lock); gettimeofday(&total_tv_start, NULL); gettimeofday(&total_tv_end, NULL); total_mhashes_done = 0; pthread_mutex_unlock(&hash_lock); /* main loop - simply wait for workio thread to exit */ pthread_join(thr_info[work_thr_id].pth, NULL); curl_global_cleanup(); if (gpu_threads) free(gpus); if (opt_n_threads) free(cpus); applog(LOG_INFO, "workio thread dead, exiting."); return 0; }