/* * Copyright 2013 Con Kolivas * Copyright 2012-2013 Xiangfu * Copyright 2012 Luke Dashjr * Copyright 2012 Andrew Smith * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #ifndef WIN32 #include #include #include #include #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif #else #include "compat.h" #include #include #endif #include "elist.h" #include "miner.h" #include "fpgautils.h" #include "driver-avalon.h" #include "hexdump.c" #include "util.h" static int option_offset = -1; struct avalon_info **avalon_infos; struct device_drv avalon_drv; static int avalon_init_task(struct avalon_task *at, uint8_t reset, uint8_t ff, uint8_t fan, uint8_t timeout, uint8_t asic_num, uint8_t miner_num, uint8_t nonce_elf, uint8_t gate_miner, int frequency) { uint8_t *buf; static bool first = true; if (unlikely(!at)) return -1; if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0)) return -1; memset(at, 0, sizeof(struct avalon_task)); if (unlikely(reset)) { at->reset = 1; at->fan_eft = 1; at->timer_eft = 1; first = true; } at->flush_fifo = (ff ? 1 : 0); at->fan_eft = (fan ? 1 : 0); if (unlikely(first && !at->reset)) { at->fan_eft = 1; at->timer_eft = 1; first = false; } at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM); at->timeout_data = timeout; at->asic_num = asic_num; at->miner_num = miner_num; at->nonce_elf = nonce_elf; at->gate_miner_elf = 1; at->asic_pll = 1; if (unlikely(gate_miner)) { at-> gate_miner = 1; at->asic_pll = 0; } buf = (uint8_t *)at; buf[5] = 0x00; buf[8] = 0x74; buf[9] = 0x01; buf[10] = 0x00; buf[11] = 0x00; if (frequency == 256) { buf[6] = 0x03; buf[7] = 0x08; } else if (frequency == 270) { buf[6] = 0x73; buf[7] = 0x08; } else if (frequency == 282) { buf[6] = 0xd3; buf[7] = 0x08; } else if (frequency == 300) { buf[6] = 0x63; buf[7] = 0x09; } return 0; } static inline void avalon_create_task(struct avalon_task *at, struct work *work) { memcpy(at->midstate, work->midstate, 32); memcpy(at->data, work->data + 64, 12); } static int avalon_write(int fd, char *buf, ssize_t len) { ssize_t wrote = 0; while (len > 0) { struct timeval timeout; ssize_t ret; fd_set wd; timeout.tv_sec = 0; timeout.tv_usec = 100000; FD_ZERO(&wd); FD_SET((SOCKETTYPE)fd, &wd); ret = select(fd + 1, NULL, &wd, NULL, &timeout); if (unlikely(ret < 1)) { applog(LOG_WARNING, "Select error on avalon_write"); return AVA_SEND_ERROR; } ret = write(fd, buf + wrote, len); if (unlikely(ret < 1)) { applog(LOG_WARNING, "Write error on avalon_write"); return AVA_SEND_ERROR; } wrote += ret; len -= ret; } return AVA_SEND_OK; } static int avalon_send_task(int fd, const struct avalon_task *at, struct cgpu_info *avalon) { struct timespec p; uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM]; size_t nr_len; struct avalon_info *info; uint64_t delay = 32000000; /* Default 32ms for B19200 */ uint32_t nonce_range; int ret, i; if (at->nonce_elf) nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num; else nr_len = AVALON_WRITE_SIZE; memcpy(buf, at, AVALON_WRITE_SIZE); if (at->nonce_elf) { nonce_range = (uint32_t)0xffffffff / at->asic_num; for (i = 0; i < at->asic_num; i++) { buf[AVALON_WRITE_SIZE + (i * 4) + 3] = (i * nonce_range & 0xff000000) >> 24; buf[AVALON_WRITE_SIZE + (i * 4) + 2] = (i * nonce_range & 0x00ff0000) >> 16; buf[AVALON_WRITE_SIZE + (i * 4) + 1] = (i * nonce_range & 0x0000ff00) >> 8; buf[AVALON_WRITE_SIZE + (i * 4) + 0] = (i * nonce_range & 0x000000ff) >> 0; } } #if defined(__BIG_ENDIAN__) || defined(MIPSEB) uint8_t tt = 0; tt = (buf[0] & 0x0f) << 4; tt |= ((buf[0] & 0x10) ? (1 << 3) : 0); tt |= ((buf[0] & 0x20) ? (1 << 2) : 0); tt |= ((buf[0] & 0x40) ? (1 << 1) : 0); tt |= ((buf[0] & 0x80) ? (1 << 0) : 0); buf[0] = tt; tt = (buf[4] & 0x0f) << 4; tt |= ((buf[4] & 0x10) ? (1 << 3) : 0); tt |= ((buf[4] & 0x20) ? (1 << 2) : 0); tt |= ((buf[4] & 0x40) ? (1 << 1) : 0); tt |= ((buf[4] & 0x80) ? (1 << 0) : 0); buf[4] = tt; #endif if (likely(avalon)) { info = avalon->device_data; delay = nr_len * 10 * 1000000000ULL; delay = delay / info->baud; } if (at->reset) nr_len = 1; if (opt_debug) { applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len); hexdump(buf, nr_len); } ret = avalon_write(fd, (char *)buf, nr_len); p.tv_sec = 0; p.tv_nsec = (long)delay + 4000000; nanosleep(&p, NULL); applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec); return ret; } static bool avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar, struct work *work) { uint32_t nonce; info = avalon->device_data; info->matching_work[work->subid]++; nonce = htole32(ar->nonce); applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce); return submit_nonce(thr, work, nonce); } static int avalon_read(int fd, char *buf, ssize_t len) { ssize_t aread = 0; while (len > 0) { struct timeval timeout; ssize_t ret; fd_set rd; timeout.tv_sec = 0; timeout.tv_usec = 100000; FD_ZERO(&rd); FD_SET((SOCKETTYPE)fd, &rd); ret = select(fd + 1, &rd, NULL, NULL, &timeout); if (unlikely(ret < 1)) { applog(LOG_WARNING, "Select error on avalon_read"); return AVA_GETS_ERROR; } ret = read(fd, buf + aread, len); if (unlikely(ret < 1)) { applog(LOG_WARNING, "Read error on avalon_read"); return AVA_GETS_ERROR; } aread += ret; len -= ret; } return AVA_GETS_OK; } /* Wait until the ftdi chip returns a CTS saying we can send more data. The * status is updated every 40ms. */ static void wait_avalon_ready(int fd) { while (avalon_buffer_full(fd) == AVA_BUFFER_FULL) { nmsleep(40); } } static int avalon_reset(struct cgpu_info *avalon, int fd, bool initial) { struct avalon_result ar; struct avalon_task at; uint8_t *buf, *tmp; int ret, i, spare; struct timespec p; /* Send reset, then check for result */ avalon_init_task(&at, 1, 0, AVALON_DEFAULT_FAN_MAX_PWM, AVALON_DEFAULT_TIMEOUT, AVALON_DEFAULT_ASIC_NUM, AVALON_DEFAULT_MINER_NUM, 0, 0, AVALON_DEFAULT_FREQUENCY); wait_avalon_ready(fd); ret = avalon_send_task(fd, &at, NULL); if (unlikely(ret == AVA_SEND_ERROR)) return -1; if (!initial) { applog(LOG_ERR, "AVA%d reset sequence sent", avalon->device_id); return 0; } ret = avalon_read(fd, (char *)&ar, AVALON_READ_SIZE); if (unlikely(ret == AVA_GETS_ERROR)) return -1; /* What do these sleeps do?? */ p.tv_sec = 0; p.tv_nsec = AVALON_RESET_PITCH; nanosleep(&p, NULL); /* Look for the first occurrence of 0xAA, the reset response should be: * AA 55 AA 55 00 00 00 00 00 00 */ spare = AVALON_READ_SIZE - 10; tmp = (uint8_t *)&ar; if (opt_debug) { applog(LOG_DEBUG, "AVA%d reset: get:", avalon->device_id); hexdump(tmp, AVALON_READ_SIZE); } for (i = 0; i <= spare; i++) { buf = &tmp[i]; if (buf[0] == 0xAA) break; } i = 0; if (buf[0] == 0xAA && buf[1] == 0x55 && buf[2] == 0xAA && buf[3] == 0x55) { for (i = 4; i < 11; i++) if (buf[i] != 0) break; } if (i != 11) { applog(LOG_ERR, "AVA%d: Reset failed! not an Avalon?" " (%d: %02x %02x %02x %02x)", avalon->device_id, i, buf[0], buf[1], buf[2], buf[3]); /* FIXME: return 1; */ } else applog(LOG_WARNING, "AVA%d: Reset succeeded", avalon->device_id); return 0; } static void get_options(int this_option_offset, int *baud, int *miner_count, int *asic_count, int *timeout, int *frequency) { char err_buf[BUFSIZ+1]; char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2, *colon3, *colon4; size_t max; int i, tmp; if (opt_avalon_options == NULL) buf[0] = '\0'; else { ptr = opt_avalon_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } *baud = AVALON_IO_SPEED; *miner_count = AVALON_DEFAULT_MINER_NUM - 8; *asic_count = AVALON_DEFAULT_ASIC_NUM; *timeout = AVALON_DEFAULT_TIMEOUT; *frequency = AVALON_DEFAULT_FREQUENCY; if (!(*buf)) return; colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; tmp = atoi(buf); switch (tmp) { case 115200: *baud = 115200; break; case 57600: *baud = 57600; break; case 38400: *baud = 38400; break; case 19200: *baud = 19200; break; default: sprintf(err_buf, "Invalid avalon-options for baud (%s) " "must be 115200, 57600, 38400 or 19200", buf); quit(1, err_buf); } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { tmp = atoi(colon); if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) { *miner_count = tmp; } else { sprintf(err_buf, "Invalid avalon-options for " "miner_count (%s) must be 1 ~ %d", colon, AVALON_DEFAULT_MINER_NUM); quit(1, err_buf); } } if (colon2 && *colon2) { colon3 = strchr(colon2, ':'); if (colon3) *(colon3++) = '\0'; tmp = atoi(colon2); if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM) *asic_count = tmp; else { sprintf(err_buf, "Invalid avalon-options for " "asic_count (%s) must be 1 ~ %d", colon2, AVALON_DEFAULT_ASIC_NUM); quit(1, err_buf); } if (colon3 && *colon3) { colon4 = strchr(colon3, ':'); if (colon4) *(colon4++) = '\0'; tmp = atoi(colon3); if (tmp > 0 && tmp <= 0xff) *timeout = tmp; else { sprintf(err_buf, "Invalid avalon-options for " "timeout (%s) must be 1 ~ %d", colon3, 0xff); quit(1, err_buf); } if (colon4 && *colon4) { tmp = atoi(colon4); switch (tmp) { case 256: case 270: case 282: case 300: *frequency = tmp; break; default: sprintf(err_buf, "Invalid avalon-options for " "frequency must be 256/270/282/300"); quit(1, err_buf); } } } } } } static void avalon_idle(struct cgpu_info *avalon, struct avalon_info *info, int fd) { int i; info->idle = true; wait_avalon_ready(fd); applog(LOG_WARNING, "AVA%i: Idling %d miners", avalon->device_id, info->miner_count); /* Send idle to all miners */ for (i = 0; i < info->miner_count; i++) { struct avalon_task at; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, info->frequency); avalon_send_task(fd, &at, avalon); } wait_avalon_ready(fd); } static bool avalon_detect_one(const char *devpath) { struct avalon_info *info; int fd, ret; int baud, miner_count, asic_count, timeout, frequency = 0; struct cgpu_info *avalon; int this_option_offset = ++option_offset; get_options(this_option_offset, &baud, &miner_count, &asic_count, &timeout, &frequency); applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s " "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)", devpath, baud, miner_count, asic_count, timeout, frequency); fd = avalon_open2(devpath, baud, true); if (unlikely(fd == -1)) { applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath); return false; } /* We have a real Avalon! */ avalon = calloc(1, sizeof(struct cgpu_info)); avalon->drv = &avalon_drv; avalon->device_path = strdup(devpath); avalon->device_fd = fd; avalon->threads = AVALON_MINER_THREADS; add_cgpu(avalon); avalon_infos = realloc(avalon_infos, sizeof(struct avalon_info *) * (total_devices + 1)); applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d", devpath, avalon->device_id); avalon_infos[avalon->device_id] = calloc(sizeof(struct avalon_info), 1); if (unlikely(!(avalon_infos[avalon->device_id]))) quit(1, "Failed to calloc avalon_infos"); avalon->device_data = avalon_infos[avalon->device_id]; info = avalon->device_data; info->baud = baud; info->miner_count = miner_count; info->asic_count = asic_count; info->timeout = timeout; info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; info->temp_max = 0; /* This is for check the temp/fan every 3~4s */ info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1; if (info->temp_history_count <= 0) info->temp_history_count = 1; info->temp_history_index = 0; info->temp_sum = 0; info->temp_old = 0; info->frequency = frequency; ret = avalon_reset(avalon, fd, true); if (ret) { ; /* FIXME: I think IT IS avalon and wait on reset; * avalon_close(fd); * return false; */ } avalon_idle(avalon, info, fd); return true; } static inline void avalon_detect() { serial_detect(&avalon_drv, avalon_detect_one); } static void avalon_init(struct cgpu_info *avalon) { applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path); } static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar) { return find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32, (char *)ar->data, 64, 12); } static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar); static void avalon_inc_nvw(struct cgpu_info *avalon, struct avalon_info *info, struct thr_info *thr) { if (unlikely(info->idle)) return; applog(LOG_WARNING, "%s%d: No valid work - HW error", thr->cgpu->drv->name, thr->cgpu->device_id); inc_hw_errors(thr); mutex_lock(&info->lock); info->no_matching_work++; avalon->results--; mutex_unlock(&info->lock); } static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info, struct thr_info *thr, char *buf, int *offset) { int i, spare = *offset - AVALON_READ_SIZE; bool found = false; for (i = 0; i <= spare; i++) { struct avalon_result *ar; struct work *work; ar = (struct avalon_result *)&buf[i]; work = avalon_valid_result(avalon, ar); if (work) { bool gettemp = false; found = true; if (avalon_decode_nonce(thr, avalon, info, ar, work)) { mutex_lock(&info->lock); if (++avalon->results > 0 && !