/* * Copyright 2011 Con Kolivas * Copyright 2010 Jeff Garzik * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #endif #include #include #include #include "compat.h" #include "miner.h" #include "findnonce.h" #include "bench_block.h" #include "ocl.h" #if defined(unix) #include #include #include #include #include #endif #define PROGRAM_NAME "cgminer" #define DEF_RPC_URL "http://127.0.0.1:8332/" #define DEF_RPC_USERNAME "rpcuser" #define DEF_RPC_PASSWORD "rpcpass" #define DEF_RPC_USERPASS DEF_RPC_USERNAME ":" DEF_RPC_PASSWORD #ifdef __linux /* Linux specific policy and affinity management */ #include static inline void drop_policy(void) { struct sched_param param; #ifdef SCHED_BATCH #ifdef SCHED_IDLE if (unlikely(sched_setscheduler(0, SCHED_IDLE, ¶m) == -1)) #endif sched_setscheduler(0, SCHED_BATCH, ¶m); #endif } static inline void affine_to_cpu(int id, int cpu) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(cpu, &set); sched_setaffinity(0, sizeof(&set), &set); applog(LOG_INFO, "Binding cpu mining thread %d to cpu %d", id, cpu); } #else static inline void drop_policy(void) { } static inline void affine_to_cpu(int id, int cpu) { } #endif enum workio_commands { WC_GET_WORK, WC_SUBMIT_WORK, WC_DIE, }; struct workio_cmd { enum workio_commands cmd; struct thr_info *thr; union { struct work *work; } u; bool lagging; }; enum sha256_algos { ALGO_C, /* plain C */ ALGO_4WAY, /* parallel SSE2 */ ALGO_VIA, /* VIA padlock */ ALGO_CRYPTOPP, /* Crypto++ (C) */ ALGO_CRYPTOPP_ASM32, /* Crypto++ 32-bit assembly */ ALGO_SSE2_64, /* SSE2 for x86_64 */ ALGO_SSE4_64, /* SSE4 for x86_64 */ }; enum pool_strategy { POOL_FAILOVER, POOL_ROUNDROBIN, POOL_ROTATE, POOL_LOADBALANCE, }; #define TOP_STRATEGY (POOL_LOADBALANCE) struct strategies { const char *s; } strategies[] = { { "Failover" }, { "Round Robin" }, { "Rotate" }, { "Load Balance" }, }; static size_t max_name_len = 0; static char *name_spaces_pad = NULL; static const char *algo_names[] = { [ALGO_C] = "c", #ifdef WANT_SSE2_4WAY [ALGO_4WAY] = "4way", #endif #ifdef WANT_VIA_PADLOCK [ALGO_VIA] = "via", #endif [ALGO_CRYPTOPP] = "cryptopp", #ifdef WANT_CRYPTOPP_ASM32 [ALGO_CRYPTOPP_ASM32] = "cryptopp_asm32", #endif #ifdef WANT_X8664_SSE2 [ALGO_SSE2_64] = "sse2_64", #endif #ifdef WANT_X8664_SSE4 [ALGO_SSE4_64] = "sse4_64", #endif }; typedef void (*sha256_func)(); static const sha256_func sha256_funcs[] = { [ALGO_C] = (sha256_func)scanhash_c, #ifdef WANT_SSE2_4WAY [ALGO_4WAY] = (sha256_func)ScanHash_4WaySSE2, #endif #ifdef WANT_VIA_PADLOCK [ALGO_VIA] = (sha256_func)scanhash_via, #endif [ALGO_CRYPTOPP] = (sha256_func)scanhash_cryptopp, #ifdef WANT_CRYPTOPP_ASM32 [ALGO_CRYPTOPP_ASM32] = (sha256_func)scanhash_asm32, #endif #ifdef WANT_X8664_SSE2 [ALGO_SSE2_64] = (sha256_func)scanhash_sse2_64, #endif #ifdef WANT_X8664_SSE4 [ALGO_SSE4_64] = (sha256_func)scanhash_sse4_64 #endif }; bool opt_debug = false; bool opt_protocol = false; bool want_longpoll = true; bool have_longpoll = false; bool use_syslog = false; static bool opt_quiet = false; static bool opt_realquiet = false; static bool opt_loginput = false; static int opt_retries = -1; static int opt_fail_pause = 5; static int opt_log_interval = 5; bool opt_log_output = false; static bool opt_dynamic = true; static int opt_queue; int opt_vectors; int opt_worksize; int opt_scantime = 60; int opt_bench_algo = -1; static const bool opt_time = true; #if defined(WANT_X8664_SSE4) && defined(__SSE4_1__) static enum sha256_algos opt_algo = ALGO_SSE4_64; #elif defined(WANT_X8664_SSE2) && defined(__SSE2__) static enum sha256_algos opt_algo = ALGO_SSE2_64; #else static enum sha256_algos opt_algo = ALGO_C; #endif static int nDevs; static int opt_g_threads = 2; static int opt_device; static int total_devices; static bool gpu_devices[16]; static int gpu_threads; static bool forced_n_threads; static int opt_n_threads; static int mining_threads; static int num_processors; static int scan_intensity; static bool use_curses = true; static bool opt_submit_stale; #define QUIET (opt_quiet || opt_realquiet) struct thr_info *thr_info; static int work_thr_id; int longpoll_thr_id; static int stage_thr_id; static int watchdog_thr_id; static int input_thr_id; static int gpur_thr_id; static int cpur_thr_id; static int total_threads; struct work_restart *work_restart = NULL; static pthread_mutex_t hash_lock; static pthread_mutex_t qd_lock; static pthread_mutex_t stgd_lock; static pthread_mutex_t curses_lock; static double total_mhashes_done; static struct timeval total_tv_start, total_tv_end; pthread_mutex_t control_lock; int hw_errors; static int total_accepted, total_rejected; static int total_getworks, total_stale, total_discarded; static int total_queued, total_staged, lp_staged; static unsigned int new_blocks; enum block_change { BLOCK_NONE, BLOCK_LP, BLOCK_DETECT, BLOCK_FIRST, }; static enum block_change block_changed = BLOCK_FIRST; static unsigned int local_work; static unsigned int total_lo, total_ro; #define MAX_POOLS (32) static struct pool *pools[MAX_POOLS]; static struct pool *currentpool = NULL; static int total_pools; static enum pool_strategy pool_strategy = POOL_FAILOVER; static int opt_rotate_period; static int total_urls, total_users, total_passes, total_userpasses; static bool curses_active = false; static char current_block[37]; static char *current_hash; static char datestamp[40]; static char blocktime[30]; static char *opt_kernel = NULL; #if defined(unix) static char *opt_stderr_cmd = NULL; #endif // defined(unix) enum cl_kernel chosen_kernel; static bool ping = true; struct sigaction termhandler, inthandler; struct thread_q *getq; void get_datestamp(char *f, struct timeval *tv) { struct tm tm; localtime_r(&tv->tv_sec, &tm); sprintf(f, "[%d-%02d-%02d %02d:%02d:%02d]", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); } void get_timestamp(char *f, struct timeval *tv) { struct tm tm; localtime_r(&tv->tv_sec, &tm); sprintf(f, "[%02d:%02d:%02d]", tm.tm_hour, tm.tm_min, tm.tm_sec); } static void applog_and_exit(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vapplog(LOG_ERR, fmt, ap); va_end(ap); exit(1); } static void add_pool(void) { struct pool *pool; pool = calloc(sizeof(struct pool), 1); if (!pool) { applog(LOG_ERR, "Failed to malloc pool in add_pool"); exit (1); } pool->pool_no = pool->prio = total_pools; pools[total_pools++] = pool; if (unlikely(pthread_mutex_init(&pool->pool_lock, NULL))) { applog(LOG_ERR, "Failed to pthread_mutex_init in add_pool"); exit (1); } /* Make sure the pool doesn't think we've been idle since time 0 */ pool->tv_idle.tv_sec = ~0UL; } /* Pool variant of test and set */ static bool pool_tset(struct pool *pool, bool *var) { bool ret; mutex_lock(&pool->pool_lock); ret = *var; *var = true; mutex_unlock(&pool->pool_lock); return ret; } static bool pool_tclear(struct pool *pool, bool *var) { bool ret; mutex_lock(&pool->pool_lock); ret = *var; *var = false; mutex_unlock(&pool->pool_lock); return ret; } static struct pool *current_pool(void) { struct pool *pool; mutex_lock(&control_lock); pool = currentpool; mutex_unlock(&control_lock); return pool; } // Algo benchmark, crash-prone, system independent stage static double bench_algo_stage3( enum sha256_algos algo ) { // Random work pulled from a pool static uint8_t bench_block[] = { CGMINER_BENCHMARK_BLOCK }; struct work work __attribute__((aligned(128))); assert(sizeof(work) <= sizeof(bench_block)); memcpy(&work, &bench_block, sizeof(work)); struct work_restart dummy; work_restart = &dummy; struct timeval end; struct timeval start; uint32_t max_nonce = (1<<22); unsigned long hashes_done = 0; gettimeofday(&start, 0); #if defined(WANT_VIA_PADLOCK) // For some reason, the VIA padlock hasher has a different API ... if (ALGO_VIA==algo) { (void)scanhash_via( 0, work.data, work.target, max_nonce, &hashes_done, work.blk.nonce ); } else #endif { sha256_func func = sha256_funcs[algo]; (*func)( 0, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce ); } gettimeofday(&end, 0); work_restart = NULL; uint64_t usec_end = ((uint64_t)end.tv_sec)*1000*1000 + end.tv_usec; uint64_t usec_start = ((uint64_t)start.tv_sec)*1000*1000 + start.tv_usec; uint64_t usec_elapsed = usec_end - usec_start; double rate = -1.0; if (0 max) return "Value out of range"; return NULL; } static char *set_int_0_to_9999(const char *arg, int *i) { return set_int_range(arg, i, 0, 9999); } static char *forced_int_1010(const char *arg, int *i) { opt_dynamic = false; return set_int_range(arg, i, -10, 10); } static char *force_nthreads_int(const char *arg, int *i) { forced_n_threads = true; return set_int_range(arg, i, 0, 9999); } static char *set_int_0_to_10(const char *arg, int *i) { return set_int_range(arg, i, 0, 10); } static char *set_devices(const char *arg, int *i) { char *err = opt_set_intval(arg, i); if (err) return