#include #include #include "miner.h" #include "libztex.h" #define BUFSIZE 256 //* Capability index for EEPROM support. #define CAPABILITY_EEPROM 0,0 //* Capability index for FPGA configuration support. #define CAPABILITY_FPGA 0,1 //* Capability index for FLASH memory support. #define CAPABILITY_FLASH 0,2 //* Capability index for DEBUG helper support. #define CAPABILITY_DEBUG 0,3 //* Capability index for AVR XMEGA support. #define CAPABILITY_XMEGA 0,4 //* Capability index for AVR XMEGA support. #define CAPABILITY_HS_FPGA 0,5 //* Capability index for AVR XMEGA support. #define CAPABILITY_MAC_EEPROM 0,6 static bool libztex_checkDevice (struct libusb_device *dev) { int err; struct libusb_device_descriptor desc; err = libusb_get_device_descriptor(dev, &desc); if (unlikely(err != 0)) { applog(LOG_ERR, "Ztex check device: Failed to open read descriptor with error %d", err); return false; } if (!(desc.idVendor == 0x221A && desc.idProduct == 0x0100)) { return false; } return true; } static bool libztex_checkCapability (struct libztex_device *ztex, int i, int j) { if (!((i>=0) && (i<=5) && (j>=0) && (j<8) && (((ztex->interfaceCapabilities[i] & 255) & (1 << j)) != 0))) { applog(LOG_ERR, "%s: capability missing: %d %d", ztex->repr, i, i); } return true; } static int libztex_detectBitstreamBitOrder (const unsigned char *buf, int size) { int i; size -= 4; for (i=0; i> 7) | ((c & 64) >> 5) | ((c & 32) >> 3) | ((c & 16) >> 1) | ((c & 8) << 1) | ((c & 4) << 3) | ((c & 2) << 5) | ((c & 1) << 7); } } static int libztex_getFpgaState (struct libztex_device *ztex, struct libztex_fpgastate *state) { int cnt; unsigned char buf[9]; if (!libztex_checkCapability(ztex, CAPABILITY_FPGA)) { return -1; } cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x30, 0, 0, buf, 9, 1000); if (unlikely(cnt < 0)) { applog(LOG_ERR, "%s: Failed getFpgaState with err %d", ztex->repr, cnt); return cnt; } state->fpgaConfigured = buf[0] == 0; state->fpgaChecksum = buf[1] & 0xff; state->fpgaBytes = ((buf[5] & 0xff)<<24) | ((buf[4] & 0xff)<<16) | ((buf[3] & 0xff)<<8) | (buf[2] & 0xff); state->fpgaInitB = buf[6] & 0xff; state->fpgaFlashResult = buf[7]; state->fpgaFlashBitSwap = buf[8] != 0; return 0; } static int libztex_configureFpgaLS (struct libztex_device *ztex, const char* firmware, bool force, char bs) { struct libztex_fpgastate state; unsigned char buf[8*1024*1024], cs; ssize_t pos=0; int transactionBytes = 2048; int tries, cnt, i, j; FILE *fp; if (!libztex_checkCapability(ztex, CAPABILITY_FPGA)) { return -1; } libztex_getFpgaState(ztex, &state); if (!force) { if (state.fpgaConfigured) { return 1; } } fp = fopen(firmware, "rb"); if (!fp) { applog(LOG_ERR, "%s: failed to read firmware '%s'", ztex->repr, firmware); return -2; } while (!feof(fp)) { buf[pos++] = getc(fp); }; pos--; applog(LOG_ERR, "%s: read firmware, %d bytes", ztex->repr, pos); fclose(fp); if ( bs<0 || bs>1 ) bs = libztex_detectBitstreamBitOrder(buf, transactionBytes0; tries--) { //* Reset fpga cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x31, 0, 0, NULL, 0, 1000); if (unlikely(cnt < 0)) { applog(LOG_ERR, "%s: Failed reset fpga with err %d", ztex->repr, cnt); continue; } cs = 0; i = 0; while (i < pos) { j = (i+transactionBytes) > pos ? pos-i : transactionBytes; cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x32, 0, 0, &buf[i], j, 5000); if (unlikely(cnt < 0)) { applog(LOG_ERR, "%s: Failed send fpga data with err %d", ztex->repr, cnt); break; } for (j=0; jrepr); return 3; } } sleep(0.2); applog(LOG_ERR, "%s: FPGA configuration done", ztex->repr); return 0; } int libztex_configureFpga (struct libztex_device *ztex) { int rv; rv = libztex_configureFpgaLS(ztex, "bitstreams/ztex_ufm1_15d3.bit", true, 2); if (rv == 0) { libztex_setFreq(ztex, ztex->freqMDefault); } return rv; } int libztex_setFreq (struct libztex_device *ztex, uint16_t freq) { int cnt; if (freq > ztex->freqMaxM) { freq = ztex->freqMaxM; } cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x83, freq, 0, NULL, 0, 500); if (unlikely(cnt < 0)) { applog(LOG_ERR, "Ztex check device: Failed to set frequency with err %d", cnt); return cnt; } ztex->freqM = freq; applog(LOG_WARNING, "%s: Frequency change to %d Mhz", ztex->repr, ztex->freqM1 * (ztex->freqM + 1)); return 0; } int libztex_prepare_device (struct libusb_device *dev, struct libztex_device** ztex) { struct libztex_device *newdev; int cnt, err; unsigned char buf[64]; newdev = malloc(sizeof(struct libztex_device)); newdev->valid = false; newdev->hndl = NULL; *ztex = newdev; err = libusb_get_device_descriptor(dev, &newdev->descriptor); if (unlikely(err != 0)) { applog(LOG_ERR, "Ztex check device: Failed to open read descriptor with error %d", err); return err; } // Check vendorId and productId if (!(newdev->descriptor.idVendor == LIBZTEX_IDVENDOR && newdev->descriptor.idProduct == LIBZTEX_IDPRODUCT)) { applog(LOG_ERR, "Not a ztex device? %0.4X, %0.4X", newdev->descriptor.idVendor, newdev->descriptor.idProduct); return 1; } libusb_open(dev, &newdev->hndl); cnt = libusb_get_string_descriptor_ascii (newdev->hndl, newdev->descriptor.iSerialNumber, newdev->snString, LIBZTEX_SNSTRING_LEN+1); if (unlikely(cnt < 0)) { applog(LOG_ERR, "Ztex check device: Failed to read device snString with err %d", cnt); return cnt; } applog(LOG_WARNING, "-- %s", newdev->snString); cnt = libusb_control_transfer(newdev->hndl, 0xc0, 0x22, 0, 0, buf, 40, 500); if (unlikely(cnt < 0)) { applog(LOG_ERR, "Ztex check device: Failed to read ztex descriptor with err %d", cnt); return cnt; } if ( buf[0]!=40 || buf[1]!=1 || buf[2]!='Z' || buf[3]!='T' || buf[4]!='E' || buf[5]!='X' ) { applog(LOG_ERR, "Ztex check device: Error reading ztex descriptor"); return 2; } newdev->productId[0] = buf[6]; newdev->productId[1] = buf[7]; newdev->productId[2] = buf[8]; newdev->productId[3] = buf[9]; newdev->fwVersion = buf[10]; newdev->interfaceVersion = buf[11]; newdev->interfaceCapabilities[0] = buf[12]; newdev->interfaceCapabilities[1] = buf[13]; newdev->interfaceCapabilities[2] = buf[14]; newdev->interfaceCapabilities[3] = buf[15]; newdev->interfaceCapabilities[4] = buf[16]; newdev->interfaceCapabilities[5] = buf[17]; newdev->moduleReserved[0] = buf[18]; newdev->moduleReserved[1] = buf[19]; newdev->moduleReserved[2] = buf[20]; newdev->moduleReserved[3] = buf[21]; newdev->moduleReserved[4] = buf[22]; newdev->moduleReserved[5] = buf[23]; newdev->moduleReserved[6] = buf[24]; newdev->moduleReserved[7] = buf[25]; newdev->moduleReserved[8] = buf[26]; newdev->moduleReserved[9] = buf[27]; newdev->moduleReserved[10] = buf[28]; newdev->moduleReserved[11] = buf[29]; cnt = libusb_control_transfer(newdev->hndl, 0xc0, 0x82, 0, 0, buf, 64, 500); if (unlikely(cnt < 0)) { applog(LOG_ERR, "Ztex