/* * Copyright 2012-2013 Andrew Smith * Copyright 2012 Xiangfu * Copyright 2013 Con Kolivas * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ /* * Those code should be works fine with V2 and V3 bitstream of Icarus. * Operation: * No detection implement. * Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head. * Return: send back 32bits immediately when Icarus found a valid nonce. * no query protocol implemented here, if no data send back in ~11.3 * seconds (full cover time on 32bit nonce range by 380MH/s speed) * just send another work. * Notice: * 1. Icarus will start calculate when you push a work to them, even they * are busy. * 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the * 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF. * 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2 * valid nonce will all be send back. * 4. Icarus will stop work when: a valid nonce has been found or 32 bits * nonce range is completely calculated. */ #include #include #include #include #include #include #include #include #include "config.h" #ifdef WIN32 #include #endif #include "compat.h" #include "miner.h" #include "usbutils.h" // The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h #define ICARUS_IO_SPEED 115200 // The size of a successful nonce read #define ICARUS_READ_SIZE 4 // Ensure the sizes are correct for the Serial read #if (ICARUS_READ_SIZE != 4) #error ICARUS_READ_SIZE must be 4 #endif #define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1] ASSERT1(sizeof(uint32_t) == 4); // TODO: USB? Different calculation? - see usbstats to work it out e.g. 1/2 of normal send time // or even use that number? 1/2 // #define ICARUS_READ_TIME(baud) ((double)ICARUS_READ_SIZE * (double)8.0 / (double)(baud)) // maybe 1ms? #define ICARUS_READ_TIME(baud) (0.001) // USB ms timeout to wait #define ICARUS_WAIT_TIMEOUT 100 // In timing mode: Default starting value until an estimate can be obtained // 5000 ms allows for up to a ~840MH/s device #define ICARUS_READ_COUNT_TIMING 5000 #define ICARUS_READ_COUNT_MIN ICARUS_WAIT_TIMEOUT #define SECTOMS(s) ((int)((s) * 1000)) // How many ms below the expected completion time to abort work // extra in case the last read is delayed #define ICARUS_READ_REDUCE ((int)(ICARUS_WAIT_TIMEOUT * 1.5)) // For a standard Icarus REV3 (to 5 places) // Since this rounds up a the last digit - it is a slight overestimate // Thus the hash rate will be a VERY slight underestimate // (by a lot less than the displayed accuracy) // Minor inaccuracy of these numbers doesn't affect the work done, // only the displayed MH/s #define ICARUS_REV3_HASH_TIME 0.0000000026316 #define LANCELOT_HASH_TIME 0.0000000025000 #define ASICMINERUSB_HASH_TIME 0.0000000029761 // TODO: What is it? #define CAIRNSMORE1_HASH_TIME 0.0000000026316 #define NANOSEC 1000000000.0 // Icarus Rev3 doesn't send a completion message when it finishes // the full nonce range, so to avoid being idle we must abort the // work (by starting a new work item) shortly before it finishes // // Thus we need to estimate 2 things: // 1) How many hashes were done if the work was aborted // 2) How high can the timeout be before the Icarus is idle, // to minimise the number of work items started // We set 2) to 'the calculated estimate' - ICARUS_READ_REDUCE // to ensure the estimate ends before idle // // The simple calculation used is: // Tn = Total time in seconds to calculate n hashes // Hs = seconds per hash // Xn = number of hashes // W = code/usb overhead per work // // Rough but reasonable estimate: // Tn = Hs * Xn + W (of the form y = mx + b) // // Thus: // Line of best fit (using least squares) // // Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2) // W = Sum(Ti)/n - (Hs*Sum(Xi))/n // // N.B. W is less when aborting work since we aren't waiting for the reply // to be transferred back (ICARUS_READ_TIME) // Calculating the hashes aborted at n seconds is thus