err; if (*i < 0 || *i > 15) return "Invalid GPU device number"; total_devices++; gpu_devices[*i] = true; return NULL; } static char *set_loadbalance(enum pool_strategy *strategy) { *strategy = POOL_LOADBALANCE; return NULL; } static char *set_rotate(const char *arg, int *i) { pool_strategy = POOL_ROTATE; return set_int_range(arg, i, 0, 9999); } static char *set_rr(enum pool_strategy *strategy) { *strategy = POOL_ROUNDROBIN; return NULL; } static char *set_url(char *arg, char **p) { struct pool *pool; total_urls++; if (total_urls > total_pools) add_pool(); pool = pools[total_urls - 1]; opt_set_charp(arg, &pool->rpc_url); if (strncmp(arg, "http://", 7) && strncmp(arg, "https://", 8)) { char *httpinput; httpinput = malloc(255); if (!httpinput) quit(1, "Failed to malloc httpinput"); strcpy(httpinput, "http://"); strncat(httpinput, arg, 248); pool->rpc_url = httpinput; } return NULL; } static char *set_user(const char *arg, char **p) { struct pool *pool; if (total_userpasses) return "Use only user + pass or userpass, but not both"; total_users++; if (total_users > total_pools) add_pool(); pool = pools[total_users - 1]; opt_set_charp(arg, &pool->rpc_user); return NULL; } static char *set_pass(const char *arg, char **p) { struct pool *pool; if (total_userpasses) return "Use only user + pass or userpass, but not both"; total_passes++; if (total_passes > total_pools) add_pool(); pool = pools[total_passes - 1]; opt_set_charp(arg, &pool->rpc_pass); return NULL; } static char *set_userpass(const char *arg, char **p) { struct pool *pool; if (total_users || total_passes) return "Use only user + pass or userpass, but not both"; total_userpasses++; if (total_userpasses > total_pools) add_pool(); pool = pools[total_userpasses - 1]; opt_set_charp(arg, &pool->rpc_userpass); return NULL; } static char *set_vector(const char *arg, int *i) { char *err = opt_set_intval(arg, i); if (err) return err; if (*i != 1 && *i != 2 && *i != 4) return "Valid vectors are 1, 2 or 4"; return NULL; } static char *enable_debug(bool *flag) { *flag = true; /* Turn out verbose output, too. */ opt_log_output = true; return NULL; } static char *trpc_url; static char *trpc_userpass; static char *trpc_user, *trpc_pass; /* These options are available from config file or commandline */ static struct opt_table opt_config_table[] = { OPT_WITH_ARG("--algo|-a", set_algo, show_algo, &opt_algo, "Specify sha256 implementation for CPU mining:\n" "\tauto\t\tBenchmark at startup and pick fastest algorithm" "\n\tc\t\tLinux kernel sha256, implemented in C" #ifdef WANT_SSE2_4WAY "\n\t4way\t\ttcatm's 4-way SSE2 implementation" #endif #ifdef WANT_VIA_PADLOCK "\n\tvia\t\tVIA padlock implementation" #endif "\n\tcryptopp\tCrypto++ C/C++ implementation" #ifdef WANT_CRYPTOPP_ASM32 "\n\tcryptopp_asm32\tCrypto++ 32-bit assembler implementation" #endif #ifdef WANT_X8664_SSE2 "\n\tsse2_64\t\tSSE2 implementation for x86_64 machines" #endif #ifdef WANT_X8664_SSE4 "\n\tsse4_64\t\tSSE4 implementation for x86_64 machines" #endif ), OPT_WITH_ARG("--bench-algo|-b", set_int_0_to_9999, opt_show_intval, &opt_bench_algo, opt_hidden), OPT_WITH_ARG("--cpu-threads|-t", force_nthreads_int, opt_show_intval, &opt_n_threads, "Number of miner CPU threads"), OPT_WITHOUT_ARG("--debug|-D", enable_debug, &opt_debug, "Enable debug output"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--device|-d", set_devices, NULL, &opt_device, "Select device to use, (Use repeat -d for multiple devices, default: all)"), OPT_WITH_ARG("--gpu-threads|-g", set_int_0_to_10, opt_show_intval, &opt_g_threads, "Number of threads per GPU (0 - 10)"), OPT_WITH_ARG("--intensity|-I", forced_int_1010, opt_show_intval, &scan_intensity, "Intensity of GPU scanning (-10 -> 10, default: dynamic to maintain desktop interactivity)"), OPT_WITH_ARG("--kernel|-k", opt_set_charp, NULL, &opt_kernel, "Select kernel to use (poclbm or phatk - default: auto)"), #endif OPT_WITHOUT_ARG("--load-balance", set_loadbalance, &pool_strategy, "Change multipool strategy from failover to even load balance"), OPT_WITH_ARG("--log|-l", set_int_0_to_9999, opt_show_intval, &opt_log_interval, "Interval in seconds between log output"), #if defined(unix) OPT_WITH_ARG("--monitor|-m", opt_set_charp, NULL, &opt_stderr_cmd, "Use custom pipe cmd for output messages"), #endif // defined(unix) OPT_WITHOUT_ARG("--no-longpoll", opt_set_invbool, &want_longpoll, "Disable X-Long-Polling support"), OPT_WITH_ARG("--pass|-p", set_pass, NULL, &trpc_pass, "Password for bitcoin JSON-RPC server"), OPT_WITHOUT_ARG("--protocol-dump|-P", opt_set_bool, &opt_protocol, "Verbose dump of protocol-level activities"), OPT_WITH_ARG("--queue|-Q", set_int_0_to_10, opt_show_intval, &opt_queue, "Number of extra work items to queue (0 - 10)"), OPT_WITHOUT_ARG("--quiet|-q", opt_set_bool, &opt_quiet, "Disable logging output, display status and errors"), OPT_WITHOUT_ARG("--real-quiet", opt_set_bool, &opt_realquiet, "Disable all output"), OPT_WITH_ARG("--retries|-r", opt_set_intval, opt_show_intval, &opt_retries, "Number of times to retry before giving up, if JSON-RPC call fails (-1 means never)"), OPT_WITH_ARG("--retry-pause|-R", set_int_0_to_9999, opt_show_intval, &opt_fail_pause, "Number of seconds to pause, between retries"), OPT_WITH_ARG("--rotate", set_rotate, opt_show_intval, &opt_rotate_period, "Change multipool strategy from failover to regularly rotate at N minutes"), OPT_WITHOUT_ARG("--round-robin", set_rr, &pool_strategy, "Change multipool strategy from failover to round robin on failure"), OPT_WITH_ARG("--scan-time|-s", set_int_0_to_9999, opt_show_intval, &opt_scantime, "Upper bound on time spent scanning current work, in seconds"), OPT_WITHOUT_ARG("--submit-stale", opt_set_bool, &opt_submit_stale, "Submit shares even if they would normally be considered stale"), #ifdef HAVE_SYSLOG_H OPT_WITHOUT_ARG("--syslog", opt_set_bool, &use_syslog, "Use system log for output messages (default: standard error)"), #endif OPT_WITHOUT_ARG("--text-only|-T", opt_set_invbool, &use_curses, "Disable ncurses formatted screen output"), OPT_WITH_ARG("--url|-o", set_url, opt_show_charp, &trpc_url, "URL for bitcoin JSON-RPC server"), OPT_WITH_ARG("--user|-u", set_user, NULL, &trpc_user, "Username for bitcoin JSON-RPC server"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--vectors|-v", set_vector, NULL, &opt_vectors, "Override detected optimal vector width (1, 2 or 4)"), #endif OPT_WITHOUT_ARG("--verbose", opt_set_bool, &opt_log_output, "Log verbose output to stderr as well as status output"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--worksize|-w", set_int_0_to_9999, opt_show_intval, &opt_worksize, "Override detected optimal worksize"), #endif OPT_WITH_ARG("--userpass|-O", set_userpass, NULL, &trpc_userpass, "Username:Password pair for bitcoin JSON-RPC server"), OPT_ENDTABLE }; static char *parse_config(json_t *config) { static char err_buf[200]; json_t *val; struct opt_table *opt; for (opt = opt_config_table; opt->type != OPT_END; opt++) { char *p, *name; /* We don't handle subtables. */ assert(!(opt->type & OPT_SUBTABLE)); /* Pull apart the option name(s). */ name = strdup(opt->names); for (p = strtok(name, "|"); p; p = strtok(NULL, "|")) { char *err; /* Ignore short options. */ if (p[1] != '-') continue; val = json_object_get(config, p+2); if (!val) continue; if ((opt->type & OPT_HASARG) && json_is_string(val)) { err = opt->cb_arg(json_string_value(val), opt->u.arg); } else if ((opt->type&OPT_NOARG) && json_is_true(val)) { err = opt->cb(opt->u.arg); } else { err = "Invalid value"; } if (err) { sprintf(err_buf, "Parsing JSON option %s: %s", p, err); return err_buf; } } free(name); } return NULL; } static char *load_config(const char *arg, void *unused) { json_error_t err; json_t *config; config = json_load_file(arg, 0, &err); if (!json_is_object(config)) return "JSON decode of file failed"; /* Parse the config now, so we can override it. That can keep pointers * so don't free config object. */ return parse_config(config); } #ifdef HAVE_OPENCL static char *print_ndevs_and_exit(int *ndevs) { printf("%i GPU devices detected\n", *ndevs); fflush(stdout); exit(*ndevs); } #endif /* These options are available from commandline only */ static struct opt_table opt_cmdline_table[] = { OPT_WITH_ARG("--config|-c", load_config, NULL, NULL, "Load a JSON-format configuration file\n" "See example-cfg.json for an example configuration."), OPT_WITHOUT_ARG("--help|-h", opt_usage_and_exit, #ifdef HAVE_OPENCL "\nBuilt with CPU and GPU mining support.\n", #else "\nBuilt with CPU mining support only.