This is a multi-threaded multi-pool GPU, FPGA and CPU miner with ATI GPU monitoring, (over)clocking and fanspeed support for bitcoin and derivative coins. Do not use on multiple block chains at the same time! This code is provided entirely free of charge by the programmer in his spare time so donations would be greatly appreciated. Please consider donating to the address below. Con Kolivas 15qSxP1SQcUX3o4nhkfdbgyoWEFMomJ4rZ DOWNLOADS: http://ck.kolivas.org/apps/cgminer GIT TREE: https://github.com/ckolivas/cgminer Support thread: http://bitcointalk.org/index.php?topic=28402.0 IRC Channel: irc://irc.freenode.net/cgminer License: GPLv2. See COPYING for details. READ EXECUTIVE SUMMARY BELOW FOR FIRST TIME USERS! Dependencies: curl dev library http://curl.haxx.se/libcurl/ (libcurl4-openssl-dev) curses dev library (libncurses5-dev or libpdcurses on WIN32) pkg-config http://www.freedesktop.org/wiki/Software/pkg-config jansson http://www.digip.org/jansson/ (jansson is included in-tree and not necessary) yasm 1.0.1+ http://yasm.tortall.net/ (yasm is optional, gives assembly routines for CPU mining) AMD APP SDK http://developer.amd.com/sdks/AMDAPPSDK (This sdk is mandatory for GPU mining) AMD ADL SDK http://developer.amd.com/sdks/ADLSDK (This sdk is mandatory for ATI GPU monitoring & clocking) libudev headers (This is only required for FPGA auto-detection and is linux only) libusb headers (This is only required for ZTEX support) CGMiner specific configuration options: --enable-cpumining Build with cpu mining support(default disabled) --disable-opencl Override detection and disable building with opencl --disable-adl Override detection and disable building with adl --enable-bitforce Compile support for BitForce FPGAs(default disabled) --enable-icarus Compile support for Icarus Board(default disabled) Basic *nix build instructions: To build with GPU mining support: Install AMD APP sdk, ideal version (see FAQ!) - no official place to install it so just keep track of where it is if you're not installing the include files and library files into the system directory. (Do NOT install the ati amd sdk if you are on nvidia.) To build with GPU monitoring & clocking support: Extract the AMD ADL SDK, latest version - there is also no official place for these files. Copy all the *.h files in the "include" directory into cgminer's ADL_SDK directory. The easiest way to install the ATI AMD SPP sdk on linux is to actually put it into a system location. Then building will be simpler. Download the correct version for either 32 bit or 64 bit from here: http://developer.amd.com/sdks/AMDAPPSDK/downloads/Pages/default.aspx This will give you a file with a name like AMD-APP-SDK-v2.4-lnx64.tgz Then: sudo su cd /opt tar xf /path/to/AMD-APP-SDK-v2.4-lnx64.tgz cd / tar xf /opt/AMD-APP-SDK-v2.4-lnx64/icd-registration.tgz ln -s /opt/AMD-APP-SDK-v2.4-lnx64/include/CL /usr/include ln -s /opt/AMD-APP-SDK-v2.4-lnx64/lib/x86_64/* /usr/lib/ ldconfig If you are on 32 bit, x86_64 in the 2nd last line should be x86 To actually build: ./autogen.sh # only needed if building from git repo CFLAGS="-O2 -Wall -march=native" ./configure or if you haven't installed the ati files in system locations: CFLAGS="-O2 -Wall -march=native -I" LDFLAGS="-L ./configure make If it finds the opencl files it will inform you with "OpenCL: FOUND. GPU mining support enabled." Basic WIN32 build instructions (LIKELY OUTDATED INFO. requires mingw32): ./autogen.sh # only needed if building from git repo rm -f mingw32-config.cache MINGW32_CFLAGS="-O2 -Wall -msse2" mingw32-configure make ./mknsis.sh Native WIN32 build instructions: see windows-build.txt --- Usage instructions: Run "cgminer --help" to see options: Usage: . [-atDdGCgIKklmpPQqrRsTouvwOchnV] Options for both config file and command line: --api-allow Allow API access (if enabled) only to the given list of [W:]IP[/Prefix] address[/subnets] This overrides --api-network and you must specify 127.0.0.1 if it is required W: in front of the IP address gives that address privileged access to all api commands --api-description Description placed in the API status header (default: cgminer version) --api-listen Listen for API requests (default: disabled) By default any command that does not just display data returns access denied See --api-allow to overcome this --api-network Allow API (if enabled) to listen on/for any address (default: only 127.0.0.1) --api-port Port number of miner API (default: 4028) --auto-fan Automatically adjust all GPU fan speeds to maintain a target temperature --auto-gpu Automatically adjust all GPU engine clock speeds to maintain a target temperature --benchmark Run cgminer in benchmark mode - produces no shares --debug|-D Enable debug output --expiry|-E Upper bound on how many seconds after getting work we consider a share from it stale (default: 120) --failover-only Don't leak work to backup pools when primary pool is lagging --load-balance Change multipool strategy from failover to even load balance --log|-l Interval in seconds between log output (default: 5) --monitor|-m Use custom pipe cmd for output messages --net-delay Impose small delays in networking to not overload slow routers --no-longpoll Disable X-Long-Polling support --pass|-p Password for bitcoin JSON-RPC server --per-device-stats Force verbose mode and output per-device statistics --protocol-dump|-P Verbose dump of protocol-level activities --queue|-Q Minimum number of work items to have queued (0 - 10) (default: 1) --quiet|-q Disable logging output, display status and errors --real-quiet Disable all output --remove-disabled Remove disabled devices entirely, as if they didn't exist --retries|-r Number of times to retry before giving up, if JSON-RPC call fails (-1 means never) (default: -1) --retry-pause|-R Number of seconds to pause, between retries (default: 5) --rotate Change multipool strategy from failover to regularly rotate at N minutes (default: 0) --round-robin Change multipool strategy from failover to round robin on failure --scan-time|-s Upper bound on time spent scanning current work, in seconds (default: 60) --sched-start Set a time of day in HH:MM to start mining (a once off without a stop time) --sched-stop Set a time of day in HH:MM to stop mining (will quit without a start time) --sharelog Append share log to file --shares Quit after mining N shares (default: unlimited) --socks-proxy Set socks4 proxy (host:port) --submit-stale Submit shares even if they would normally be considered stale --syslog Use system log for output messages (default: standard error) --temp-cutoff Temperature where a device will be automatically disabled, one value or comma separated list (default: 95) --text-only|-T Disable ncurses formatted screen output --url|-o URL for bitcoin JSON-RPC server --user|-u Username for bitcoin JSON-RPC server --verbose Log verbose output to stderr as well as status output --userpass|-O Username:Password pair for bitcoin JSON-RPC server Options for command line only: --config|-c Load a JSON-format configuration file See example.conf for an example configuration. --help|-h Print this message --version|-V Display version and exit GPU only options: --auto-fan Automatically adjust all GPU fan speeds to maintain a target temperature --auto-gpu Automatically adjust all GPU engine clock speeds to maintain a target temperature --device|-d Select device to use, (Use repeat -d for multiple devices, default: all) --disable-gpu|-G Disable GPU mining even if suitable devices exist --gpu-threads|-g Number of threads per GPU (1 - 10) (default: 2) --gpu-dyninterval Set the refresh interval in ms for GPUs using dynamic intensity (default: 7) --gpu-engine GPU engine (over)clock range in Mhz - one value, range and/or comma separated list (e.g. 850-900,900,750-850) --gpu-fan GPU fan percentage range - one value, range and/or comma separated list (e.g. 25-85,85,65) --gpu-map Map OpenCL to ADL device order manually, paired CSV (e.g. 1:0,2:1 maps OpenCL 1 to ADL 0, 2 to 1) --gpu-memclock Set the GPU memory (over)clock in Mhz - one value for all or separate by commas for per card. --gpu-memdiff Set a fixed difference in clock speed between the GPU and memory in auto-gpu mode --gpu-powertune Set the GPU powertune percentage - one value for all or separate by commas for per card. --gpu-reorder Attempt to reorder GPU devices according to PCI Bus ID --gpu-vddc Set the GPU voltage in Volts - one value for all or separate by commas for per card. --intensity|-I Intensity of GPU scanning (d or -10 -> 10, default: d to maintain desktop interactivity) --kernel|-k Override kernel to use (diablo, poclbm, phatk or diakgcn) - one value or comma separated --kernel-path|-K Specify a path to where the kernel .cl files are (default: "/usr/local/bin") --ndevs|-n Enumerate number of detected GPUs and exit --no-restart Do not attempt to restart GPUs that hang --temp-hysteresis Set how much the temperature can fluctuate outside limits when automanaging speeds (default: 3) --temp-overheat Overheat temperature when automatically managing fan and GPU speeds (default: 85) --temp-target Target temperature when automatically managing fan and GPU speeds (default: 75) --vectors|-v Override detected optimal vector (1, 2 or 4) - one value or comma separated list --worksize|-w Override detected optimal worksize - one value or comma separated list FPGA mining boards(BitForce, Icarus) only options: --scan-serial|-S Serial port to probe for FPGA mining device By default, cgminer will scan for autodetected FPGAs unless at least one -S is specified for that driver. If you specify -S and still want cgminer to scan, you must also use "-S auto". If you want to prevent cgminer from scanning without specifying a device, you can use "-S noauto". Note that presently, autodetection only works on Linux, and might only detect one device depending on the version of udev being used. On linux is usually of the format /dev/ttyUSBn On windows is usually of the format \\.\COMn (where n = the correct device number for the FPGA device) CPU only options (deprecated, not included in binaries!): --algo|-a Specify sha256 implementation for CPU mining: auto Benchmark at startup and pick fastest algorithm c Linux kernel sha256, implemented in C 4way tcatm's 4-way SSE2 implementation via VIA padlock implementation cryptopp Crypto++ C/C++ implementation sse2_64 SSE2 64 bit implementation for x86_64 machines sse4_64 SSE4.1 64 bit implementation for x86_64 machines (default: sse2_64) --cpu-threads|-t Number of miner CPU threads (default: 4) --enable-cpu|-C Enable CPU mining with other mining (default: no CPU mining if other devices exist) --- EXECUTIVE SUMMARY ON USAGE: After saving configuration from the menu, you do not need to give cgminer any arguments and it will load your configuration. Any configuration file may also contain a single "include" : "filename" to recursively include another configuration file. Writing the configuration will save all settings from all files in the output. Single pool, regular desktop: cgminer -o http://pool:port -u username -p password Single pool, dedicated miner: cgminer -o http://pool:port -u username -p password -I 9 Single pool, first card regular desktop, 3 other dedicated cards: cgminer -o http://pool:port -u username -p password -I d,9,9,9 Multiple pool, dedicated miner: cgminer -o http://pool1:port -u pool1username -p pool1password -o http://pool2:port -u pool2usernmae -p pool2password -I 9 Add overclocking settings, GPU and fan control for all cards: cgminer -o http://pool:port -u username -p password -I 9 --auto-fan --auto-gpu --gpu-engine 750-950 --gpu-memclock 300 Add overclocking settings, GPU and fan control with different engine settings for 4 cards: cgminer -o http://pool:port -u username -p password -I 9 --auto-fan --auto-gpu --gpu-engine 750-950,945,700-930,960 --gpu-memclock 300 READ WARNINGS AND DOCUMENTATION BELOW ABOUT OVERCLOCKING On Linux you virtually always need to export your display settings before starting to get all the cards recognised and/or temperature+clocking working: export DISPLAY=:0 --- WHILE RUNNING: The following options are available while running with a single keypress: [P]ool management [G]PU management [S]ettings [D]isplay options [Q]uit P gives you: Current pool management strategy: Failover [A]dd pool [R]emove pool [D]isable pool [E]nable pool [C]hange management strategy [S]witch pool [I]nformation S gives you: [L]ongpoll: On [Q]ueue: 1 [S]cantime: 60 [E]xpiry: 120 [R]etries: -1 [P]ause: 5 [W]rite config file D gives you: Toggle: [D]ebug [N]ormal [S]ilent [V]erbose [R]PC debug [L]og interval [C]lear Q quits the application. G gives you something like: GPU 0: [124.2 / 191.3 Mh/s] [Q:212 A:77 R:33 HW:0 E:36% U:1.73/m] Temp: 67.0 C Fan Speed: 35% (2500 RPM) Engine Clock: 960 MHz Memory Clock: 480 Mhz Vddc: 1.200 V Activity: 93% Powertune: 0% Last initialised: [2011-09-06 12:03:56] Thread 0: 62.4 Mh/s Enabled ALIVE Thread 1: 60.2 Mh/s Enabled ALIVE [E]nable [D]isable [R]estart GPU [C]hange settings Or press any other key to continue --- Also many issues and FAQs are covered in the forum thread dedicated to this program, http://forum.bitcoin.org/index.php?topic=28402.0 The output line shows the following: (5s):1713.6 (avg):1707.8 Mh/s | Q:301 A:729 R:8 HW:0 E:242% U:22.53/m Each column is as follows: 5s: A 5 second exponentially decaying average hash rate avg: An all time average hash rate Q: The number of requested (Queued) work items from the pools A: The number of Accepted shares R: The number of Rejected shares HW: The number of HardWare errors E: The Efficiency defined as number of shares returned / work item U: The Utility defined as the number of shares / minute GPU 1: 73.5C 2551RPM | 427.3/443.0Mh/s | A:8 R:0 HW:0 U:4.39/m Each column is as follows: Temperature (if supported) Fanspeed (if supported) A 5 second exponentially decaying average hash rate An all time average hash rate The number of accepted shares The number of rejected shares The number of hardware erorrs The utility defines as the number of shares / minute The cgminer status line shows: TQ: 1 ST: 1 SS: 0 DW: 0 NB: 1 LW: 8 GF: 1 RF: 1 TQ is Total Queued work items. ST is STaged work items (ready to use). SS is Stale Shares discarded (detected and not submitted so don't count as rejects) DW is Discarded Work items (work from block no longer valid to work on) NB is New Blocks detected on the network LW is Locally generated Work items GF is Getwork Fail Occasions (server slow to provide work) RF is Remote Fail occasions (server slow to accept work) NOTE: Running intensities above 9 with current hardware is likely to only diminish return performance even if the hash rate might appear better. A good starting baseline intensity to try on dedicated miners is 9. Higher values are there to cope with future improvements in hardware. --- MULTIPOOL FAILOVER STRATEGIES WITH MULTIPOOL: A number of different strategies for dealing with multipool setups are available. Each has their advantages and disadvantages so multiple strategies are available by user choice, as per the following list: FAILOVER: The default strategy is failover. This means that if you input a number of pools, it will try to use them as a priority list, moving away from the 1st to the 2nd, 2nd to 3rd and so on. If any of the earlier pools recover, it will move back to the higher priority ones. ROUND ROBIN: This strategy only moves from one pool to the next when the current one falls idle and makes no attempt to move otherwise. ROTATE: This strategy moves at user-defined intervals from one active pool to the next, skipping pools that are idle. LOAD BALANCE: This strategy sends work in equal amounts to all the pools specified. If any pool falls idle, the rest will take up the slack keeping the miner busy. --- LOGGING cgminer will log to stderr if it detects stderr is being redirected to a file. To enable logging simply add 2>logfile.txt to your command line and logfile.txt will contain the logged output at the log level you specify (normal, verbose, debug etc.) In other words if you would normally use: ./cgminer -o xxx -u yyy -p zzz if you use ./cgminer -o xxx -u yyy -p zzz 2>logfile.txt it will log to a file called logfile.txt and otherwise work the same. There is also the -m option on linux which will spawn a command of your choice and pipe the output directly to that command. If you start cgminer with the --sharelog option, you can get detailed information for each share found. The argument to the option may be "-" for standard output (not advisable with the ncurses UI), any valid positive number for that file descriptor, or a filename. To log share data to a file named "share.log", you can use either: ./cgminer --sharelog 