#include #include #include #include #include #include "miner.h" typedef uint32_t word32; static word32 rotrFixed(word32 word, unsigned int shift) { return (word >> shift) | (word << (32 - shift)); } #define blk0(i) (W[i] = data[i]) static const word32 SHA256_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) (y^((x^y)&(y^z))) #define a(i) T[(0-i)&7] #define b(i) T[(1-i)&7] #define c(i) T[(2-i)&7] #define d(i) T[(3-i)&7] #define e(i) T[(4-i)&7] #define f(i) T[(5-i)&7] #define g(i) T[(6-i)&7] #define h(i) T[(7-i)&7] #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\ d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) // for SHA256 #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22)) #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25)) #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3)) #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10)) static void SHA256_Transform(word32 *state, const word32 *data) { word32 W[16] = { }; word32 T[8]; unsigned int j; /* Copy context->state[] to working vars */ memcpy(T, state, sizeof(T)); /* 64 operations, partially loop unrolled */ for (j=0; j<64; j+=16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into context.state[] */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } static void runhash(void *state, const void *input, const void *init) { memcpy(state, init, 32); SHA256_Transform(state, input); } /* suspiciously similar to ScanHash* from bitcoin */ bool scanhash_cryptopp(const unsigned char *midstate, unsigned char *data, unsigned char *hash1, unsigned char *hash, const unsigned char *target, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *hash32 = (uint32_t *) hash; uint32_t *nonce = (uint32_t *)(data + 12); uint32_t n = 0; unsigned long stat_ctr = 0; while (1) { n++; *nonce = n; runhash(hash1, data, midstate); runhash(hash, hash1, sha256_init_state); stat_ctr++; if ((hash32[7] == 0) && fulltest(hash, target)) { *hashes_done = stat_ctr; return true; } if (n >= max_nonce) { if (opt_debug) fprintf(stderr, "DBG: end of nonce range\n"); *hashes_done = stat_ctr; return false; } } } #if defined(WANT_CRYPTOPP_ASM32) #define CRYPTOPP_FASTCALL #define CRYPTOPP_BOOL_X86 1 #define CRYPTOPP_BOOL_X64 0 #define CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE 0 #ifdef CRYPTOPP_GENERATE_X64_MASM #define AS1(x) x*newline* #define AS2(x, y) x, y*newline* #define AS3(x, y, z) x, y, z*newline* #define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline* #define ASL(x) label##x:*newline* #define ASJ(x, y, z) x label##y*newline* #define ASC(x, y) x label##y*newline* #define AS_HEX(y) 0##y##h #elif defined(_MSC_VER) || defined(__BORLANDC__) #define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #define AS1(x) __asm {x} #define AS2(x, y) __asm {x, y} #define AS3(x, y, z) __asm {x, y, z} #define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)} #define ASL(x) __asm {label##x:} #define ASJ(x, y, z) __asm {x label##y} #define ASC(x, y) __asm {x label##y} #define CRYPTOPP_NAKED __declspec(naked) #define AS_HEX(y) 0x##y #else #define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY // define these in two steps to allow arguments to be expanded #define GNU_AS1(x) #x ";" #define GNU_AS2(x, y) #x ", " #y ";" #define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" #define GNU_ASL(x) "\n" #x ":" #define GNU_ASJ(x, y, z) #x " " #y #z ";" #define AS1(x) GNU_AS1(x) #define AS2(x, y) GNU_AS2(x, y) #define AS3(x, y, z) GNU_AS3(x, y, z) #define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";" #define