\n", #endif "Print this message"), #ifdef HAVE_OPENCL OPT_WITHOUT_ARG("--ndevs|-n", print_ndevs_and_exit, &nDevs, "Enumerate number of detected GPUs and exit"), #endif OPT_ENDTABLE }; static bool jobj_binary(const json_t *obj, const char *key, void *buf, size_t buflen) { const char *hexstr; json_t *tmp; tmp = json_object_get(obj, key); if (unlikely(!tmp)) { applog(LOG_ERR, "JSON key '%s' not found", key); return false; } hexstr = json_string_value(tmp); if (unlikely(!hexstr)) { applog(LOG_ERR, "JSON key '%s' is not a string", key); return false; } if (!hex2bin(buf, hexstr, buflen)) return false; return true; } static bool work_decode(const json_t *val, struct work *work) { if (unlikely(!jobj_binary(val, "midstate", work->midstate, sizeof(work->midstate)))) { applog(LOG_ERR, "JSON inval midstate"); goto err_out; } if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) { applog(LOG_ERR, "JSON inval data"); goto err_out; } if (unlikely(!jobj_binary(val, "hash1", work->hash1, sizeof(work->hash1)))) { applog(LOG_ERR, "JSON inval hash1"); goto err_out; } if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) { applog(LOG_ERR, "JSON inval target"); goto err_out; } memset(work->hash, 0, sizeof(work->hash)); gettimeofday(&work->tv_staged, NULL); return true; err_out: return false; } static inline int dev_from_id(int thr_id) { return thr_info[thr_id].cgpu->cpu_gpu; } /* Simulate a rolling average by faking an exponential decay over 5 * log */ static inline void decay_time(double *f, double fadd) { *f = (fadd + *f * 0.9) / 1.9; } static WINDOW *mainwin, *statuswin, *logwin; static double total_secs = 0.1; static char statusline[256]; static int cpucursor, gpucursor, logstart, logcursor; static struct cgpu_info *gpus, *cpus; static void text_print_status(int thr_id) { struct cgpu_info *cgpu = thr_info[thr_id].cgpu; printf(" %sPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]\n", cgpu->is_gpu ? "G" : "C", cgpu->cpu_gpu, cgpu->rolling, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); } /* Must be called with curses mutex lock held and curses_active */ static void curses_print_status(int thr_id) { struct pool *pool = current_pool(); wmove(statuswin, 0, 0); wattron(statuswin, A_BOLD); wprintw(statuswin, " " PROGRAM_NAME " version " VERSION " - Started: %s CPU Algo: %s", datestamp, algo_names[opt_algo]); wattroff(statuswin, A_BOLD); wmove(statuswin, 1, 0); whline(statuswin, '-', 80); wmove(statuswin, 2,0); wprintw(statuswin, " %s", statusline); wclrtoeol(statuswin); wmove(statuswin, 3,0); wprintw(statuswin, " TQ: %d ST: %d LS: %d SS: %d DW: %d NB: %d LW: %d LO: %d RF: %d I: %d", total_queued, total_staged, lp_staged, total_stale, total_discarded, new_blocks, local_work, total_lo, total_ro, scan_intensity); wclrtoeol(statuswin); wmove(statuswin, 4, 0); if (pool_strategy == POOL_LOADBALANCE && total_pools > 1) wprintw(statuswin, " Connected to multiple pools"); else wprintw(statuswin, " Connected to %s as user %s", pool->rpc_url, pool->rpc_user); wclrtoeol(statuswin); wmove(statuswin, 5, 0); wprintw(statuswin, " Block: %s... Started: %s", current_hash, blocktime); wmove(statuswin, 6, 0); whline(statuswin, '-', 80); wmove(statuswin, logstart - 1, 0); whline(statuswin, '-', 80); mvwprintw(statuswin, gpucursor - 1, 1, "[P]ool management %s[S]ettings [D]isplay options [Q]uit", opt_g_threads ? "[G]PU management " : ""); if (thr_id >= 0 && thr_id < gpu_threads) { int gpu = dev_from_id(thr_id); struct cgpu_info *cgpu = &gpus[gpu]; cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60; cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0; wmove(statuswin, gpucursor + gpu, 0); if (cgpu->status == LIFE_DEAD) wprintw(statuswin, " GPU %d: [DEAD / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", gpu, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); else if (cgpu->status == LIFE_SICK) wprintw(statuswin, " GPU %d: [SICK / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", gpu, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); else if (!gpu_devices[gpu]) wprintw(statuswin, " GPU %d: [DISABLED / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", gpu, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); else wprintw(statuswin, " GPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", gpu, cgpu->rolling, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); wclrtoeol(statuswin); } else if (thr_id >= gpu_threads) { int cpu = dev_from_id(thr_id); struct cgpu_info *cgpu = &cpus[cpu]; cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60; cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0; wmove(statuswin, cpucursor + cpu, 0); wprintw(statuswin, " CPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", cpu, cgpu->rolling, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); wclrtoeol(statuswin); } wrefresh(statuswin); } static void print_status(int thr_id) { if (!curses_active) text_print_status(thr_id); else { mutex_lock(&curses_lock); curses_print_status(thr_id); mutex_unlock(&curses_lock); } } /* Check for window resize. Called with curses mutex locked */ static inline void check_logwinsize(void) { int x, y, logx, logy; getmaxyx(mainwin, y, x); getmaxyx(logwin, logy, logx); y -= logcursor; /* Detect screen size change */ if ((x != logx || y != logy) && x >= 80 && y >= 25) wresize(logwin, y, x); } /* For mandatory printing when mutex is already locked */ static void wlog(const char *f, ...) { va_list ap; va_start(ap, f); vw_printw(logwin, f, ap); va_end(ap); } /* Mandatory printing */ static void wlogprint(const char *f, ...) { va_list ap; mutex_lock(&curses_lock); va_start(ap, f); vw_printw(logwin, f, ap); va_end(ap); wrefresh(logwin); mutex_unlock(&curses_lock); } void log_curses(int prio, const char *f, va_list ap) { if (opt_quiet && prio != LOG_ERR) return; if (curses_active) { if (!opt_loginput) { mutex_lock(&curses_lock); vw_printw(logwin, f, ap); wrefresh(logwin); mutex_unlock(&curses_lock); } } else vprintf(f, ap); } static void clear_logwin(void) { mutex_lock(&curses_lock); wclear(logwin); wrefresh(logwin); mutex_unlock(&curses_lock); } static bool submit_upstream_work(const struct work *work) { char *hexstr = NULL; json_t *val, *res; char s[345], sd[345]; bool rc = false; int thr_id = work->thr_id; struct cgpu_info *cgpu = thr_info[thr_id].cgpu; CURL *curl = curl_easy_init(); struct pool *pool = work->pool; bool rolltime; if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); return rc; } /* build hex string */ hexstr = bin2hex(work->data, sizeof(work->data)); if (unlikely(!hexstr)) { applog(LOG_ERR, "submit_upstream_work OOM"); goto out_nofree; } /* build JSON-RPC request */ sprintf(s, "{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n", hexstr); sprintf(sd, "{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}", hexstr); if (opt_debug) applog(LOG_DEBUG, "DBG: sending %s submit RPC call: %s", pool->rpc_url, sd); /* issue JSON-RPC request */ val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, s, false, false, &rolltime, pool); if (unlikely(!val)) { applog(LOG_INFO, "submit_upstream_work json_rpc_call failed"); if (!pool_tset(pool, &pool->submit_fail)) { total_ro++; pool->remotefail_occasions++; applog(LOG_WARNING, "Pool %d communication failure, caching submissions", pool->pool_no); } goto out; } else if (pool_tclear(pool, &pool->submit_fail)) applog(LOG_WARNING, "Pool %d communication resumed, submitting work", pool->pool_no); res = json_object_get(val, "result"); /* Theoretically threads could race when modifying accepted and * rejected values but the chance of two submits completing at the * same time is zero so there is no point adding extra locking */ if (json_is_true(res)) { cgpu->accepted++; total_accepted++; pool->accepted++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: true (yay!!!)"); if (!QUIET) { if (total_pools > 1) applog(LOG_WARNING, "Accepted %.8s %sPU %d thread %d pool %d", hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id, work->pool->pool_no); else applog(LOG_WARNING, "Accepted %.8s %sPU %d thread %d", hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id); } } else { cgpu->rejected++; total_rejected++; pool->rejected++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: false (booooo)"); if (!QUIET) { if (total_pools > 1) applog(LOG_WARNING, "Rejected %.8s %sPU %d thread %d pool %d", hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id, work->pool->pool_no); else applog(LOG_WARNING, "Rejected %.8s %sPU %d thread %d", hexstr + 152, cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, thr_id); } } cgpu->utility = cgpu->accepted / ( total_secs ? total_secs : 1 ) * 60; cgpu->efficiency = cgpu->getworks ? cgpu->accepted * 100.0 / cgpu->getworks : 0.0; if (!opt_realquiet) print_status(thr_id); applog(LOG_INFO, "%sPU %d Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m", cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); json_decref(val); rc = true; out: free(hexstr); out_nofree: curl_easy_cleanup(curl); return rc; } static const char *rpc_req = "{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n"; /* Select any active pool in a rotating fashion when loadbalance is chosen */ static inline struct pool *select_pool(bool lagging) { static int rotating_pool = 0; struct pool *pool, *cp; cp = current_pool(); if (pool_strategy != POOL_LOADBALANCE && !lagging) pool = cp; else pool = NULL; while (!pool) { if (++rotating_pool >= total_pools) rotating_pool = 0; pool = pools[rotating_pool]; if ((!pool->idle && pool->enabled) || pool == cp) break; pool = NULL; } return pool; } static bool get_upstream_work(struct work *work, bool lagging) { struct pool *pool; json_t *val; bool rc = false; CURL *curl; curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); return rc; } pool = select_pool(lagging); if (opt_debug) applog(LOG_DEBUG, "DBG: sending %s get RPC call: %s", pool->rpc_url, rpc_req); val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, rpc_req, want_longpoll, false, &work->rolltime, pool); if (unlikely(!val)) { applog(LOG_DEBUG, "Failed json_rpc_call in get_upstream_work"); goto out; } rc = work_decode(json_object_get(val, "result"), work); work->pool = pool; total_getworks++; pool->getwork_requested++; if (work->thr) work->thr->cgpu->getworks++; json_decref(val); out: curl_easy_cleanup(curl); return rc; } static struct work *make_work(void) { struct work *work = calloc(1, sizeof(struct work)); if (unlikely(!work)) quit(1, "Failed to calloc work in make_work"); return work; } static void free_work(struct work *work) { free(work); } static void workio_cmd_free(struct workio_cmd *wc) { if (!wc) return; switch (wc->cmd) { case WC_SUBMIT_WORK: free_work(wc->u.work); break; default: /* do nothing */ break; } memset(wc, 0, sizeof(*wc)); /* poison */ free(wc); } static void disable_curses(void) { if (test_and_clear(&curses_active)) { leaveok(logwin, false); leaveok(statuswin, false); leaveok(mainwin, false); nocbreak(); echo(); delwin(logwin); delwin(statuswin); delwin(mainwin); endwin(); refresh(); #ifdef WIN32 // Move the cursor to after curses output. HANDLE hout = GetStdHandle(STD_OUTPUT_HANDLE); CONSOLE_SCREEN_BUFFER_INFO csbi; COORD coord; if (GetConsoleScreenBufferInfo(hout, &csbi)) { coord.X = 0; coord.Y = csbi.dwSize.Y - 1; SetConsoleCursorPosition(hout, coord); } #endif } } void kill_work(void) { struct workio_cmd *wc; struct thr_info *thr; unsigned int i; disable_curses(); applog(LOG_INFO, "Received kill message"); /* Kill the watchdog thread */ thr = &thr_info[watchdog_thr_id]; pthread_cancel(*thr->pth); /* Stop the mining threads*/ for (i = 0; i < mining_threads; i++) { thr = &thr_info[i]; if (!thr->pth) continue; tq_freeze(thr->q); /* No need to check if this succeeds or not */ pthread_cancel(*thr->pth); } /* Stop the others */ thr = &thr_info[stage_thr_id]; pthread_cancel(*thr->pth); thr = &thr_info[longpoll_thr_id]; pthread_cancel(*thr->pth); wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in kill_work"); /* We're just trying to die anyway, so forget graceful */ exit (1); } wc->cmd = WC_DIE; wc->thr = 0; if (opt_debug) applog(LOG_DEBUG, "Pushing die request to work thread"); if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in kill_work"); exit (1); } } static void sighandler(int sig) { /* Restore signal handlers so we can still quit if kill_work fails */ sigaction(SIGTERM, &termhandler, NULL); sigaction(SIGINT, &inthandler, NULL); kill_work(); } static void *get_work_thread(void *userdata) { struct workio_cmd *wc = (struct workio_cmd *)userdata; struct work *ret_work; int failures = 0; pthread_detach(pthread_self()); ret_work = make_work(); if (wc->thr) ret_work->thr = wc->thr; else ret_work->thr = NULL; /* obtain new work from bitcoin via JSON-RPC */ while (!get_upstream_work(ret_work, wc->lagging)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "json_rpc_call failed, terminating workio thread"); free_work(ret_work); kill_work(); goto out; } /* pause, then restart work-request loop */ applog(LOG_DEBUG, "json_rpc_call failed on get work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } if (opt_debug) applog(LOG_DEBUG, "Pushing work to requesting thread"); /* send work to requesting thread */ if (unlikely(!tq_push(thr_info[stage_thr_id].q, ret_work))) { applog(LOG_ERR, "Failed to tq_push work in workio_get_work"); kill_work(); free_work(ret_work); } out: workio_cmd_free(wc); return NULL; } static bool workio_get_work(struct workio_cmd *wc) { pthread_t get_thread; if (unlikely(pthread_create(&get_thread, NULL, get_work_thread, (void *)wc))) { applog(LOG_ERR, "Failed to create get_work_thread"); return false; } return true; } static bool stale_work(struct work *work) { struct timeval now; bool ret = false; char *hexstr; gettimeofday(&now, NULL); if ((now.tv_sec - work->tv_staged.tv_sec) >= opt_scantime) return true; /* Only use the primary pool for determination as the work may * interleave at times of new blocks */ if (work->pool != current_pool()) return ret; hexstr = bin2hex(work->data, 36); if (unlikely(!hexstr)) { applog(LOG_ERR, "submit_work_thread OOM"); return ret; } if (strncmp(hexstr, current_block, 36)) ret = true; free(hexstr); return ret; } static void *submit_work_thread(void *userdata) { struct workio_cmd *wc = (struct workio_cmd *)userdata; struct work *work = wc->u.work; struct pool *pool = work->pool; int failures = 0; pthread_detach(pthread_self()); if (!opt_submit_stale && stale_work(work)) { applog(LOG_WARNING, "Stale share detected, discarding"); total_stale++; pool->stale_shares++; goto out; } /* submit solution to bitcoin via JSON-RPC */ while (!submit_upstream_work(work)) { if (!opt_submit_stale && stale_work(work)) { applog(LOG_WARNING, "Stale share detected, discarding"); total_stale++; pool->stale_shares++; break; } if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "Failed %d retries ...terminating workio thread", opt_retries); kill_work(); break; } /* pause, then restart work-request loop */ applog(LOG_INFO, "json_rpc_call failed on submit_work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } out: workio_cmd_free(wc); return NULL; } static bool workio_submit_work(struct workio_cmd *wc) { pthread_t submit_thread; if (unlikely(pthread_create(&submit_thread, NULL, submit_work_thread, (void *)wc))) { applog(LOG_ERR, "Failed to create submit_work_thread"); return false; } return true; } static void inc_staged(struct pool *pool, int inc, bool lp) { mutex_lock(&stgd_lock); if (lp) { lp_staged += inc; total_staged += inc; } else if (lp_staged) --lp_staged; else total_staged += inc; mutex_unlock(&stgd_lock); } static void dec_staged(int inc) { mutex_lock(&stgd_lock); total_staged -= inc; mutex_unlock(&stgd_lock); } static int requests_staged(void) { int ret; mutex_lock(&stgd_lock); ret = total_staged; mutex_unlock(&stgd_lock); return ret; } static int real_staged(void) { int ret; mutex_lock(&stgd_lock); ret = total_staged - lp_staged; mutex_unlock(&stgd_lock); return ret; } /* Find the pool that currently has the highest priority */ static struct pool *priority_pool(int choice) { struct pool *ret = NULL; int i; for (i = 0; i < total_pools; i++) { struct pool *pool = pools[i]; if (pool->prio == choice) { ret = pool; break; } } if (unlikely(!ret)) { applog(LOG_ERR, "WTF No pool %d found!", choice); return pools[choice]; } return ret; } static void restart_longpoll(void); static void switch_pools(struct pool *selected) { struct pool *pool, *last_pool; int i, pool_no; mutex_lock(&control_lock); last_pool = currentpool; pool_no = currentpool->pool_no; /* Switch selected to pool number 0 and move the rest down */ if (selected) { if (selected->prio != 0) { for (i = 0; i < total_pools; i++) { pool = pools[i]; if (pool->prio < selected->prio) pool->prio++; } selected->prio = 0; } } switch (pool_strategy) { /* Both of these set to the master pool */ case POOL_FAILOVER: case POOL_LOADBALANCE: for (i = 0; i < total_pools; i++) { pool = priority_pool(i); if (!pool->idle && pool->enabled) { pool_no = pool->pool_no; break; } } break; /* Both of these simply increment and cycle */ case POOL_ROUNDROBIN: case POOL_ROTATE: if (selected) { pool_no = selected->pool_no; break; } pool_no++; if (pool_no >= total_pools) pool_no = 0; break; default: break; } currentpool = pools[pool_no]; pool = currentpool; mutex_unlock(&control_lock); if (pool != last_pool) { applog(LOG_WARNING, "Switching to %s", pool->rpc_url); restart_longpoll(); } /* Reset the queued amount to allow more to be queued for the new pool */ mutex_lock(&qd_lock); total_queued = 0; mutex_unlock(&qd_lock); inc_staged(pool, 1, true); } static void set_curblock(char *hexstr, unsigned char *hash) { unsigned char hash_swap[32]; char *old_hash = NULL; struct timeval tv_now; /* Don't free current_hash directly to avoid dereferencing it when * we might be accessing its data elsewhere */ if (current_hash) old_hash = current_hash; memcpy(current_block, hexstr, 36); gettimeofday(&tv_now, NULL); get_timestamp(blocktime, &tv_now); swap256(hash_swap, hash); current_hash = bin2hex(hash_swap, 16); if (unlikely(!current_hash)) quit (1, "set_curblock OOM"); if (old_hash) free(old_hash); } static void test_work_current(struct work *work) { char *hexstr; /* Only use the primary pool for determination */ if (work->pool != current_pool() || work->cloned || work->rolls || work->clone) return; hexstr = bin2hex(work->data, 36); if (unlikely(!hexstr)) { applog(LOG_ERR, "stage_thread OOM"); return; } /* current_block is blanked out on successful longpoll */ if (unlikely(strncmp(hexstr, current_block, 36))) { if (block_changed != BLOCK_LP && block_changed != BLOCK_FIRST) { block_changed = BLOCK_DETECT; new_blocks++; if (have_longpoll) applog(LOG_WARNING, "New block detected on network before longpoll, waiting on fresh work"); else applog(LOG_WARNING, "New block detected on network, waiting on fresh work"); /* As we can't flush the work from here, signal the * wakeup thread to restart all the threads */ work_restart[watchdog_thr_id].restart = 1; } else block_changed = BLOCK_NONE; set_curblock(hexstr, work->data); } free(hexstr); } static void *stage_thread(void *userdata) { struct thr_info *mythr = userdata; bool ok = true; pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); while (ok) { struct work *work = NULL; if (opt_debug) applog(LOG_DEBUG, "Popping work to stage thread"); work = tq_pop(mythr->q, NULL); if (unlikely(!work)) { applog(LOG_ERR, "Failed to tq_pop in stage_thread"); ok = false; break; } test_work_current(work); if (opt_debug) applog(LOG_DEBUG, "Pushing work to getwork queue"); if (unlikely(!tq_push(getq, work))) { applog(LOG_ERR, "Failed to tq_push work in stage_thread"); ok = false; break; } inc_staged(work->pool, 1, false); } tq_freeze(mythr->q); return NULL; } static char *curses_input(const char *query); static int curses_int(const char *query) { int ret; char *cvar; cvar = curses_input(query); ret = atoi(cvar); free(cvar); return ret; } static bool input_pool(bool live); static int active_pools(void) { int ret = 0; int i; for (i = 0; i < total_pools; i++) { if ((pools[i])->enabled) ret++; } return ret; } static void display_pool_summary(struct pool *pool) { double efficiency = 0.0; mutex_lock(&curses_lock); wlog("Pool: %s\n", pool->rpc_url); wlog(" Queued work requests: %d\n", pool->getwork_requested); wlog(" Share submissions: %d\n", pool->accepted + pool->rejected); wlog(" Accepted shares: %d\n", pool->accepted); wlog(" Rejected shares: %d\n", pool->rejected); if (pool->accepted || pool->rejected) wlog(" Reject ratio: %.1f\n", (double)(pool->rejected * 100) / (double)(pool->accepted + pool->rejected)); efficiency = pool->getwork_requested ? pool->accepted * 100.0 / pool->getwork_requested : 0.0; wlog(" Efficiency (accepted / queued): %.0f%%\n", efficiency); wlog(" Discarded work due to new blocks: %d\n", pool->discarded_work); wlog(" Stale submissions discarded due to new blocks: %d\n", pool->stale_shares); wlog(" Unable to get work from server occasions: %d\n", pool->localgen_occasions); wlog(" Submitting work remotely delay occasions: %d\n\n", pool->remotefail_occasions); wrefresh(logwin); mutex_unlock(&curses_lock); } /* We can't remove the memory used for this struct pool because there may * still be work referencing it. We just remove it from the pools list */ static void remove_pool(struct pool *pool) { int i, last_pool = total_pools - 1; struct pool *other; /* Boost priority of any lower prio than this one */ for (i = 0; i < total_pools; i++) { other = pools[i]; if (other->prio > pool->prio) other->prio--; } if (pool->pool_no < last_pool) { /* Swap the last pool for this one */ (pools[last_pool])->pool_no = pool->pool_no; pools[pool->pool_no] = pools[last_pool]; } /* Give it an invalid number */ pool->pool_no = total_pools; total_pools--; } static void display_pools(void) { struct pool *pool; int selected, i; char input; opt_loginput = true; immedok(logwin, true); updated: clear_logwin(); for (i = 0; i < total_pools; i++) { pool = pools[i]; if (pool == current_pool()) wattron(logwin, A_BOLD); if (!pool->enabled) wattron(logwin, A_DIM); wlogprint("%d: %s %s Priority %d: %s User:%s\n", pool->pool_no, pool->enabled? "Enabled" : "Disabled", pool->idle? "Dead" : "Alive", pool->prio, pool->rpc_url, pool->rpc_user); wattroff(logwin, A_BOLD | A_DIM); } retry: wlogprint("\nCurrent pool management strategy: %s\n", strategies[pool_strategy]); if (pool_strategy == POOL_ROTATE) wlogprint("Set to rotate every %d minutes\n", opt_rotate_period); wlogprint("[A]dd pool [R]emove pool [D]isable pool [E]nable pool\n"); wlogprint("[C]hange management strategy [S]witch pool [I]nformation\n"); wlogprint("Or press any other key to continue\n"); input = getch(); if (!strncasecmp(&input, "a", 1)) { input_pool(true); goto updated; } else if (!strncasecmp(&input, "r", 1)) { if (total_pools <= 1) { wlogprint("Cannot remove last pool"); goto retry; } selected = curses_int("Select pool number"); if (selected < 0 || selected >= total_pools) { wlogprint("Invalid selection\n"); goto retry; } pool = pools[selected]; if (pool == current_pool()) switch_pools(NULL); if (pool == current_pool()) { wlogprint("Unable to remove pool due to activity\n"); goto retry; } pool->enabled = false; remove_pool(pool); goto updated; } else if (!strncasecmp(&input, "s", 1)) { selected = curses_int("Select pool number"); if (selected < 0 || selected >= total_pools) { wlogprint("Invalid selection\n"); goto retry; } pool = pools[selected]; pool->enabled = true; switch_pools(pool); goto updated; } else if (!strncasecmp(&input, "d", 1)) { if (active_pools() <= 1) { wlogprint("Cannot disable last pool"); goto retry; } selected = curses_int("Select pool number"); if (selected < 0 || selected >= total_pools) { wlogprint("Invalid selection\n"); goto retry; } pool = pools[selected]; pool->enabled = false; if (pool == current_pool()) switch_pools(NULL); goto updated; } else if (!strncasecmp(&input, "e", 1)) { selected = curses_int("Select pool number"); if (selected < 0 || selected >= total_pools) { wlogprint("Invalid selection\n"); goto retry; } pool = pools[selected]; pool->enabled = true; if (pool->prio < current_pool()->prio) switch_pools(pool); goto updated; } else if (!strncasecmp(&input, "c", 1)) { for (i = 0; i <= TOP_STRATEGY; i++) wlogprint("%d: %s\n", i, strategies[i]); selected = curses_int("Select strategy number type"); if (selected < 0 || selected > TOP_STRATEGY) { wlogprint("Invalid selection\n"); goto retry; } if (selected == POOL_ROTATE) { opt_rotate_period = curses_int("Select interval in minutes"); if (opt_rotate_period < 0 || opt_rotate_period > 9999) { opt_rotate_period = 0; wlogprint("Invalid selection\n"); goto retry; } } pool_strategy = selected; switch_pools(NULL); goto updated; } else if (!strncasecmp(&input, "i", 1)) { selected = curses_int("Select pool number"); if (selected < 0 || selected >= total_pools) { wlogprint("Invalid selection\n"); goto retry; } pool = pools[selected]; display_pool_summary(pool); goto retry; } clear_logwin(); immedok(logwin, false); opt_loginput = false; } static void display_options(void) { int selected; char input; opt_loginput = true; immedok(logwin, true); retry: clear_logwin(); wlogprint("\n[D]ebug:%s [Q]uiet:%s [V]erbose:%s [R]PC debug:%s [L]og interval:%d\n", opt_debug ? "on" : "off", opt_quiet ? "on" : "off", opt_log_output ? "on" : "off", opt_protocol ? "on" : "off", opt_log_interval); wlogprint("[N]ormal [C]lear [S]ilent mode (disable all output)\n"); wlogprint("Select an option or any other key to return\n"); input = getch(); if (!strncasecmp(&input, "q", 1)) { opt_quiet ^= true; clear_logwin(); wlogprint("Quiet mode %s\n", opt_quiet ? "enabled" : "disabled"); } else if (!strncasecmp(&input, "v", 1)) { opt_log_output ^= true; if (opt_log_output) opt_quiet = false; clear_logwin(); wlogprint("Verbose mode %s\n", opt_log_output ? "enabled" : "disabled"); } else if (!strncasecmp(&input, "n", 1)) { opt_log_output = false; opt_debug = false; opt_quiet = false; opt_protocol = false; clear_logwin(); wlogprint("Output mode reset to normal\n"); } else if (!strncasecmp(&input, "d", 1)) { opt_debug ^= true; if (opt_debug) { opt_log_output = true; opt_quiet = false; } clear_logwin(); wlogprint("Debug mode %s\n", opt_debug ? "enabled" : "disabled"); } else if (!strncasecmp(&input, "r", 1)) { opt_protocol ^= true; if (opt_protocol) opt_quiet = false; clear_logwin(); wlogprint("RPC protocol debugging %s\n", opt_protocol ? "enabled" : "disabled"); } else if (!strncasecmp(&input, "c", 1)) clear_logwin(); else if (!strncasecmp(&input, "l", 1)) { selected = curses_int("Interval in seconds"); if (selected < 0 || selected > 9999) { wlogprint("Invalid selection\n"); goto retry; } opt_log_interval = selected; clear_logwin(); wlogprint("Log interval set to %d seconds\n", opt_log_interval); } else if (!strncasecmp(&input, "s", 1)) { opt_realquiet = true; clear_logwin(); } else clear_logwin(); immedok(logwin, false); opt_loginput = false; } static void set_options(void) { int selected; char input; opt_loginput = true; immedok(logwin, true); retry: clear_logwin(); wlogprint("\n[D]ynamic mode: %s\n[L]ongpoll: %s\n", opt_dynamic ? "On" : "Off", want_longpoll ? "On" : "Off"); if (opt_dynamic) wlogprint("[I]ntensity: Dynamic\n"); else wlogprint("[I]ntensity: %d\n", scan_intensity); wlogprint("[Q]ueue: %d\n[S]cantime: %d\n[R]etries: %d\n[P]ause: %d\n", opt_queue, opt_scantime, opt_retries, opt_fail_pause); wlogprint("Select an option or any other key to return\n"); input = getch(); if (!strncasecmp(&input, "q", 1)) { selected = curses_int("Extra work items to queue"); if (selected < 0 || selected > 9999) { wlogprint("Invalid selection\n"); goto retry; } opt_queue = selected; goto retry; } else if (!strncasecmp(&input, "d", 1)) { opt_dynamic ^= true; goto retry; } else if (!strncasecmp(&input, "l", 1)) { want_longpoll ^= true; applog(LOG_WARNING, "Longpoll %s", want_longpoll ? "enabled" : "disabled"); restart_longpoll(); goto retry; } else if (!strncasecmp(&input, "i", 1)) { selected = curses_int("Set GPU scan intensity (-10 -> 10)"); if (selected < -10 || selected > 10) { wlogprint("Invalid selection\n"); goto retry; } opt_dynamic = false; scan_intensity = selected; goto retry; } else if (!strncasecmp(&input, "s", 1)) { selected = curses_int("Set scantime in seconds"); if (selected < 0 || selected > 9999) { wlogprint("Invalid selection\n"); goto retry; } opt_scantime = selected; goto retry; } else if (!strncasecmp(&input, "r", 1)) { selected = curses_int("Retries before failing (-1 infinite)"); if (selected < -1 || selected > 9999) { wlogprint("Invalid selection\n"); goto retry; } opt_retries = selected; goto retry; } else if (!strncasecmp(&input, "p", 1)) { selected = curses_int("Seconds to pause before network retries"); if (selected < 1 || selected > 9999) { wlogprint("Invalid selection\n"); goto retry; } opt_fail_pause = selected; goto retry; } clear_logwin(); immedok(logwin, false); opt_loginput = false; } #ifdef HAVE_OPENCL static void reinit_device(struct cgpu_info *cgpu); static void manage_gpu(void) { struct thr_info *thr; int selected, gpu, i; char checkin[40]; char input; if (!opt_g_threads) return; opt_loginput = true; immedok(logwin, true); clear_logwin(); retry: for (gpu = 0; gpu < nDevs; gpu++) { struct cgpu_info *cgpu = &gpus[gpu]; wlog("GPU %d: [%.1f / %.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]\n", gpu, cgpu->rolling, cgpu->total_mhashes / total_secs, cgpu->getworks, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, cgpu->efficiency, cgpu->utility); wlog("Last initialised: %s\n", cgpu->init); for (i = 0; i < mining_threads; i++) { thr = &thr_info[i]; if (thr->cgpu != cgpu) continue; get_datestamp(checkin, &thr->last); switch (cgpu->status) { case LIFE_WELL: wlog("Thread %d: %.1f Mh/s %s ALIVE\n", i, thr->rolling, gpu_devices[gpu] ? "Enabled" : "Disabled"); break; case LIFE_SICK: wlog("Thread %d: %.1f Mh/s %s SICK reported in %s\n", i, thr->rolling, gpu_devices[gpu] ? "Enabled" : "Disabled", checkin); break; case LIFE_DEAD: wlog("Thread %d: %.1f Mh/s %s DEAD reported in %s\n", i, thr->rolling, gpu_devices[gpu] ? "Enabled" : "Disabled", checkin); break; } } } wlogprint("[E]nable [D]isable [R]estart GPU\n"); wlogprint("Or press any other key to continue\n"); input = getch(); if (!strncasecmp(&input, "e", 1)) { selected = curses_int("Select GPU to enable"); if (selected < 0 || selected >= nDevs) { wlogprint("Invalid selection\n"); goto retry; } if (gpu_devices[selected]) { wlogprint("Device already enabled\n"); goto retry; } gpu_devices[selected] = true; for (i = 0; i < gpu_threads; i++) { if (dev_from_id(i) != selected) continue; thr = &thr_info[i]; if (opt_debug) applog(LOG_DEBUG, "Pushing ping to thread %d", thr->id); tq_push(thr->q, &ping); } } if (!strncasecmp(&input, "d", 1)) { selected = curses_int("Select GPU to disable"); if (selected < 0 || selected >= nDevs) { wlogprint("Invalid selection\n"); goto retry; } if (!gpu_devices[selected]) { wlogprint("Device already disabled\n"); goto retry; } gpu_devices[selected] = false; } else if (!strncasecmp(&input, "r", 1)) { selected = curses_int("Select GPU to attempt to restart"); if (selected < 0 || selected >= nDevs) { wlogprint("Invalid selection\n"); goto retry; } wlogprint("Attempting to restart threads of GPU %d\n", selected); reinit_device(&gpus[selected]); } clear_logwin(); immedok(logwin, false); opt_loginput = false; } #else static void manage_gpu(void) { } #endif static void *input_thread(void *userdata) { pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); if (!curses_active) return NULL; while (1) { char input; input = getch(); if (!strncasecmp(&input, "q", 1)) { kill_work(); return NULL; } else if (!strncasecmp(&input, "d", 1)) display_options(); else if (!strncasecmp(&input, "p", 1)) display_pools(); else if (!strncasecmp(&input, "s", 1)) set_options(); else if (!strncasecmp(&input, "g", 1)) manage_gpu(); if (opt_realquiet) { disable_curses(); break; } } return NULL; } static void *workio_thread(void *userdata) { struct thr_info *mythr = userdata; bool ok = true; while (ok) { struct workio_cmd *wc; if (opt_debug) applog(LOG_DEBUG, "Popping work to work thread"); /* wait for workio_cmd sent to us, on our queue */ wc = tq_pop(mythr->q, NULL); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to tq_pop in workio_thread"); ok = false; break; } /* process workio_cmd */ switch (wc->cmd) { case WC_GET_WORK: ok = workio_get_work(wc); break; case WC_SUBMIT_WORK: ok = workio_submit_work(wc); break; case WC_DIE: default: ok = false; break; } } tq_freeze(mythr->q); return NULL; } static void thread_reportin(struct thr_info *thr) { gettimeofday(&thr->last, NULL); thr->cgpu->status = LIFE_WELL; thr->getwork = false; } static inline void thread_reportout(struct thr_info *thr) { thr->getwork = true; } static void hashmeter(int thr_id, struct timeval *diff, unsigned long hashes_done) { struct timeval temp_tv_end, total_diff; double secs; double local_secs; double utility, efficiency = 0.0; static double local_mhashes_done = 0; static double rolling = 0; double local_mhashes = (double)hashes_done / 1000000.0; struct cgpu_info *cgpu = thr_info[thr_id].cgpu; bool showlog = false; /* Update the last time this thread reported in */ if (thr_id >= 0) gettimeofday(&thr_info[thr_id].last, NULL); /* Don't bother calculating anything if we're not displaying it */ if (opt_realquiet || !opt_log_interval) return; secs = (double)diff->tv_sec + ((double)diff->tv_usec / 1000000.0); /* So we can call hashmeter from a non worker thread */ if (thr_id >= 0) { struct thr_info *thr = &thr_info[thr_id]; double thread_rolling = 0.0; int i; if (opt_debug) applog(LOG_DEBUG, "[thread %d: %lu hashes, %.0f khash/sec]", thr_id, hashes_done, hashes_done / secs); /* Rolling average for each thread and each device */ decay_time(&thr->rolling, local_mhashes / secs); for (i = 0; i < mining_threads; i++) { struct thr_info *th = &thr_info[i]; if (th->cgpu == cgpu) thread_rolling += th->rolling; } decay_time(&cgpu->rolling, thread_rolling); cgpu->total_mhashes += local_mhashes; } /* Totals are updated by all threads so can race without locking */ mutex_lock(&hash_lock); gettimeofday(&temp_tv_end, NULL); timeval_subtract(&total_diff, &temp_tv_end, &total_tv_end); total_mhashes_done += local_mhashes; local_mhashes_done += local_mhashes; if (total_diff.tv_sec < opt_log_interval) /* Only update the total every opt_log_interval seconds */ goto out_unlock; showlog = true; gettimeofday(&total_tv_end, NULL); local_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); decay_time(&rolling, local_mhashes_done / local_secs); timeval_subtract(&total_diff, &total_tv_end, &total_tv_start); total_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); utility = total_accepted / ( total_secs ? total_secs : 1 ) * 60; efficiency = total_getworks ? total_accepted * 100.0 / total_getworks : 0.0; sprintf(statusline, "[(%ds):%.1f (avg):%.