(avalon->results % info->miner_count)) { gettemp = true; avalon->results = 0; } info->nonces++; mutex_unlock(&info->lock); } else { mutex_lock(&info->lock); avalon->results--; mutex_unlock(&info->lock); } if (gettemp) avalon_update_temps(avalon, info, ar); break; } } if (!found) { spare = *offset - AVALON_READ_SIZE; /* We are buffering and haven't accumulated one more corrupt * work result. */ if (spare < (int)AVALON_READ_SIZE) return; avalon_inc_nvw(avalon, info, thr); } else { spare = AVALON_READ_SIZE + i; if (i) { if (i >= (int)AVALON_READ_SIZE) avalon_inc_nvw(avalon, info, thr); else applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", i); } } *offset -= spare; memmove(buf, buf + spare, *offset); } static void __avalon_running_reset(struct cgpu_info *avalon, struct avalon_info *info, int fd) { info->reset = true; avalon_reset(avalon, fd, false); avalon_idle(avalon, info, fd); avalon->results = 0; info->reset = false; } static void avalon_running_reset(struct cgpu_info *avalon, struct avalon_info *info, int fd) { /* Lock to prevent more work being sent during reset */ mutex_lock(&info->qlock); __avalon_running_reset(avalon, info, fd); mutex_unlock(&info->qlock); } static void *avalon_get_results(void *userdata) { struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct avalon_info *info = avalon->device_data; const int rsize = AVALON_FTDI_READSIZE; char readbuf[AVALON_READBUF_SIZE]; struct thr_info *thr = info->thr; int fd = avalon->device_fd; char threadname[24]; int offset = 0; pthread_detach(pthread_self()); snprintf(threadname, 24, "ava_recv/%d", avalon->device_id); RenameThread(threadname); while (42) { struct timeval timeout; char buf[rsize]; ssize_t ret; fd_set rd; if (offset >= (int)AVALON_READ_SIZE) avalon_parse_results(avalon, info, thr, readbuf, &offset); /* Check for nothing but consecutive bad results and reset the * FPGA if necessary */ if (unlikely(avalon->results <= -info->miner_count)) { applog(LOG_ERR, "AVA%d: %d invalid consecutive results, resetting", avalon->device_id, -avalon->results); avalon_running_reset(avalon, info, fd); } if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) { /* This should never happen */ applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer"); offset = 0; } timeout.tv_sec = 0; timeout.tv_usec = AVALON_READ_TIMEOUT * 1000; FD_ZERO(&rd); FD_SET((SOCKETTYPE)fd, &rd); ret = select(fd + 1, &rd, NULL, NULL, &timeout); if (ret < 1) { if (unlikely(ret < 0)) applog(LOG_WARNING, "Select error in avalon_get_results"); continue; } ret = read(fd, buf, AVALON_FTDI_READSIZE); if (unlikely(ret < 1)) { if (unlikely(ret < 0)) applog(LOG_WARNING, "Read error in avalon_get_results"); continue; } if (opt_debug) { applog(LOG_DEBUG, "Avalon: get:"); hexdump((uint8_t *)buf, ret); } /* During a reset, goes on reading but discards anything */ if (unlikely(info->reset)) { offset = 0; continue; } memcpy(&readbuf[offset], buf, ret); offset += ret; } return NULL; } static void avalon_rotate_array(struct cgpu_info *avalon) { avalon->queued = 0; if (++avalon->work_array >= AVALON_ARRAY_SIZE) avalon->work_array = 0; } static void *avalon_send_tasks(void *userdata) { struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct avalon_info *info = avalon->device_data; const int avalon_get_work_count = info->miner_count; int fd = avalon->device_fd; char threadname[24]; pthread_detach(pthread_self()); snprintf(threadname, 24, "ava_send/%d", avalon->device_id); RenameThread(threadname); while (42) { int start_count, end_count, i, j, ret; struct avalon_task at; int idled = 0; wait_avalon_ready(fd); mutex_lock(&info->qlock); start_count = avalon->work_array * avalon_get_work_count; end_count = start_count + avalon_get_work_count; for (i = start_count, j = 0; i < end_count; i++, j++) { if (unlikely(avalon_buffer_full(fd) == AVA_BUFFER_FULL)) { applog(LOG_WARNING, "AVA%i: Buffer full before all work queued", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); __avalon_running_reset(avalon, info, fd); break; } if (likely(j < avalon->queued)) { info->idle = false; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 0, info->frequency); avalon_create_task(&at, avalon->works[i]); } else { idled++; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, info->frequency); } ret = avalon_send_task(fd, &at, avalon); if (unlikely(ret == AVA_SEND_ERROR)) { applog(LOG_ERR, "AVA%i: Comms error(buffer)", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); __avalon_running_reset(avalon, info, fd); break; } } avalon_rotate_array(avalon); pthread_cond_signal(&info->qcond); mutex_unlock(&info->qlock); if (unlikely(idled && !info->idle)) { info->idle = true; applog(LOG_WARNING, "AVA%i: Idled %d miners", avalon->device_id, idled); } } return NULL; } static bool avalon_prepare(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; struct timeval now; free(avalon->works); avalon->works = calloc(info->miner_count * sizeof(struct work *), AVALON_ARRAY_SIZE); if (!avalon->works) quit(1, "Failed to calloc avalon works in avalon_prepare"); info->thr = thr; mutex_init(&info->lock); mutex_init(&info->qlock); if (unlikely(pthread_cond_init(&info->qcond, NULL))) quit(1, "Failed to pthread_cond_init avalon qcond"); if (pthread_create(&info->write_thr, NULL, avalon_send_tasks, (void *)avalon)) quit(1, "Failed to create avalon write_thr"); mutex_lock(&info->qlock); pthread_cond_wait(&info->qcond, &info->qlock); mutex_unlock(&info->qlock); if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon)) quit(1, "Failed to create avalon read_thr"); avalon_init(avalon); cgtime(&now); get_datestamp(avalon->init, &now); return true; } static void avalon_free_work(struct thr_info *thr) { struct cgpu_info *avalon; struct avalon_info *info; struct work **works; int i; avalon = thr->cgpu; avalon->queued = 0; if (unlikely(!avalon->works)) return; works = avalon->works; info = avalon->device_data; for (i = 0; i < info->miner_count * 4; i++) { if (works[i]) { work_completed(avalon, works[i]); works[i] = NULL; } } } static void do_avalon_close(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; int fd = avalon->device_fd; pthread_cancel(info->read_thr); pthread_cancel(info->write_thr); __avalon_running_reset(avalon, info, fd); avalon_idle(avalon, info, fd); avalon_free_work(thr); avalon_close(fd); avalon->device_fd = -1; info->no_matching_work = 0; } static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg) { info->fan0 = ar->fan0 * AVALON_FAN_FACTOR; info->fan1 = ar->fan1 * AVALON_FAN_FACTOR; info->fan2 = ar->fan2 * AVALON_FAN_FACTOR; info->temp0 = ar->temp0; info->temp1 = ar->temp1; info->temp2 = ar->temp2; if (ar->temp0 & 0x80) { ar->temp0 &= 0x7f; info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1); } if (ar->temp1 & 0x80) { ar->temp1 &= 0x7f; info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1); } if (ar->temp2 & 0x80) { ar->temp2 &= 0x7f; info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1); } *temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1; if (info->temp0 > info->temp_max) info->temp_max = info->temp0; if (info->temp1 > info->temp_max) info->temp_max = info->temp1; if (info->temp2 > info->temp_max) info->temp_max = info->temp2; } static inline void adjust_fan(struct avalon_info *info) { int temp_new; temp_new = info->temp_sum / info->temp_history_count; if (temp_new < 35) { info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; info->temp_old = temp_new; } else if (temp_new > 55) { info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM; info->temp_old = temp_new; } else if (abs(temp_new - info->temp_old) >= 2) { info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4; info->temp_old = temp_new; } } static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar) { record_temp_fan(info, ar, &(avalon->temp)); applog(LOG_INFO, "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t" "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC", info->fan0, info->fan1, info->fan2, info->temp0, info->temp1, info->temp2, info->temp_max); info->temp_history_index++; info->temp_sum += avalon->temp; applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d", info->temp_history_index, info->temp_history_count, info->temp_old); if (info->temp_history_index == info->temp_history_count) { adjust_fan(info); info->temp_history_index = 0; info->temp_sum = 0; } } /* We use a replacement algorithm to only remove references to work done from * the buffer when we need the extra space for new work. */ static bool avalon_fill(struct cgpu_info *avalon) { int subid, slot, mc = avalon_infos[avalon->device_id]->miner_count; struct avalon_info *info = avalon->device_data; struct work *work; bool ret = true; mutex_lock(&info->qlock); if (avalon->queued >= mc) goto out_unlock; work = get_queued(avalon); if (unlikely(!work)) { ret = false; goto out_unlock; } subid = avalon->queued++; work->subid = subid; slot = avalon->work_array * mc + subid; if (likely(avalon->works[slot])) work_completed(avalon, avalon->works[slot]); avalon->works[slot] = work; if (avalon->queued < mc) ret = false; out_unlock: mutex_unlock(&info->qlock); return ret; } static int64_t avalon_scanhash(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; struct timeval now, then, tdiff; int64_t hash_count, us_timeout; struct timespec abstime; /* Full nonce range */ us_timeout = 0x100000000ll / info->asic_count / info->frequency; tdiff.tv_sec = us_timeout / 1000000; tdiff.tv_usec = us_timeout - (tdiff.tv_sec * 1000000); cgtime(&now); timeradd(&now, &tdiff, &then); abstime.tv_sec = then.tv_sec; abstime.tv_nsec = then.tv_usec * 1000; /* Wait until avalon_send_tasks signals us that it has completed * sending its work or a full nonce range timeout has occurred */ mutex_lock(&info->qlock); pthread_cond_timedwait(&info->qcond, &info->qlock, &abstime); mutex_unlock(&info->qlock); mutex_lock(&info->lock); hash_count = 0xffffffffull * (uint64_t)info->nonces; info->nonces = 0; mutex_unlock(&info->lock); /* This hashmeter is just a utility counter based on returned shares */ return hash_count; } static void avalon_flush_work(struct cgpu_info *avalon) { struct avalon_info *info = avalon->device_data; struct thr_info *thr = info->thr; thr->work_restart = false; mutex_lock(&info->qlock); /* Will overwrite any work queued */ avalon->queued = 0; pthread_cond_signal(&info->qcond); mutex_unlock(&info->qlock); } static struct api_data *avalon_api_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct avalon_info *info = cgpu->device_data; int i; root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "miner_count", &(info->miner_count),false); root = api_add_int(root, "asic_count", &(info->asic_count), false); root = api_add_int(root, "timeout", &(info->timeout), false); root = api_add_int(root, "frequency", &(info->frequency), false); root = api_add_int(root, "fan1", &(info->fan0), false); root = api_add_int(root, "fan2", &(info->fan1), false); root = api_add_int(root, "fan3", &(info->fan2), false); root = api_add_int(root, "temp1", &(info->temp0), false); root = api_add_int(root, "temp2", &(info->temp1), false); root = api_add_int(root, "temp3", &(info->temp2), false); root = api_add_int(root, "temp_max", &(info->temp_max), false); root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false); for (i = 0; i < info->miner_count; i++) { char mcw[24]; sprintf(mcw, "match_work_count%d", i + 1); root = api_add_int(root, mcw, &(info->matching_work[i]), false); } return root; } static void avalon_shutdown(struct thr_info *thr) { do_avalon_close(thr); } struct device_drv avalon_drv = { .drv_id = DRIVER_AVALON, .dname = "avalon", .name = "AVA", .drv_detect = avalon_detect, .thread_prepare = avalon_prepare, .hash_work = hash_queued_work, .queue_full = avalon_fill, .scanwork = avalon_scanhash, .flush_work = avalon_flush_work, .get_api_stats = avalon_api_stats, .reinit_device = avalon_init, .thread_shutdown = avalon_shutdown, };