ASL(x) GNU_ASL(x) #define ASJ(x, y, z) GNU_ASJ(x, y, z) #define ASC(x, y) #x " " #y ";" #define CRYPTOPP_NAKED #define AS_HEX(y) 0x##y #endif #define IF0(y) #define IF1(y) y #ifdef CRYPTOPP_GENERATE_X64_MASM #define ASM_MOD(x, y) ((x) MOD (y)) #define XMMWORD_PTR XMMWORD PTR #else // GNU assembler doesn't seem to have mod operator #define ASM_MOD(x, y) ((x)-((x)/(y))*(y)) // GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM #define XMMWORD_PTR #endif #if CRYPTOPP_BOOL_X86 #define AS_REG_1 ecx #define AS_REG_2 edx #define AS_REG_3 esi #define AS_REG_4 edi #define AS_REG_5 eax #define AS_REG_6 ebx #define AS_REG_7 ebp #define AS_REG_1d ecx #define AS_REG_2d edx #define AS_REG_3d esi #define AS_REG_4d edi #define AS_REG_5d eax #define AS_REG_6d ebx #define AS_REG_7d ebp #define WORD_SZ 4 #define WORD_REG(x) e##x #define WORD_PTR DWORD PTR #define AS_PUSH_IF86(x) AS1(push e##x) #define AS_POP_IF86(x) AS1(pop e##x) #define AS_JCXZ jecxz #elif CRYPTOPP_BOOL_X64 #ifdef CRYPTOPP_GENERATE_X64_MASM #define AS_REG_1 rcx #define AS_REG_2 rdx #define AS_REG_3 r8 #define AS_REG_4 r9 #define AS_REG_5 rax #define AS_REG_6 r10 #define AS_REG_7 r11 #define AS_REG_1d ecx #define AS_REG_2d edx #define AS_REG_3d r8d #define AS_REG_4d r9d #define AS_REG_5d eax #define AS_REG_6d r10d #define AS_REG_7d r11d #else #define AS_REG_1 rdi #define AS_REG_2 rsi #define AS_REG_3 rdx #define AS_REG_4 rcx #define AS_REG_5 r8 #define AS_REG_6 r9 #define AS_REG_7 r10 #define AS_REG_1d edi #define AS_REG_2d esi #define AS_REG_3d edx #define AS_REG_4d ecx #define AS_REG_5d r8d #define AS_REG_6d r9d #define AS_REG_7d r10d #endif #define WORD_SZ 8 #define WORD_REG(x) r##x #define WORD_PTR QWORD PTR #define AS_PUSH_IF86(x) #define AS_POP_IF86(x) #define AS_JCXZ jrcxz #endif static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len #if defined(_MSC_VER) && (_MSC_VER == 1200) , ... // VC60 workaround: prevent VC 6 from inlining this function #endif ) { #if defined(_MSC_VER) && (_MSC_VER == 1200) AS2(mov ecx, [state]) AS2(mov edx, [data]) #endif #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4] #define G(i) H(i+1) #define F(i) H(i+2) #define E(i) H(i+3) #define D(i) H(i+4) #define C(i) H(i+5) #define B(i) H(i+6) #define A(i) H(i+7) #define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4 #define Wt_2(i) Wt((i)-2) #define Wt_15(i) Wt((i)-15) #define Wt_7(i) Wt((i)-7) #define K_END [BASE+8*4+16*4+0*WORD_SZ] #define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ] #define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ] #define DATA_END [BASE+8*4+16*4+3*WORD_SZ] #define Kt(i) WORD_REG(si)+(i)*4 #if CRYPTOPP_BOOL_X86 #define BASE esp+4 #elif defined(__GNUC__) #define BASE r8 #else #define BASE rsp #endif #define RA0(i, edx, edi) \ AS2( add edx, [Kt(i)] )\ AS2( add edx, [Wt(i)] )\ AS2( add edx, H(i) )\ #define RA1(i, edx, edi) #define RB0(i, edx, edi) #define RB1(i, edx, edi) \ AS2( mov AS_REG_7d, [Wt_2(i)] )\ AS2( mov edi, [Wt_15(i)])\ AS2( mov ebx, AS_REG_7d )\ AS2( shr AS_REG_7d, 10 )\ AS2( ror ebx, 17 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\ AS2( add ebx, [Wt_7(i)])\ AS2( mov AS_REG_7d, edi )\ AS2( shr AS_REG_7d, 3 )\ AS2( ror edi, 7 )\ AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\ AS2( xor AS_REG_7d, edi )\ AS2( add edx, [Kt(i)])\ AS2( ror edi, 11 )\ AS2( add edx, H(i) )\ AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\ AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\ AS2( mov [Wt(i)], AS_REG_7d)\ AS2( add edx, AS_REG_7d )\ #define