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]", opt_log_interval, rolling, total_mhashes_done / total_secs, total_getworks, total_accepted, total_rejected, hw_errors, efficiency, utility); local_mhashes_done = 0; out_unlock: mutex_unlock(&hash_lock); if (showlog) { if (!curses_active) { printf("%s \r", statusline); fflush(stdout); } else applog(LOG_INFO, "%s", statusline); } } /* This is overkill, but at least we'll know accurately how much work is * queued to prevent ever being left without work */ static void inc_queued(void) { mutex_lock(&qd_lock); total_queued++; mutex_unlock(&qd_lock); } static void dec_queued(void) { mutex_lock(&qd_lock); if (total_queued > 0) total_queued--; mutex_unlock(&qd_lock); dec_staged(1); } static int requests_queued(void) { int ret; mutex_lock(&qd_lock); ret = total_queued; mutex_unlock(&qd_lock); return ret; } static bool pool_active(struct pool *pool, bool pinging) { bool ret = false; json_t *val; CURL *curl; bool rolltime; curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); return false; } applog(LOG_INFO, "Testing pool %s", pool->rpc_url); val = json_rpc_call(curl, pool->rpc_url, pool->rpc_userpass, rpc_req, true, false, &rolltime, pool); if (val) { struct work *work = make_work(); bool rc; rc = work_decode(json_object_get(val, "result"), work); if (rc) { applog(LOG_DEBUG, "Successfully retrieved and deciphered work from pool %u %s", pool->pool_no, pool->rpc_url); work->pool = pool; work->rolltime = rolltime; if (opt_debug) applog(LOG_DEBUG, "Pushing pooltest work to base pool"); tq_push(thr_info[stage_thr_id].q, work); total_getworks++; pool->getwork_requested++; inc_queued(); ret = true; gettimeofday(&pool->tv_idle, NULL); } else { applog(LOG_DEBUG, "Successfully retrieved but FAILED to decipher work from pool %u %s", pool->pool_no, pool->rpc_url); free_work(work); } json_decref(val); } else { applog(LOG_DEBUG, "FAILED to retrieve work from pool %u %s", pool->pool_no, pool->rpc_url); if (!pinging) applog(LOG_WARNING, "Pool down, URL or credentials invalid"); } curl_easy_cleanup(curl); return ret; } static void pool_died(struct pool *pool) { applog(LOG_WARNING, "Pool %d %s not responding!", pool->pool_no, pool->rpc_url); gettimeofday(&pool->tv_idle, NULL); switch_pools(NULL); } static void pool_resus(struct pool *pool) { applog(LOG_WARNING, "Pool %d %s recovered", pool->pool_no, pool->rpc_url); if (pool->prio < current_pool()->prio && pool_strategy == POOL_FAILOVER) switch_pools(NULL); } static bool queue_request(struct thr_info *thr, bool needed) { int maxq = opt_queue + mining_threads; struct workio_cmd *wc; int rq, rs; rq = requests_queued(); rs = real_staged(); /* If we've been generating lots of local work we may already have * enough in the queue */ if (rq >= maxq || rs >= maxq) return true; /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in queue_request"); return false; } wc->cmd = WC_GET_WORK; if (thr) wc->thr = thr; else wc->thr = NULL; /* If we're queueing work faster than we can stage it, consider the * system lagging and allow work to be gathered from another pool if * possible */ if (!rs && rq && needed) wc->lagging = true; if (opt_debug) applog(LOG_DEBUG, "Queueing getwork request to work thread"); /* send work request to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push in queue_request"); workio_cmd_free(wc); return false; } inc_queued(); return true; } static void discard_work(struct work *work) { if (!work->clone && !work->rolls && !work->mined) { if (work->pool) work->pool->discarded_work++; total_discarded++; if (opt_debug) applog(LOG_DEBUG, "Discarded work"); } else if (opt_debug) applog(LOG_DEBUG, "Discarded cloned or rolled work"); free_work(work); } static void discard_staged(void) { struct timespec abstime = {}; struct timeval now; struct work *work_heap; /* Just in case we fell in a hole and missed a queue filling */ if (unlikely(!requests_staged())) return; gettimeofday(&now, NULL); abstime.tv_sec = now.tv_sec + 60; if (opt_debug) applog(LOG_DEBUG, "Popping work to discard staged"); work_heap = tq_pop(getq, &abstime); if (unlikely(!work_heap)) return; discard_work(work_heap); dec_queued(); } static void flush_requests(void) { struct pool *pool = current_pool(); int i, stale; /* We should have one fresh work item staged from the block change. */ stale = requests_staged() - 1; /* Temporarily increase the staged count so that get_work thinks there * is work available instead of making threads reuse existing work */ inc_staged(pool, mining_threads, true); for (i = 0; i < stale; i++) { /* Queue a whole batch of new requests */ if (unlikely(!queue_request(NULL, true))) { applog(LOG_ERR, "Failed to queue requests in flush_requests"); kill_work(); break; } /* Pop off the old requests. Cancelling the requests would be better * but is tricky */ discard_staged(); } } static inline bool should_roll(struct work *work) { int rs; rs = real_staged(); if (rs >= opt_queue + mining_threads) return false; if (work->pool == current_pool() || pool_strategy == POOL_LOADBALANCE || !rs) return true; return false; } static inline bool can_roll(struct work *work) { return (work->pool && !stale_work(work) && work->rolltime && work->rolls < 11 && !work->clone); } static void roll_work(struct work *work) { uint32_t *work_ntime; uint32_t ntime; work_ntime = (uint32_t *)(work->data + 68); ntime = be32toh(*work_ntime); ntime++; *work_ntime = htobe32(ntime); local_work++; work->rolls++; work->blk.nonce = 0; if (opt_debug) applog(LOG_DEBUG, "Successfully rolled work"); } /* Recycle the work at a higher starting res_nonce if we know the thread we're * giving it to will not finish scanning it. We keep the master copy to be * recycled more rapidly and discard the clone to avoid repeating work */ static bool divide_work(struct timeval *now, struct work *work, uint32_t hash_div) { uint64_t hash_inc; if (work->clone) return false; hash_inc = MAXTHREADS / hash_div * 2; if ((uint64_t)work->blk.nonce + hash_inc < MAXTHREADS) { /* Okay we can divide it up */ work->blk.nonce += hash_inc; work->cloned = true; local_work++; if (opt_debug) applog(LOG_DEBUG, "Successfully divided work"); return true; } else if (can_roll(work) && should_roll(work)) { roll_work(work); return true; } return false; } static bool get_work(struct work *work, bool requested, struct thr_info *thr, const int thr_id, uint32_t hash_div) { struct timespec abstime = {}; struct timeval now; struct work *work_heap; struct pool *pool; bool ret = false; int failures = 0; /* Tell the watchdog thread this thread is waiting on getwork and * should not be restarted */ thread_reportout(thr); retry: pool = current_pool(); if (unlikely(!requested && !queue_request(thr, true))) { applog(LOG_WARNING, "Failed to queue_request in get_work"); goto out; } requested = false; if (!requests_staged() && can_roll(work)) { /* Only print this message once each time we shift to localgen */ if (!pool_tset(pool, &pool->idle)) { applog(LOG_WARNING, "Pool %d not providing work fast enough, generating work locally", pool->pool_no); pool->localgen_occasions++; total_lo++; gettimeofday(&pool->tv_idle, NULL); } else { struct timeval tv_now, diff; gettimeofday(&tv_now, NULL); timeval_subtract(&diff, &tv_now, &pool->tv_idle); /* Attempt to switch pools if this one has been unresponsive for >half * a block's duration */ if (diff.tv_sec > 300) { pool_died(pool); goto retry; } } roll_work(work); ret = true; goto out; } gettimeofday(&now, NULL); abstime.tv_sec = now.tv_sec + 60; if (opt_debug) applog(LOG_DEBUG, "Popping work from get queue to get work"); /* wait for 1st response, or get cached response */ work_heap = tq_pop(getq, &abstime); if (unlikely(!work_heap)) { /* Attempt to switch pools if this one has mandatory work that * has timed out or does not support rolltime */ pool->localgen_occasions++; total_lo++; pool_died(pool); goto retry; } if (stale_work(work_heap)) { dec_queued(); discard_work(work_heap); goto retry; } pool = work_heap->pool; /* If we make it here we have succeeded in getting fresh work */ if (pool_tclear(pool, &pool->idle)) pool_resus(pool); memcpy(work, work_heap, sizeof(*work)); /* Copy the res nonce back so we know to start at a higher baseline * should we divide the same work up again. Make the work we're * handing out be clone */ if (divide_work(&now, work_heap, hash_div)) { if (opt_debug) applog(LOG_DEBUG, "Pushing divided work to get queue head"); tq_push_head(getq, work_heap); work->clone = true; } else { dec_queued(); free_work(work_heap); } ret = true; out: if (unlikely(ret == false)) { if ((opt_retries >= 0) && (++failures > opt_retries)) { applog(LOG_ERR, "Failed %d times to get_work"); return ret; } applog(LOG_DEBUG, "Retrying after %d seconds", opt_fail_pause); sleep(opt_fail_pause); goto retry; } work->thr_id = thr_id; thread_reportin(thr); if (ret) work->mined = true; return ret; } static bool submit_work_sync(struct thr_info *thr, const struct work *work_in) { struct workio_cmd *wc; /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in submit_work_sync"); return false; } wc->u.work = make_work(); wc->cmd = WC_SUBMIT_WORK; wc->thr = thr; memcpy(wc->u.work, work_in, sizeof(*work_in)); if (opt_debug) applog(LOG_DEBUG, "Pushing submit work to work thread"); /* send solution