50 -o xxx -u yyy -p zzz 50>share.log ./cgminer --sharelog share.log -o xxx -u yyy -p zzz For every share found, data will be logged in a CSV (Comma Separated Value) format: timestamp,disposition,target,pool,dev,thr,sharehash,sharedata For example (this is wrapped, but it's all on one line for real): 1335313090,reject, ffffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000, http://localhost:8337,GPU0,0, 6f983c918f3299b58febf95ec4d0c7094ed634bc13754553ec34fc3800000000, 00000001a0980aff4ce4a96d53f4b89a2d5f0e765c978640fe24372a000001c5 000000004a4366808f81d44f26df3d69d7dc4b3473385930462d9ab707b50498 f681634a4f1f63d01a0cd43fb338000000000080000000000000000000000000 0000000000000000000000000000000000000000000000000000000080020000 --- OVERCLOCKING WARNING AND INFORMATION AS WITH ALL OVERCLOCKING TOOLS YOU ARE ENTIRELY RESPONSIBLE FOR ANY HARM YOU MAY CAUSE TO YOUR HARDWARE. OVERCLOCKING CAN INVALIDATE WARRANTIES, DAMAGE HARDWARE AND EVEN CAUSE FIRES. THE AUTHOR ASSUMES NO RESPONSIBILITY FOR ANY DAMAGE YOU MAY CAUSE OR UNPLANNED CHILDREN THAT MAY OCCUR AS A RESULT. The GPU monitoring, clocking and fanspeed control incorporated into cgminer comes through use of the ATI Display Library. As such, it only supports ATI GPUs. Even if ADL support is successfully built into cgminer, unless the card and driver supports it, no GPU monitoring/settings will be available. Cgminer supports initial setting of GPU engine clock speed, memory clock speed, voltage, fanspeed, and the undocumented powertune feature of 69x0+ GPUs. The setting passed to cgminer is used by all GPUs unless separate values are specified. All settings can all be changed within the menu on the fly on a per-GPU basis. For example: --gpu-engine 950 --gpu-memclock 825 will try to set all GPU engine clocks to 950 and all memory clocks to 825, while: --gpu-engine 950,945,930,960 --gpu-memclock 300 will try to set the engine clock of card 0 to 950, 1 to 945, 2 to 930, 3 to 960 and all memory clocks to 300. AUTO MODES: There are two "auto" modes in cgminer, --auto-fan and --auto-gpu. These can be used independently of each other and are complementary. Both auto modes are designed to safely change settings while trying to maintain a target temperature. By default this is set to 75 degrees C but can be changed with: --temp-target e.g. --temp-target 80 Sets all cards' target temperature to 80 degrees. --temp-target 75,85 Sets card 0 target temperature to 75, and card 1 to 85 degrees. AUTO FAN: e.g. --auto-fan (implies 85% upper limit) --gpu-fan 25-85,65 --auto-fan Fan control in auto fan works off the theory that the minimum possible fan required to maintain an optimal temperature will use less power, make less noise, and prolong the life of the fan. In auto-fan mode, the fan speed is limited to 85% if the temperature is below "overheat" intentionally, as higher fanspeeds on GPUs do not produce signficantly more cooling, yet significanly shorten the lifespan of the fans. If temperature reaches the overheat value, fanspeed will still be increased to 100%. The overheat value is set to 85 degrees by default and can be changed with: --temp-overheat e.g. --temp-overheat 75,85 Sets card 0 overheat threshold to 75 degrees and card 1 to 85. AUTO GPU: e.g. --auto-gpu --gpu-engine 750-950 --auto-gpu --gpu-engine 750-950,945,700-930,960 GPU control in auto gpu tries to maintain as high a clock speed as possible while not reaching overheat temperatures. As a lower clock speed limit, the auto-gpu mode checks the GPU card's "normal" clock speed and will not go below this unless you have manually set a lower speed in the range. Also, unless a higher clock speed was specified at startup, it will not raise the clockspeed. If the temperature climbs, fanspeed is adjusted and optimised before GPU engine clockspeed is adjusted. If fan speed control is not available or already optimal, then GPU clock speed is only decreased if it goes over the target temperature by the hysteresis amount, which is set to 3 by default and can be changed with: --temp-hysteresis If the temperature drops below the target temperature, and engine clock speed is not at the highest level set at startup, cgminer will raise the clock speed. If at any time you manually set an even higher clock speed successfully in cgminer, it will record this value and use it as its new upper limit (and the same for low clock speeds and lower limits). If the temperature goes over the cutoff limit (95 degrees by default), cgminer will completely disable the GPU from mining and it will not be re-enabled unless manually done so. The cutoff temperature can be changed with: --temp-cutoff e.g. --temp-cutoff 95,105 Sets card 0 cutoff temperature to 95 and card 1 to 105. --gpu-memdiff -125 This setting will modify the memory speed whenever the GPU clock speed is modified by --auto-gpu. In this example, it will set the memory speed to be 125 Mhz lower than the GPU speed. This is useful for some cards like the 6970 which normally don't allow a bigger clock speed difference. CHANGING SETTINGS: When setting values, it is important to realise that even though the driver may report the value was changed successfully, and the new card power profile information contains the values you set it to, that the card itself may refuse to use those settings. As the performance profile changes dynamically, querying the "current" value on the card can be wrong as well. So when changing values in cgminer, after a pause of 1 second, it will report to you the current values where you should check that your change has taken. An