just n/Hs // (though this is still a slight overestimate due to code delays) // // Both below must be exceeded to complete a set of data // Minimum how long after the first, the last data point must be #define HISTORY_SEC 60 // Minimum how many points a single ICARUS_HISTORY should have #define MIN_DATA_COUNT 5 // The value MIN_DATA_COUNT used is doubled each history until it exceeds: #define MAX_MIN_DATA_COUNT 100 static struct timeval history_sec = { HISTORY_SEC, 0 }; // Store the last INFO_HISTORY data sets // [0] = current data, not yet ready to be included as an estimate // Each new data set throws the last old set off the end thus // keeping a ongoing average of recent data #define INFO_HISTORY 10 struct ICARUS_HISTORY { struct timeval finish; double sumXiTi; double sumXi; double sumTi; double sumXi2; uint32_t values; uint32_t hash_count_min; uint32_t hash_count_max; }; enum timing_mode { MODE_DEFAULT, MODE_SHORT, MODE_LONG, MODE_VALUE }; static const char *MODE_DEFAULT_STR = "default"; static const char *MODE_SHORT_STR = "short"; static const char *MODE_LONG_STR = "long"; static const char *MODE_VALUE_STR = "value"; static const char *MODE_UNKNOWN_STR = "unknown"; struct ICARUS_INFO { // time to calculate the golden_ob uint64_t golden_hashes; struct timeval golden_tv; struct ICARUS_HISTORY history[INFO_HISTORY+1]; uint32_t min_data_count; // seconds per Hash double Hs; // ms til we abort int read_time; enum timing_mode timing_mode; bool do_icarus_timing; double fullnonce; int count; double W; uint32_t values; uint64_t hash_count_range; // Determine the cost of history processing // (which will only affect W) uint64_t history_count; struct timeval history_time; // icarus-options int baud; int work_division; int fpga_count; uint32_t nonce_mask; }; #define END_CONDITION 0x0000ffff // Looking for options in --icarus-timing and --icarus-options: // // Code increments this each time we start to look at a device // However, this means that if other devices are checked by // the Icarus code (e.g. Avalon only as at 20130517) // they will count in the option offset // // This, however, is deterministic so that's OK // // If we were to increment after successfully finding an Icarus // that would be random since an Icarus may fail and thus we'd // not be able to predict the option order // // Devices are checked in the order libusb finds them which is ? // static int option_offset = -1; struct device_drv icarus_drv; /* #define ICA_BUFSIZ (0x200) static void transfer_read(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, enum usb_cmds cmd) { int err; err = usb_transfer_read(icarus, request_type, bRequest, wValue, wIndex, buf, bufsiz, amount, cmd); applog(LOG_DEBUG, "%s: cgid %d %s got err %d", icarus->drv->name, icarus->cgminer_id, usb_cmdname(cmd), err); } */ static void _transfer(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, enum usb_cmds cmd) { int err; err = usb_transfer_data(icarus, request_type, bRequest, wValue, wIndex, data, siz, cmd); applog(LOG_DEBUG, "%s: cgid %d %s got err %d", icarus->drv->name, icarus->cgminer_id, usb_cmdname(cmd), err); } #define transfer(icarus, request_type, bRequest, wValue, wIndex, cmd) \ _transfer(icarus, request_type, bRequest, wValue, wIndex, NULL, 0, cmd) static void icarus_initialise(struct cgpu_info *icarus, int baud) { uint16_t wValue, wIndex; if (icarus->usbinfo.nodev) return; switch (icarus->usbdev->ident) { case IDENT_BLT: case IDENT_LLT: case IDENT_CMR1: case IDENT_CMR2: // Latency transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY, FTDI_VALUE_LATENCY, icarus->usbdev->found->interface, C_LATENCY); if (icarus->usbinfo.nodev) return; // Reset transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_RESET, icarus->usbdev->found->interface, C_RESET); if (icarus->usbinfo.nodev) return; // Set data control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, FTDI_VALUE_DATA_BLT, icarus->usbdev->found->interface, C_SETDATA); if (icarus->usbinfo.nodev) return; // default to BLT/LLT 115200 wValue = FTDI_VALUE_BAUD_BLT; wIndex = FTDI_INDEX_BAUD_BLT; if (icarus->usbdev->ident == IDENT_CMR1 || icarus->usbdev->ident == IDENT_CMR2) { switch (baud) { case 115200: wValue = FTDI_VALUE_BAUD_CMR_115; wIndex = FTDI_INDEX_BAUD_CMR_115; break; case 57600: wValue = FTDI_VALUE_BAUD_CMR_57; wIndex = FTDI_INDEX_BAUD_CMR_57; break; default: quit(1, "icarus_intialise() invalid baud (%d) for Cairnsmore1", baud); break; } } // Set the baud transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, wValue, (wIndex & 0xff00) | icarus->usbdev->found->interface, C_SETBAUD); if (icarus->usbinfo.nodev) return; // Set Modem Control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM, icarus->usbdev->found->interface, C_SETMODEM); if (icarus->usbinfo.nodev) return; // Set Flow Control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW, icarus->usbdev->found->interface, C_SETFLOW); if (icarus->usbinfo.nodev) return; // Clear any sent data transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_TX, icarus->usbdev->found->interface, C_PURGETX); if (icarus->usbinfo.nodev) return; // Clear any received data transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_RX, icarus->usbdev->found->interface, C_PURGERX); break; case IDENT_ICA: nmsleep(20); // Set Data Control transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_CTRL, PL2303_VALUE_CTRL, icarus->usbdev->found->interface, C_SETDATA); if (icarus->usbinfo.nodev) return; nmsleep(20); // Set Line Control uint32_t ica_data[2] = { PL2303_VALUE_LINE0, PL2303_VALUE_LINE1 }; _transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_LINE, PL2303_VALUE_LINE, icarus->usbdev->found->interface, &ica_data[0], PL2303_VALUE_LINE_SIZE, C_SETLINE); if (icarus->usbinfo.nodev) return; nmsleep(20); // Vendor transfer(icarus, PL2303_VENDOR_OUT, PL2303_REQUEST_VENDOR, PL2303_VALUE_VENDOR, icarus->usbdev->found->interface, C_VENDOR); nmsleep(20); break; case IDENT_AMU: nmsleep(20); // Set data control transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_DATA, CP210X_VALUE_DATA, icarus->usbdev->found->interface, C_SETDATA); if (icarus->usbinfo.nodev) return; nmsleep(20); // Set the baud uint32_t data = CP210X_DATA_BAUD; _transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_BAUD, 0, icarus->usbdev->found->interface, &data, sizeof(data), C_SETBAUD); nmsleep(20); break; default: quit(1, "icarus_intialise() called with invalid %s cgid %i ident=%d", icarus->drv->name, icarus->cgminer_id, icarus->usbdev->ident); } } static void rev(unsigned char *s, size_t l) { size_t i, j; unsigned char t; for (i = 0, j = l - 1; i < j; i++, j--) { t = s[i]; s[i] = s[j]; s[j] = t; } } #define ICA_NONCE_ERROR -1 #define ICA_NONCE_OK 0 #define ICA_NONCE_RESTART 1 #define ICA_NONCE_TIMEOUT 2 static int icarus_get_nonce(struct cgpu_info *icarus, unsigned char *buf, struct timeval *tv_start, struct timeval *tv_finish, struct thr_info *thr, int read_time) { struct timeval read_start, read_finish; int err, amt; int rc = 0; int read_amount = ICARUS_READ_SIZE; bool first = true; cgtime(tv_start); while (true) { if (icarus->usbinfo.nodev) return ICA_NONCE_ERROR; cgtime(&read_start); err = usb_read_timeout(icarus, (char *)buf, read_amount, &amt, ICARUS_WAIT_TIMEOUT, C_GETRESULTS); cgtime(&read_finish); if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) { applog(LOG_ERR, "%s%i: Comms error (rerr=%d amt=%d)", icarus->drv->name, icarus->device_id, err, amt); dev_error(icarus, REASON_DEV_COMMS_ERROR); return ICA_NONCE_ERROR; } if (first) copy_time(tv_finish, &read_finish); // TODO: test if there is more data? to read a 2nd nonce? if (amt >= read_amount) return ICA_NONCE_OK; rc += SECTOMS(tdiff(&read_finish, &read_start)); if (rc >= read_time) { if (amt > 0) applog(LOG_DEBUG, "Icarus Read: Timeout reading for %d ms", rc); else