ROUND(i, r, eax, ecx, edi, edx)\ /* in: edi = E */\ /* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\ AS2( mov edx, F(i) )\ AS2( xor edx, G(i) )\ AS2( and edx, edi )\ AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\ AS2( mov AS_REG_7d, edi )\ AS2( ror edi, 6 )\ AS2( ror AS_REG_7d, 25 )\ RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ AS2( xor AS_REG_7d, edi )\ AS2( ror edi, 5 )\ AS2( xor AS_REG_7d, edi )/* S1(E) */\ AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\ RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ /* in: ecx = A, eax = B^C, edx = T1 */\ /* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\ AS2( mov ebx, ecx )\ AS2( xor ecx, B(i) )/* A^B */\ AS2( and eax, ecx )\ AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\ AS2( mov AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( add eax, edx )/* T1 + Maj(A,B,C) */\ AS2( add edx, D(i) )\ AS2( mov D(i), edx )\ AS2( ror AS_REG_7d, 22 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 11 )\ AS2( xor AS_REG_7d, ebx )\ AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\ AS2( mov H(i), eax )\ #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i*(1+CRYPTOPP_BOOL_X64)+CRYPTOPP_BOOL_X64)], WORD_REG(bx)) #if defined(__GNUC__) #if CRYPTOPP_BOOL_X64 FixedSizeAlignedSecBlock workspace; #endif __asm__ __volatile__ ( #if CRYPTOPP_BOOL_X64 "lea %4, %%r8;" #endif ".intel_syntax noprefix;" #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 X86_SHA256_HashBlocks PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx push_reg rbp alloc_stack(LOCALS_SIZE+8) .endprolog mov rdi, r8 lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4] #endif #if CRYPTOPP_BOOL_X86 #ifndef __GNUC__ AS2( mov edi, [len]) AS2( lea WORD_REG(si), [SHA256_K+48*4]) #endif #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_PUSH_IF86(bx) #endif AS_PUSH_IF86(bp) AS2( mov ebx, esp) AS2( and esp, -16) AS2( sub WORD_REG(sp), LOCALS_SIZE) AS_PUSH_IF86(bx) #endif AS2( mov STATE_SAVE, WORD_REG(cx)) AS2( mov DATA_SAVE, WORD_REG(dx)) AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)]) AS2( mov DATA_END, WORD_REG(ax)) AS2( mov K_END, WORD_REG(si)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 AS2( test edi, 1) ASJ( jnz, 2, f) AS1( dec DWORD PTR K_END) #endif AS2( movdqa xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16]) AS2( movdqa xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16]) #endif #if CRYPTOPP_BOOL_X86 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 0, f) #endif ASL(2) // non-SSE2 AS2( mov esi, ecx) AS2( lea edi, A(0)) AS2( mov ecx, 8) AS1( rep movsd) AS2( mov esi, K_END) ASJ( jmp, 3, f) #endif #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(0) AS2( movdqa E(0), xmm1) AS2( movdqa A(0), xmm0) #endif #if CRYPTOPP_BOOL_X86 ASL(3) #endif AS2( sub WORD_REG(si), 48*4) SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3) SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7) #if CRYPTOPP_BOOL_X86 SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11) SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15) #endif AS2( mov edi, E(0)) // E AS2( mov eax, B(0)) // B AS2( xor eax, C(0)) // B^C AS2( mov ecx, A(0)) // A ROUND(0, 0, eax, ecx, edi, edx) ROUND(1, 0, ecx, eax, edx, edi) ROUND(2, 0, eax, ecx, edi, edx) ROUND(3, 0, ecx, eax, edx, edi) ROUND(4, 0, eax, ecx, edi, edx) ROUND(5, 0, ecx, eax, edx, edi) ROUND(6, 0, eax, ecx, edi, edx) ROUND(7, 0, ecx, eax, edx, edi) ROUND(8, 0, eax, ecx, edi, edx) ROUND(9, 0, ecx, eax, edx, edi) ROUND(10, 0, eax, ecx, edi, edx) ROUND(11, 