example is that 6970 reference cards will accept low memory values but refuse to actually run those lower memory values unless they're within 125 of the engine clock speed. In that scenario, they usually set their real speed back to their default. Cgminer reports the so-called "safe" range of whatever it is you are modifying when you ask to modify it on the fly. However, you can change settings to values outside this range. Despite this, the card can easily refuse to accept your changes, or worse, to accept your changes and then silently ignore them. So there is absolutely to know how far to/from where/to it can set things safely or otherwise, and there is nothing stopping you from at least trying to set them outside this range. Being very conscious of these possible failures is why cgminer will report back the current values for you to examine how exactly the card has responded. Even within the reported range of accepted values by the card, it is very easy to crash just about any card, so it cannot use those values to determine what range to set. You have to provide something meaningful manually for cgminer to work with through experimentation. STARTUP / SHUTDOWN: When cgminer starts up, it tries to read off the current profile information for clock and fan speeds and stores these values. When quitting cgminer, it will then try to restore the original values. Changing settings outside of cgminer while it's running may be reset to the startup cgminer values when cgminer shuts down because of this. --- RPC API If you start cgminer with the "--api-listen" option, it will listen on a simple TCP/IP socket for single string API requests from the same machine running cgminer and reply with a string and then close the socket each time If you add the "--api-network" option, it will accept API requests from any network attached computer. You can only access the comands that reply with data in this mode. By default, you cannot access any privileged command that affects the miner - you will receive an access denied status message see --api-allow below. You can specify IP addresses/prefixes that are only allowed to access the API with the "--api-allow" option e.g. --api-allow W:192.168.0.1,10.0.0/24 will allow 192.168.0.1 or any address matching 10.0.0.*, but nothing else IP addresses are automatically padded with extra '.0's as needed Without a /prefix is the same as specifying /32 0/0 means all IP addresses. The 'W:' on the front gives that address/subnet privileged access to commands that modify cgminer. Without it those commands return an access denied status. Privileged access is checked in the order the IP addresses were supplied to "--api-allow" The first match determines the privilege level. Using the "--api-allow" option overides the "--api-network" option if they are both specified With "--api-allow", 127.0.0.1 is not by default given access unless specified The RPC API request can be either simple text or JSON. If the request is JSON (starts with '{'), it will reply with a JSON formatted response, otherwise it replies with text formatted as described further below. The JSON request format required is '{"command":"CMD","parameter":"PARAM"}' (though of course parameter is not required for all requests) where "CMD" is from the "Request" column below and "PARAM" would be e.g. the CPU/GPU number if required. An example request in both formats to set GPU 0 fan to 80%: gpufan|0,80 {"command":"gpufan","parameter":"0,80"} The format of each reply (unless stated otherwise) is a STATUS section followed by an optional detail section From API version 1.7 onwards, reply strings in JSON and Text have the necessary escaping as required to avoid ambiguity - they didn't before 1.7 For JSON the 2 characters '"' and '\' are escaped with a '\' before them For Text the 4 characters '|' ',' '=' and '\' are escaped the same way Only user entered information will contain characters that require being escaped, such as Pool URL, User and Password or the Config save filename, when they are returned in messages or as their values by the API For API version 1.4 and later: The STATUS section is: STATUS=X,When=NNN,Code=N,Msg=string,Description=string| STATUS=X Where X is one of: W - Warning I - Informational S - Success E - Error F - Fatal (code bug) When=NNN Standard long time of request in seconds Code=N Each unique reply has a unigue Code (See api.c - #define MSG_NNNNNN) Msg=string Message matching the Code value N Description=string This defaults to the cgminer version but is the value of --api-description if it was specified at runtime. For API version 1.8: The list of requests - a (*) means it requires privileged access - and replies are: Request Reply Section Details ------- ------------- ------- version VERSION CGMiner=cgminer version API=API version config CONFIG Some miner configuration information: GPU Count=N, <- the number of GPUs PGA Count=N, <- the number of PGAs CPU Count=N, <- the number of CPUs Pool Count=N, <- the number of Pools ADL=X, <- Y or N if ADL is compiled in the code ADL in use=X, <- Y or N if any GPU has ADL Strategy=Name, <- the current pool strategy Log Interval=N, <- log interval (--log N) Device Code=GPU ICA | <- spaced list of compiled devices summary SUMMARY The status summary of the miner e.g. Elapsed=NNN,Found Blocks=N,Getworks=N,...| pools POOLS The status of each pool e.g. Pool=0,URL=http://pool.com:6311,Status=Alive,...