applog(LOG_DEBUG, "Icarus Read: No data for %d ms", rc); return ICA_NONCE_TIMEOUT; } if (thr && thr->work_restart) { if (opt_debug) { applog(LOG_DEBUG, "Icarus Read: Work restart at %d ms", rc); } return ICA_NONCE_RESTART; } if (amt > 0) { buf += amt; read_amount -= amt; first = false; } } } static const char *timing_mode_str(enum timing_mode timing_mode) { switch(timing_mode) { case MODE_DEFAULT: return MODE_DEFAULT_STR; case MODE_SHORT: return MODE_SHORT_STR; case MODE_LONG: return MODE_LONG_STR; case MODE_VALUE: return MODE_VALUE_STR; default: return MODE_UNKNOWN_STR; } } static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); double Hs; char buf[BUFSIZ+1]; char *ptr, *comma, *eq; size_t max; int i; if (opt_icarus_timing == NULL) buf[0] = '\0'; else { ptr = opt_icarus_timing; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } switch (icarus->usbdev->ident) { case IDENT_ICA: info->Hs = ICARUS_REV3_HASH_TIME; break; case IDENT_BLT: case IDENT_LLT: info->Hs = LANCELOT_HASH_TIME; break; case IDENT_AMU: info->Hs = ASICMINERUSB_HASH_TIME; break; // TODO: ? case IDENT_CMR1: case IDENT_CMR2: info->Hs = CAIRNSMORE1_HASH_TIME; break; default: quit(1, "Icarus get_options() called with invalid %s ident=%d", icarus->drv->name, icarus->usbdev->ident); } info->read_time = 0; // TODO: allow short=N and long=N if (strcasecmp(buf, MODE_SHORT_STR) == 0) { info->read_time = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; } else if (strcasecmp(buf, MODE_LONG_STR) == 0) { info->read_time = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_LONG; info->do_icarus_timing = true; } else if ((Hs = atof(buf)) != 0) { info->Hs = Hs / NANOSEC; info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT; if (info->read_time < ICARUS_READ_COUNT_MIN) info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE; if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN)) info->read_time = ICARUS_READ_COUNT_MIN; info->timing_mode = MODE_VALUE; info->do_icarus_timing = false; } else { // Anything else in buf just uses DEFAULT mode info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT; if (info->read_time < ICARUS_READ_COUNT_MIN) info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE; if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN)) info->read_time = ICARUS_READ_COUNT_MIN; info->timing_mode = MODE_DEFAULT; info->do_icarus_timing = false; } info->min_data_count = MIN_DATA_COUNT; applog(LOG_DEBUG, "%s: cgid %d Init: mode=%s read_time=%dms Hs=%e", icarus->drv->name, icarus->cgminer_id, timing_mode_str(info->timing_mode), info->read_time, info->Hs); } static uint32_t mask(int work_division) { char err_buf[BUFSIZ+1]; uint32_t nonce_mask = 0x7fffffff; // yes we can calculate these, but this way it's easy to see what they are switch (work_division) { case 1: nonce_mask = 0xffffffff; break; case 2: nonce_mask = 0x7fffffff; break; case 4: nonce_mask = 0x3fffffff; break; case 8: nonce_mask = 0x1fffffff; break; default: sprintf(err_buf, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division); quit(1, err_buf); } return nonce_mask; } static void get_options(int this_option_offset, struct cgpu_info *icarus, int *baud, int *work_division, int *fpga_count) { char err_buf[BUFSIZ+1]; char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2; size_t max; int i, tmp; if (opt_icarus_options == NULL) buf[0] = '\0'; else { ptr = opt_icarus_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } switch (icarus->usbdev->ident) { case IDENT_ICA: case IDENT_BLT: case IDENT_LLT: *baud = ICARUS_IO_SPEED; *work_division = 2; *fpga_count = 2; break; case IDENT_AMU: *baud = ICARUS_IO_SPEED; *work_division = 1; *fpga_count = 1; break; // TODO: ? case IDENT_CMR1: case IDENT_CMR2: *baud = ICARUS_IO_SPEED; *work_division = 2; *fpga_count = 2; break; default: quit(1, "Icarus get_options() called with invalid %s ident=%d", icarus->drv->name, icarus->usbdev->ident); } if (*buf) { colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; if (*buf) { tmp = atoi(buf); switch (tmp) { case 115200: *baud = 115200; break; case 57600: *baud = 57600; break; default: sprintf(err_buf, "Invalid icarus-options for baud (%s) must be 115200 or 57600", buf); quit(1, err_buf); } } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { tmp = atoi(colon); if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) { *work_division = tmp; *fpga_count = tmp; // default to the same } else { sprintf(err_buf, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon); quit(1, err_buf); } } if (colon2 && *colon2) { tmp = atoi(colon2); if (tmp > 0 && tmp <= *work_division) *fpga_count = tmp; else { sprintf(err_buf, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division); quit(1, err_buf); } } } } } static bool icarus_detect_one(struct libusb_device *dev, struct usb_find_devices *found) { int this_option_offset = ++option_offset; char devpath[20]; struct ICARUS_INFO *info; struct timeval tv_start, tv_finish; // Block 171874 nonce = (0xa2870100) = 0x000187a2 // N.B. golden_ob MUST take less time to calculate // than the timeout set in icarus_open() // This one takes ~0.53ms on Rev3 Icarus const char golden_ob[] = "4679ba4ec99876bf4bfe086082b40025" "4df6c356451471139a3afa71e48f544a" "00000000000000000000000000000000" "0000000087320b1a1426674f2fa722ce"; const char golden_nonce[] = "000187a2"; const uint32_t golden_nonce_val = 0x000187a2; unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE]; char *nonce_hex; int baud, uninitialised_var(work_division), uninitialised_var(fpga_count); struct cgpu_info *icarus; int ret, err, amount, tries; bool ok; icarus = calloc(1, sizeof(struct cgpu_info)); if (unlikely(!icarus)) quit(1, "Failed to calloc icarus in icarus_detect_one"); icarus->drv = &icarus_drv; icarus->deven = DEV_ENABLED; icarus->threads = 1; if (!usb_init(icarus, dev, found)) goto shin; get_options(this_option_offset, icarus, &baud, &work_division, &fpga_count); sprintf(devpath, "%d:%d", (int)(icarus->usbinfo.bus_number), (int)(icarus->usbinfo.device_address)); icarus->device_path = strdup(devpath); hex2bin(ob_bin, golden_ob, sizeof(ob_bin)); tries = 2; ok = false; while (!ok && tries-- > 0) { icarus_initialise(icarus, baud); err = usb_write(icarus, (char *)ob_bin, sizeof(ob_bin), &amount, C_SENDTESTWORK); if (err != LIBUSB_SUCCESS || amount != sizeof(ob_bin)) continue; memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, NULL, 100); if (ret != ICA_NONCE_OK) continue; nonce_hex = bin2hex(nonce_bin, sizeof(nonce_bin)); if (strncmp(nonce_hex, golden_nonce, 8) == 0) ok = true; else { if (tries < 0) { applog(LOG_ERR, "Icarus Detect: " "Test failed at %s: get %s, should: %s", devpath, nonce_hex, golden_nonce); } } free(nonce_hex); } if (!ok) goto unshin; applog(LOG_DEBUG, "Icarus Detect: " "Test succeeded at %s: got %s", devpath, golden_nonce); /* We have a real Icarus! */ if (!add_cgpu(icarus)) goto unshin; update_usb_stats(icarus); applog(LOG_INFO, "%s%d: Found at %s", icarus->drv->name, icarus->device_id, devpath); applog(LOG_DEBUG, "%s%d: Init baud=%d work_division=%d fpga_count=%d", icarus->drv->name, icarus->device_id, baud, work_division, fpga_count); info = (struct ICARUS_INFO *)malloc(sizeof(struct ICARUS_INFO)); if (unlikely(!info)) quit(1, "Failed to malloc ICARUS_INFO"); icarus->device_data = (void *)info; // Initialise everything to zero for a new device memset(info, 0, sizeof(struct ICARUS_INFO)); info->baud = baud; info->work_division = work_division; info->fpga_count = fpga_count; info->nonce_mask = mask(work_division); info->golden_hashes = (golden_nonce_val & info->nonce_mask) * fpga_count; timersub(&tv_finish, &tv_start, &(info->golden_tv)); set_timing_mode(this_option_offset, icarus); return true; unshin: usb_uninit(icarus); free(icarus->device_path); shin: free(icarus); return false; } static void