0, ecx, eax, edx, edi) ROUND(12, 0, eax, ecx, edi, edx) ROUND(13, 0, ecx, eax, edx, edi) ROUND(14, 0, eax, ecx, edi, edx) ROUND(15, 0, ecx, eax, edx, edi) ASL(1) AS2(add WORD_REG(si), 4*16) ROUND(0, 1, eax, ecx, edi, edx) ROUND(1, 1, ecx, eax, edx, edi) ROUND(2, 1, eax, ecx, edi, edx) ROUND(3, 1, ecx, eax, edx, edi) ROUND(4, 1, eax, ecx, edi, edx) ROUND(5, 1, ecx, eax, edx, edi) ROUND(6, 1, eax, ecx, edi, edx) ROUND(7, 1, ecx, eax, edx, edi) ROUND(8, 1, eax, ecx, edi, edx) ROUND(9, 1, ecx, eax, edx, edi) ROUND(10, 1, eax, ecx, edi, edx) ROUND(11, 1, ecx, eax, edx, edi) ROUND(12, 1, eax, ecx, edi, edx) ROUND(13, 1, ecx, eax, edx, edi) ROUND(14, 1, eax, ecx, edi, edx) ROUND(15, 1, ecx, eax, edx, edi) AS2( cmp WORD_REG(si), K_END) ASJ( jb, 1, b) AS2( mov WORD_REG(dx), DATA_SAVE) AS2( add WORD_REG(dx), 64) AS2( mov AS_REG_7, STATE_SAVE) AS2( mov DATA_SAVE, WORD_REG(dx)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 AS2( test DWORD PTR K_END, 1) ASJ( jz, 4, f) #endif AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_7+1*16]) AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_7+0*16]) AS2( paddd xmm1, E(0)) AS2( paddd xmm0, A(0)) AS2( movdqa [AS_REG_7+1*16], xmm1) AS2( movdqa [AS_REG_7+0*16], xmm0) AS2( cmp WORD_REG(dx), DATA_END) ASJ( jb, 0, b) #endif #if CRYPTOPP_BOOL_X86 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 5, f) ASL(4) // non-SSE2 #endif AS2( add [AS_REG_7+0*4], ecx) // A AS2( add [AS_REG_7+4*4], edi) // E AS2( mov eax, B(0)) AS2( mov ebx, C(0)) AS2( mov ecx, D(0)) AS2( add [AS_REG_7+1*4], eax) AS2( add [AS_REG_7+2*4], ebx) AS2( add [AS_REG_7+3*4], ecx) AS2( mov eax, F(0)) AS2( mov ebx, G(0)) AS2( mov ecx, H(0)) AS2( add [AS_REG_7+5*4], eax) AS2( add [AS_REG_7+6*4], ebx) AS2( add [AS_REG_7+7*4], ecx) AS2( mov ecx, AS_REG_7d) AS2( cmp WORD_REG(dx), DATA_END) ASJ( jb, 2, b) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(5) #endif #endif AS_POP_IF86(sp) AS_POP_IF86(bp) #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_POP_IF86(bx) #endif #ifdef CRYPTOPP_GENERATE_X64_MASM add rsp, LOCALS_SIZE+8 pop rbp pop rbx pop rdi pop rsi ret X86_SHA256_HashBlocks ENDP #endif #ifdef __GNUC__ ".att_syntax prefix;" : : "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len) #if CRYPTOPP_BOOL_X64 , "m" (workspace[0]) #endif : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64 , "%rbx", "%r8", "%r10" #endif ); #endif } static inline bool HasSSE2(void) { return false; } static void SHA256_Transform32(word32 *state, const word32 *data) { word32 W[16]; int i; for (i = 0; i < 16; i++) W[i] = swab32(((word32 *)(data))[i]); X86_SHA256_HashBlocks(state, W, 16 * 4); } static void runhash32(void *state, const void *input, const void *init) { memcpy(state, init, 32); SHA256_Transform32(state, input); } /* suspiciously similar to ScanHash* from bitcoin */ bool scanhash_asm32(const unsigned char *midstate, unsigned char *data, unsigned char *hash1, unsigned char *hash, const unsigned char *target, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *hash32 = (uint32_t *) hash; uint32_t *nonce = (uint32_t *)(data + 12); uint32_t n = 0; unsigned long stat_ctr = 0; while (1) { n++; *nonce = n; runhash32(hash1, data, midstate); runhash32(hash, hash1, sha256_init_state); stat_ctr++; if ((hash32[7] == 0) && fulltest(hash, target)) { fulltest(hash, target); *hashes_done = stat_ctr; return true; } if (n >= max_nonce) { if (opt_debug) fprintf(stderr, "DBG: end of nonce range\n"); *hashes_done = stat_ctr; return false; } } } #endif // #if defined(WANT_CRYPTOPP_ASM32)