| devs DEVS Each available GPU, PGA and CPU with their details e.g. GPU=0,Accepted=NN,MHS av=NNN,...,Intensity=D| Last Share Time=NNN, <- standand long time in seconds (or 0 if none) of last accepted share Last Share Pool=N, <- pool number (or -1 if none) Will not report PGAs if PGA mining is disabled Will not report CPUs if CPU mining is disabled gpu|N GPU The details of a single GPU number N in the same format and details as for DEVS pga|N PGA The details of a single PGA number N in the same format and details as for DEVS This is only available if PGA mining is enabled Use 'pgacount' or 'config' first to see if there are any cpu|N CPU The details of a single CPU number N in the same format and details as for DEVS This is only available if CPU mining is enabled Use 'cpucount' or 'config' first to see if there are any gpucount GPUS Count=N| <- the number of GPUs pgacount PGAS Count=N| <- the number of PGAs Always returns 0 if PGA mining is disabled cpucount CPUS Count=N| <- the number of CPUs Always returns 0 if CPU mining is disabled switchpool|N (*) none There is no reply section just the STATUS section stating the results of switching pool N to the highest priority (the pool is also enabled) The Msg includes the pool URL enablepool|N (*) none There is no reply section just the STATUS section stating the results of enabling pool N The Msg includes the pool URL addpool|URL,USR,PASS (*) none There is no reply section just the STATUS section stating the results of attempting to add pool N The Msg includes the pool URL Use '\\' to get a '\' and '\,' to include a comma inside URL, USR or PASS disablepool|N (*) none There is no reply section just the STATUS section stating the results of disabling pool N The Msg includes the pool URL removepool|N (*) none There is no reply section just the STATUS section stating the results of removing pool N The Msg includes the pool URL N.B. all details for the pool will be lost gpuenable|N (*) none There is no reply section just the STATUS section stating the results of the enable request gpudisable|N (*) none There is no reply section just the STATUS section stating the results of the disable request gpurestart|N (*) none There is no reply section just the STATUS section stating the results of the restart request gpuintensity|N,I (*) none There is no reply section just the STATUS section stating the results of setting GPU N intensity to I gpumem|N,V (*) none There is no reply section just the STATUS section stating the results of setting GPU N memoryclock to V MHz gpuengine|N,V (*) none There is no reply section just the STATUS section stating the results of setting GPU N clock to V MHz gpufan|N,V (*) none There is no reply section just the STATUS section stating the results of setting GPU N fan speed to V% gpuvddc|N,V (*) none There is no reply section just the STATUS section stating the results of setting GPU N vddc to V save|filename (*) none There is no reply section just the STATUS section stating success or failure saving the cgminer config to filename quit (*) none There is no status section but just a single "BYE|" reply before cgminer quits notify NOTIFY The last status and history count of each devices problem This lists all devices including those not supported by the 'devs' command e.g. NOTIFY=0,Name=GPU,ID=0,Last Well=1332432290,...| privileged (*) none There is no reply section just the STATUS section stating an error if you do not have privileged access to the API and success if you do have privilege The command doesn't change anything in cgminer pgaenable|N (*) none There is no reply section just the STATUS section stating the results of the enable request You cannot enable a PGA if it's status is not WELL This is only available if PGA mining is enabled pgadisable|N (*) none There is no reply section just the STATUS section stating the results of the disable request This is only available if PGA mining is enabled devdetails DEVDETAILS Each device with a list of their static details This lists all devices including those not supported by the 'devs' command e.g. DEVDETAILS=0,Name=GPU,ID=0,Driver=opencl,...| When you enable, disable or restart a GPU or PGA, you will also get Thread messages in the cgminer status window When you switch to a different pool to the current one, you will get a 'Switching to URL' message in the cgminer status windows Obviously, the JSON format is simply just the names as given before the '=' with the values after the '=' If you enable cgminer debug (-D or --debug) you will also get messages showing details of the requests received and the replies There are included 4 program examples for accessing the API: api-example.php - a php script to access the API usAge: php api-example.php command by default it sends a 'summary' request to the miner at 127.0.0.1:4028 If you specify a command it will send that request instead You must modify the line "$socket = getsock('127.0.0.1', 4028);" at the beginning of "function request($cmd)" to change where it looks for cgminer API.java/API.class a java program to access the API (with source code) usAge is: java API command address port Any missing or blank parameters are replaced as if you entered: java API summary 127.0.0.1 4028 api-example.c - a 'C' program to access the API (with source code) usAge: api-example [command [ip/host [port]]] again, as above, missing or blank parameters are replaced as if you entered: api-example summary 127.0.0.1 4028 miner.php - an example web page to access the API This includes buttons and inputs to attempt access to the privileged commands Read the top of the file (miner.php) for details of how to tune the display and also to use the option to display a multi-rig summary --- GPU