icarus_detect() { usb_detect(&icarus_drv, icarus_detect_one); } static bool icarus_prepare(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct timeval now; cgtime(&now); get_datestamp(icarus->init, &now); return true; } static int64_t icarus_scanhash(struct thr_info *thr, struct work *work, __maybe_unused int64_t max_nonce) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int ret, err, amount; unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE]; char *ob_hex; uint32_t nonce; int64_t hash_count; struct timeval tv_start, tv_finish, elapsed; struct timeval tv_history_start, tv_history_finish; double Ti, Xi; int curr_hw_errors, i; bool was_hw_error; struct ICARUS_HISTORY *history0, *history; int count; double Hs, W, fullnonce; int read_time; int64_t estimate_hashes; uint32_t values; int64_t hash_count_range; // Device is gone if (icarus->usbinfo.nodev) return -1; elapsed.tv_sec = elapsed.tv_usec = 0; memset(ob_bin, 0, sizeof(ob_bin)); memcpy(ob_bin, work->midstate, 32); memcpy(ob_bin + 52, work->data + 64, 12); rev(ob_bin, 32); rev(ob_bin + 52, 12); err = usb_write(icarus, (char *)ob_bin, sizeof(ob_bin), &amount, C_SENDWORK); if (err < 0 || amount != sizeof(ob_bin)) { applog(LOG_ERR, "%s%i: Comms error (werr=%d amt=%d)", icarus->drv->name, icarus->device_id, err, amount); dev_error(icarus, REASON_DEV_COMMS_ERROR); icarus_initialise(icarus, info->baud); return 0; } if (opt_debug) { ob_hex = bin2hex(ob_bin, sizeof(ob_bin)); applog(LOG_DEBUG, "%s%d: sent %s", icarus->drv->name, icarus->device_id, ob_hex); free(ob_hex); } /* Icarus will return 4 bytes (ICARUS_READ_SIZE) nonces or nothing */ memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, thr, info->read_time); if (ret == ICA_NONCE_ERROR) return 0; work->blk.nonce = 0xffffffff; // aborted before becoming idle, get new work if (ret == ICA_NONCE_TIMEOUT || ret == ICA_NONCE_RESTART) { timersub(&tv_finish, &tv_start, &elapsed); // ONLY up to just when it aborted // We didn't read a reply so we don't subtract ICARUS_READ_TIME estimate_hashes = ((double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs; // If some Serial-USB delay allowed the full nonce range to // complete it can't have done more than a full nonce if (unlikely(estimate_hashes > 0xffffffff)) estimate_hashes = 0xffffffff; if (opt_debug) { applog(LOG_DEBUG, "%s%d: no nonce = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, (long unsigned int)estimate_hashes, elapsed.tv_sec, elapsed.tv_usec); } return estimate_hashes; } memcpy((char *)&nonce, nonce_bin, sizeof(nonce_bin)); nonce = htobe32(nonce); curr_hw_errors = icarus->hw_errors; submit_nonce(thr, work, nonce); was_hw_error = (curr_hw_errors > icarus->hw_errors); hash_count = (nonce & info->nonce_mask); hash_count++; hash_count *= info->fpga_count; if (opt_debug || info->do_icarus_timing) timersub(&tv_finish, &tv_start, &elapsed); if (opt_debug) { applog(LOG_DEBUG, "%s%d: nonce = 0x%08x = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, nonce, (long unsigned int)hash_count, elapsed.tv_sec, elapsed.tv_usec); } // ignore possible end condition values ... and hw errors if (info->do_icarus_timing && !was_hw_error && ((nonce & info->nonce_mask) > END_CONDITION) && ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) { cgtime(&tv_history_start); history0 = &(info->history[0]); if (history0->values == 0) timeradd(&tv_start, &history_sec, &(history0->finish)); Ti = (double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000) - ((double)ICARUS_READ_TIME(info->baud)); Xi = (double)hash_count; history0->sumXiTi += Xi * Ti; history0->sumXi += Xi; history0->sumTi += Ti; history0->sumXi2 += Xi * Xi; history0->values++; if (history0->hash_count_max < hash_count) history0->hash_count_max = hash_count; if (history0->hash_count_min > hash_count || history0->hash_count_min == 0) history0->hash_count_min = hash_count; if (history0->values >= info->min_data_count && timercmp(&tv_start, &(history0->finish), >)) { for (i = INFO_HISTORY; i > 0; i--) memcpy(&(info->history[i]), &(info->history[i-1]), sizeof(struct ICARUS_HISTORY)); // Initialise history0 to zero for summary calculation memset(history0, 0, sizeof(struct ICARUS_HISTORY)); // We just completed a history data set // So now recalc read_time based on the whole history thus we will // initially get more accurate until it completes INFO_HISTORY // total data sets count = 0; for (i = 1 ; i <= INFO_HISTORY; i++) { history = &(info->history[i]); if (history->values >= MIN_DATA_COUNT) { count++; history0->sumXiTi += history->sumXiTi; history0->sumXi += history->sumXi; history0->sumTi += history->sumTi; history0->sumXi2 += history->sumXi2; history0->values += history->values; if (history0->hash_count_max < history->hash_count_max) history0->hash_count_max = history->hash_count_max; if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0) history0->hash_count_min = history->hash_count_min; } } // All history data Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi) / (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi); W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values; hash_count_range = history0->hash_count_max - history0->hash_count_min; values = history0->values; // Initialise history0 to zero for next data set memset(history0, 0, sizeof(struct ICARUS_HISTORY)); fullnonce = W + Hs * (((double)0xffffffff) + 1); read_time = SECTOMS(fullnonce) - ICARUS_READ_REDUCE; info->Hs = Hs; info->read_time = read_time; info->fullnonce = fullnonce; info->count = count; info->W = W; info->values = values; info->hash_count_range = hash_count_range; if (info->min_data_count < MAX_MIN_DATA_COUNT) info->min_data_count *= 2; else if (info->timing_mode == MODE_SHORT) info->do_icarus_timing = false; applog(LOG_WARNING, "%s%d Re-estimate: Hs=%e W=%e read_time=%dms fullnonce=%.3fs", icarus->drv->name, icarus->device_id, Hs, W, read_time, fullnonce); } info->history_count++; cgtime(&tv_history_finish); timersub(&tv_history_finish, &tv_history_start, &tv_history_finish); timeradd(&tv_history_finish, &(info->history_time), &(info->history_time)); } return hash_count; } static struct api_data *icarus_api_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data); // Warning, access to these is not locked - but we don't really // care since hashing performance is way more important than // locking access to displaying API debug 'stats' // If locking becomes an issue for any of them, use copy_data=true also root = api_add_int(root, "read_time", &(info->read_time), false); root = api_add_double(root, "fullnonce", &(info->fullnonce), false); root = api_add_int(root, "count", &(info->count), false); root = api_add_hs(root, "Hs", &(info->Hs), false); root = api_add_double(root, "W", &(info->W), false); root = api_add_uint(root, "total_values", &(info->values), false); root = api_add_uint64(root, "range", &(info->hash_count_range), false); root = api_add_uint64(root, "history_count", &(info->history_count), false); root = api_add_timeval(root, "history_time", &(info->history_time), false); root = api_add_uint(root, "min_data_count", &(info->min_data_count), false); root = api_add_uint(root, "timing_values", &(info->history[0].values), false); root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false); root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false); root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "work_division", &(info->work_division), false); root = api_add_int(root, "fpga_count", &(info->fpga_count), false); return root; } static void icarus_shutdown(__maybe_unused struct thr_info *thr) { // TODO: ? } struct device_drv icarus_drv = { .drv_id = DRIVER_ICARUS, .dname = "Icarus", .name = "ICA", .drv_detect = icarus_detect, .get_api_stats = icarus_api_stats, .thread_prepare = icarus_prepare, .scanhash = icarus_scanhash, .thread_shutdown = icarus_shutdown, };