check device: Failed to read ztex descriptor with err %d", cnt); return cnt; } if (unlikely(buf[0]) != 4) { if (unlikely(buf[0]) != 2) { applog(LOG_ERR, "Invalid BTCMiner descriptor version. Firmware must be updated."); return 3; } applog(LOG_WARNING, "Firmware out of date"); } newdev->numNonces = buf[1] + 1; newdev->offsNonces = ((buf[2] & 255) | ((buf[3] & 255) << 8)) - 10000; newdev->freqM1 = ( (buf[4] & 255) | ((buf[5] & 255) << 8) ) * 0.01; newdev->freqMaxM = (buf[7] & 255); newdev->freqM = (buf[6] & 255); newdev->freqMDefault = newdev->freqM; newdev->usbbus = libusb_get_bus_number(dev); newdev->usbaddress = libusb_get_device_address(dev); sprintf(newdev->repr, "ZTEX %.3d:%.3d-%s", newdev->usbbus, newdev->usbaddress, newdev->snString); newdev->valid = true; return 0; } void libztex_destroy_device (struct libztex_device* ztex) { if (ztex->hndl != NULL) { libusb_close(ztex->hndl); } free(ztex); } int libztex_scanDevices (struct libztex_dev_list*** devs_p) { libusb_device **list; struct libztex_device *ztex; ssize_t cnt = libusb_get_device_list(NULL, &list); ssize_t i = 0; int found = 0, pos = 0, err; if (unlikely(cnt < 0)) { applog(LOG_ERR, "Ztex scan devices: Failed to list usb devices with err %d", cnt); return 0; } int usbdevices[LIBZTEX_MAX_DESCRIPTORS]; for (i = 0; i < cnt; i++) { if (libztex_checkDevice(list[i])) { // Got one! usbdevices[found] = i; found++; } } struct libztex_dev_list **devs; devs = malloc(sizeof(struct libztex_dev_list *) * found); if (devs == NULL) { applog(LOG_ERR, "Ztex scan devices: Failed to allocate memory"); return 0; } for (i = 0; i < found; i++) { err = libztex_prepare_device(list[usbdevices[i]], &ztex); if (unlikely(err != 0)) { applog(LOG_ERR, "prepare device: %d", err); } // check if valid if (!ztex->valid) { libztex_destroy_device(ztex); continue; } devs[pos] = malloc(sizeof(struct libztex_dev_list)); devs[pos]->dev = ztex; devs[pos]->next = NULL; //libusb_open(list[usbdevices[i]], &devs[i]->hndl); //libusb_close(devs[cnt]->dev->hndl); if (pos > 0) { devs[pos]->next = devs[pos]; } pos++; } libusb_free_device_list(list, 1); *devs_p = devs; return pos; } int libztex_sendHashData (struct libztex_device *ztex, unsigned char *sendbuf) { int cnt; cnt = libusb_control_transfer(ztex->hndl, 0x40, 0x80, 0, 0, sendbuf, 44, 1000); if (unlikely(cnt < 0)) { applog(LOG_ERR, "%s: Failed sendHashData with err %d", ztex->repr, cnt); } return cnt; } int libztex_readHashData (struct libztex_device *ztex, struct libztex_hash_data nonces[]) { // length of buf must be 8 * (numNonces + 1) unsigned char rbuf[12*8]; int cnt, i; cnt = libusb_control_transfer(ztex->hndl, 0xc0, 0x81, 0, 0, rbuf, 12*ztex->numNonces, 1000); if (unlikely(cnt < 0)) { applog(LOG_ERR, "%s: Failed readHashData with err %d", ztex->repr, cnt); return cnt; } for (i=0; inumNonces; i++) { memcpy((char*)&nonces[i].goldenNonce, &rbuf[i*12], 4); nonces[i].goldenNonce -= ztex->offsNonces; memcpy((char*)&nonces[i].nonce, &rbuf[(i*12)+4], 4); nonces[i].nonce -= ztex->offsNonces; memcpy((char*)&nonces[i].hash7, &rbuf[(i*12)+8], 4); } return cnt; } void libztex_freeDevList (struct libztex_dev_list **devs) { ssize_t cnt = 0; bool done = false; while (!done) { if (devs[cnt]->next == NULL) { done = true; } free(devs[cnt++]); } free(devs); } int libztex_configreFpga (struct libztex_dev_list* dev) { return 0; }