DEVICE ISSUES and use of --gpu-map GPUs mine with OpenCL software via the GPU device driver. This means you need to have both an OpenCL SDK installed, and the GPU device driver RUNNING (i.e. Xorg up and running configured for all devices that will mine on linux etc.) Meanwhile, the hardware monitoring that cgminer offers for AMD devices relies on the ATI Display Library (ADL) software to work. OpenCL DOES NOT TALK TO THE ADL. There is no 100% reliable way to know that OpenCL devices are identical to the ADL devices, as neither give off the same information. cgminer does its best to correlate these devices based on the order that OpenCL and ADL numbers them. It is possible that this will fail for the following reasons: 1. The device order is listed differently by OpenCL and ADL (rare), even if the number of devices is the same. 2. There are more OpenCL devices than ADL. OpenCL stupidly sees one GPU as two devices if you have two monitors connected to the one GPU. 3. There are more ADL devices than OpenCL. ADL devices include any ATI GPUs, including ones that can't mine, like some older R4xxx cards. To cope with this, the ADVANCED option for --gpu-map is provided with cgminer. DO NOT USE THIS UNLESS YOU KNOW WHAT YOU ARE DOING. The default will work the vast majority of the time unless you know you have a problem already. To get useful information, start cgminer with just the -n option. You will get output that looks like this: [2012-04-25 13:17:34] CL Platform 0 vendor: Advanced Micro Devices, Inc. [2012-04-25 13:17:34] CL Platform 0 name: AMD Accelerated Parallel Processing [2012-04-25 13:17:34] CL Platform 0 version: OpenCL 1.1 AMD-APP (844.4) [2012-04-25 13:17:34] Platform 0 devices: 3 [2012-04-25 13:17:34] 0 Tahiti [2012-04-25 13:17:34] 1 Tahiti [2012-04-25 13:17:34] 2 Cayman [2012-04-25 13:17:34] GPU 0 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 1 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 2 AMD Radeon HD 6900 Series hardware monitoring enabled [2012-04-25 13:17:34] 3 GPU devices max detected Note the number of devices here match, and the order is the same. If devices 1 and 2 were different between Tahiti and Cayman, you could run cgminer with: --gpu-map 2:1,1:2 And it would swap the monitoring it received from ADL device 1 and put it to opencl device 2 and vice versa. If you have 2 monitors connected to the first device it would look like this: [2012-04-25 13:17:34] Platform 0 devices: 4 [2012-04-25 13:17:34] 0 Tahiti [2012-04-25 13:17:34] 1 Tahiti [2012-04-25 13:17:34] 2 Tahiti [2012-04-25 13:17:34] 3 Cayman [2012-04-25 13:17:34] GPU 0 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 1 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 2 AMD Radeon HD 6900 Series hardware monitoring enabled To work around this, you would use: -d 0 -d 2 -d 3 --gpu-map 2:1,3:2 If you have an older card as well as the rest it would look like this: [2012-04-25 13:17:34] Platform 0 devices: 3 [2012-04-25 13:17:34] 0 Tahiti [2012-04-25 13:17:34] 1 Tahiti [2012-04-25 13:17:34] 2 Cayman [2012-04-25 13:17:34] GPU 0 AMD Radeon HD 4500 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 1 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 2 AMD Radeon HD 7900 Series hardware monitoring enabled [2012-04-25 13:17:34] GPU 3 AMD Radeon HD 6900 Series hardware monitoring enabled To work around this you would use: --gpu-map 0:1,1:2,2:3 --- FAQ Q: cgminer segfaults when I change my shell window size. A: Older versions of libncurses have a bug to do with refreshing a window after a size change. Upgrading to a new version of curses will fix it. Q: Can I mine on servers from different networks (eg smartcoin and bitcoin) at the same time? A: No, cgminer keeps a database of the block it's working on to ensure it does not work on stale blocks, and having different blocks from two networks would make it invalidate the work from each other. Q: Can I change the intensity settings individually for each GPU? A: Yes, pass a list separated by commas such as -I d,4,9,9 Q: Can I put multiple pools in the config file? A: Yes, check the example.conf file. Alternatively, set up everything either on the command line or via the menu after startup and choose settings->write config file and the file will be loaded one each startup. Q: The build fails with gcc is unable to build a binary. A: Remove the "-march=native" component of your CFLAGS as your version of gcc does not support it. Q: The CPU usage is high. A: The ATI drivers after 11.6 have a bug that makes them consume 100% of one CPU core unnecessarily so downgrade to 11.6. Binding cgminer to one CPU core on windows can minimise it to 100% (instead of more than one core). Driver version 11.11 on linux and 11.12 on windows appear to have fixed this issue. Note that later drivers may have an apparent return of high CPU usage. Try 'export GPU_USE_SYNC_OBJECTS=1' on Linux before starting cgminer. Q: Can you implement feature X? A: I can, but time is limited, and people who donate are more likely to get their feature requests implemented. Q: My GPU hangs and I have to reboot it to get it going again? A: The more aggressively the mining software uses your GPU, the less overclock you will be able to run. You are more likely to hit your limits with cgminer and you will find you may need to overclock your GPU less aggressively. The software cannot be responsible and make your GPU hang directly. If you simply cannot get it to ever stop hanging, try decreasing the intensity, and if even that fails, try changing to the poclbm kernel with -k poclbm, though you will sacrifice performance. cgminer is designed to try and safely restart GPUs as much as possible, but NOT if that restart might actually crash the rest of the GPUs mining, or even the machine. It tries to restart them with a separate thread and if that separate thread dies, it gives up trying to restart any more GPUs. Q: Work keeps going to my backup pool even though my primary pool hasn't failed? A: Cgminer checks for conditions where the primary pool is lagging and will pass some work to the backup servers under those conditions. The reason for doing this is to try its absolute best to keep the GPUs working on something useful and not risk idle periods. You can disable this behaviour with the option --failover-only. Q: Is this a virus? A: Cgminer is being packaged with other trojan scripts and some antivirus software is falsely accusing cgminer.exe as being the actual virus, rather than whatever it is being packaged with. If you installed cgminer yourself, then you do not have a virus on your computer. Complain to your antivirus software company. Q: Can you modify the display to include more of one thing in the output and less of another, or can you change the quiet mode or can you add yet another output mode? A: Everyone will always have their own view of what's important to monitor. The defaults are very sane and I have very little interest in changing this any further. Q: Can you change the autofan/autogpu to change speeds in a different manner? A: The defaults are sane and safe. I'm not interested in changing them further. The starting fan speed is set to 50% in auto-fan mode as a safety precaution. Q: Why is my efficiency above/below 100%? A: Efficiency simply means how many shares you return for the amount of work you request. It does not correlate with efficient use of your hardware, and is a measure of a combination of hardware speed, block luck, pool design and other factors Q: What are the best parameters to pass for X pool/hardware/device. A: Virtually always, the DEFAULT parameters give the best results. Most user defined settings lead to worse performance. The ONLY thing most users should need to set is the Intensity. Q: What happened to CPU mining? A: Being increasingly irrelevant for most users, and a maintenance issue, it is no longer under active development and will not be supported unless someone steps up to help maintain it. No binary builds supporting CPU mining will be released but CPU mining can be built into cgminer when it is compiled. Q: I upgraded cgminer version and mu hashrate suddenly dropped! A: No, you upgraded your SDK version unwittingly between upgrades of cgminer and that caused your hashrate to drop. See the next question. Q: I upgraded my ATI driver/SDK/cgminer and my hashrate suddenly dropped! A: The hashrate performance in cgminer is tied to the version of the ATI SDK that is installed only for the very first time cgminer is run. This generates binaries that are used by the GPU every time after that. Any upgrades to the SDK after that time will have no effect on the binaries. However, if you install a fresh version of cgminer, and have since upgraded your SDK, new binaries will be built. It is known that the 2.6 ATI SDK has a huge hashrate penalty on generating new binaries. It is recommended to not use this SDK at this time unless you are using an ATI 7xxx card that needs it. Q: Which ATI SDK is the best for cgminer? A: At the moment, versions 2.4 and 2.5 work the best. If you are forced to use the 2.6 SDK, the phatk kernel will perform poorly, while the diablo or my custom modified poclbm kernel are optimised for it. Q: I have multiple SDKs installed, can I choose which one it uses? A: Run cgminer with the -n option and it will list all the platforms currently installed. Then you can tell cgminer which platform to use with --gpu-platform. Q: GUI version? A: No. The RPC interface makes it possible for someone else to write one though. Q: I'm having an issue. What debugging information should I provide? A: Start cgminer with your regular commands and add -D -T --verbose and provide the full startup output and a summary of your hardware, operating system, ATI driver version and ATI stream version. Q: cgminer reports no devices or only one device on startup on Linux although I have multiple devices and drivers+SDK installed properly? A: Try 'export DISPLAY=:0" before running cgminer. Q: My network gets slower and slower and then dies for a minute? A; Try the --net-delay option. Q: How do I tune for p2pool? A: p2pool has very rapid expiration of work and new blocks, it is suggested you decrease intensity by 1 from your optimal value, and decrease GPU threads to 1 with -g 1. Q: Are kernels from other mining software useable in cgminer? A: No, the APIs are slightly different between the different software and they will not work. Q: I run PHP on windows to access the API with the example miner.php. Why does it fail when php is installed properly but I only get errors about Sockets not working in the logs? A: http://us.php.net/manual/en/sockets.installation.php Q: What is a PGA? A: At the moment, cgminer supports 2 FPGA's: Icarus and BitForce. They are Field-Programmable Gate Arrays that have been programmed to do Bitcoin mining. Since the acronym needs to be only 3 characters, the "Field-" part has been skipped. --- This code is provided entirely free of charge by the programmer in his spare time so donations would be greatly appreciated. Please consider donating to the address below. Con Kolivas 15qSxP1SQcUX3o4nhkfdbgyoWEFMomJ4rZ