to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in submit_work_sync"); goto err_out; } return true; err_out: workio_cmd_free(wc); return false; } struct swa { struct thr_info *thr; const struct work *work_in; }; static void *swasync_thread(void *userdata) { struct swa *swa = (struct swa *)userdata; /* Return value ignored */ submit_work_sync(swa->thr, swa->work_in); free(swa); return NULL; } static bool submit_work_async(struct thr_info *thr, const struct work *work_in) { pthread_t sw_thread; struct swa *swa; swa = malloc(sizeof(struct swa)); if (unlikely(!swa)) { applog(LOG_ERR, "Failed to malloc swa in submit_work_async"); return false; } swa->thr = thr; swa->work_in = work_in; if (unlikely(pthread_create(&sw_thread, NULL, swasync_thread, (void *)swa))) { applog(LOG_ERR, "Failed to create swasync_thread"); return false; } return true; } bool submit_nonce(struct thr_info *thr, struct work *work, uint32_t nonce) { work->data[64+12+0] = (nonce>>0) & 0xff; work->data[64+12+1] = (nonce>>8) & 0xff; work->data[64+12+2] = (nonce>>16) & 0xff; work->data[64+12+3] = (nonce>>24) & 0xff; /* Do one last check before attempting to submit the work */ if (!fulltest(work->data + 64, work->target)) return true; return submit_work_sync(thr, work); } static void *miner_thread(void *userdata) { struct work *work = make_work(); struct thr_info *mythr = userdata; const int thr_id = mythr->id; uint32_t max_nonce = 0xffffff, total_hashes = 0; unsigned long hashes_done = max_nonce; bool needs_work = true; /* Try to cycle approximately 5 times before each log update */ const unsigned long cycle = opt_log_interval / 5 ? : 1; int request_interval; bool requested = false; uint32_t hash_div = 1; double hash_divfloat = 1.0; pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); /* Request the next work item just before the end of the scantime. We * don't want the work lying around too long since the CPU will always * spend the full scantime */ request_interval = opt_scantime - 5; if (request_interval < 1) request_interval = 1; /* Set worker threads to nice 19 and then preferentially to SCHED_IDLE * and if that fails, then SCHED_BATCH. No need for this to be an * error if it fails */ setpriority(PRIO_PROCESS, 0, 19); drop_policy(); /* Cpu affinity only makes sense if the number of threads is a multiple * of the number of CPUs */ if (!(opt_n_threads % num_processors)) affine_to_cpu(thr_id - gpu_threads, dev_from_id(thr_id)); /* Invalidate pool so it fails can_roll() test */ work->pool = NULL; while (1) { struct timeval tv_workstart, tv_start, tv_end, diff; uint64_t max64; bool rc; if (needs_work) { gettimeofday(&tv_workstart, NULL); /* obtain new work from internal workio thread */ if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) { applog(LOG_ERR, "work retrieval failed, exiting " "mining thread %d", thr_id); goto out; } needs_work = requested = false; total_hashes = 0; max_nonce = work->blk.nonce + hashes_done; } hashes_done = 0; gettimeofday(&tv_start, NULL); /* scan nonces for a proof-of-work hash */ switch (opt_algo) { case ALGO_C: rc = scanhash_c(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); break; #ifdef WANT_X8664_SSE2 case ALGO_SSE2_64: { unsigned int rc5 = scanhash_sse2_64(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); rc = (rc5 == -1) ? false : true; } break; #endif #ifdef WANT_X8664_SSE4 case ALGO_SSE4_64: { unsigned int rc5 = scanhash_sse4_64(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); rc = (rc5 == -1) ? false : true; } break; #endif #ifdef WANT_SSE2_4WAY case ALGO_4WAY: { unsigned int rc4 = ScanHash_4WaySSE2(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); rc = (rc4 == -1) ? false : true; } break; #endif #ifdef WANT_VIA_PADLOCK case ALGO_VIA: rc = scanhash_via(thr_id, work->data, work->target, max_nonce, &hashes_done, work->blk.nonce); break; #endif case ALGO_CRYPTOPP: rc = scanhash_cryptopp(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); break; #ifdef WANT_CRYPTOPP_ASM32 case ALGO_CRYPTOPP_ASM32: rc = scanhash_asm32(thr_id, work->midstate, work->data + 64, work->hash1, work->hash, work->target, max_nonce, &hashes_done, work->blk.nonce); break; #endif default: /* should never happen */ goto out; } /* record scanhash elapsed time */ gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashes_done -= work->blk.nonce; hashmeter(thr_id, &diff, hashes_done); total_hashes += hashes_done; work->blk.nonce += hashes_done; /* adjust max_nonce to meet target cycle time */ if (diff.tv_usec > 500000) diff.tv_sec++; if (diff.tv_sec && diff.tv_sec != cycle) { max64 = work->blk.nonce + ((uint64_t)hashes_done * cycle) / diff.tv_sec; } else if (!diff.tv_sec) max64 = work->blk.nonce + (hashes_done * 2); else max64 = work->blk.nonce + hashes_done; if (max64 > 0xfffffffaULL) max64 = 0xfffffffaULL; max_nonce = max64; /* if nonce found, submit work */ if (unlikely(rc)) { if (opt_debug) applog(LOG_DEBUG, "CPU %d found something?", dev_from_id(thr_id)); if (unlikely(!submit_work_async(mythr, work))) { applog(LOG_ERR, "Failed to submit_work_sync in miner_thread %d", thr_id); break; } work->blk.nonce += 4; } timeval_subtract(&diff, &tv_end, &tv_workstart); if (!requested && (diff.tv_sec >= request_interval)) { thread_reportout(mythr); if (unlikely(!queue_request(mythr, false))) { applog(LOG_ERR, "Failed to queue_request in miner_thread %d", thr_id); goto out; } thread_reportin(mythr); requested = true; } if (diff.tv_sec > opt_scantime) { decay_time(&hash_divfloat , (double)((MAXTHREADS / total_hashes) ? : 1)); hash_div = hash_divfloat; needs_work = true; } else if (work_restart[thr_id].restart || stale_work(work) || work->blk.nonce >= MAXTHREADS - hashes_done) needs_work = true; } out: thread_reportin(mythr); applog(LOG_ERR, "Thread %d failure, exiting", thr_id); tq_freeze(mythr->q); return NULL; } enum { STAT_SLEEP_INTERVAL = 1, STAT_CTR_INTERVAL = 10000000, FAILURE_INTERVAL = 30, }; #ifdef HAVE_OPENCL static _clState *clStates[16]; static cl_int queue_poclbm_kernel(_clState *clState, dev_blk_ctx *blk) { cl_kernel *kernel = &clState->kernel; cl_int status = 0; int num = 0; status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2); status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer), (void *)&clState->outputBuffer); return status; } static cl_int queue_phatk_kernel(_clState *clState, dev_blk_ctx *blk) { cl_kernel *kernel = &clState->kernel; cl_int status = 0; int num = 0; status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->C1addK5); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->D1A); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W2A); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17_2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4addT1); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->T1substate0); status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer), (void *)&clState->outputBuffer); return status; } static void set_threads_hashes(unsigned int vectors, unsigned int *threads, unsigned int *hashes, size_t *globalThreads, unsigned int minthreads) { *threads = 1 << (15 + scan_intensity); if (*threads < minthreads) *threads = minthreads; *globalThreads = *threads; *hashes = *threads * vectors; } static void *gpuminer_thread(void *userdata) { cl_int (*queue_kernel_parameters)(_clState *, dev_blk_ctx *); const unsigned long cycle = opt_log_interval / 5 ? : 1; struct timeval tv_start, tv_end, diff, tv_workstart; struct thr_info *mythr = userdata; const int thr_id = mythr->id; uint32_t *res, *blank_res; double gpu_ms_average = 7; int gpu = dev_from_id(thr_id); size_t globalThreads[1]; size_t localThreads[1]; cl_int status; _clState *clState = clStates[thr_id]; const cl_kernel *kernel = &clState->kernel; struct work *work = make_work(); unsigned int threads; unsigned const int vectors = clState->preferred_vwidth; unsigned int hashes; unsigned int hashes_done = 0; /* Request the next work item at 2/3 of the scantime */ unsigned const int request_interval = opt_scantime * 2 / 3 ? : 1; unsigned const long request_nonce = MAXTHREADS / 3 * 2; bool requested = false; uint32_t total_hashes = 0, hash_div = 1; switch (chosen_kernel) { case KL_POCLBM: queue_kernel_parameters = &queue_poclbm_kernel; break; case KL_PHATK: default: queue_kernel_parameters = &queue_phatk_kernel; break; } if (opt_dynamic) { /* Minimise impact on desktop if we want dynamic mode */ setpriority(PRIO_PROCESS, 0, 19); drop_policy(); } pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); res = calloc(BUFFERSIZE, 1); blank_res = calloc(BUFFERSIZE, 1); if (!res || !blank_res) { applog(LOG_ERR, "Failed to calloc in gpuminer_thread"); goto out; } gettimeofday(&tv_start, NULL); localThreads[0] = clState->work_size; set_threads_hashes(vectors, &threads, &hashes, &globalThreads[0], localThreads[0]); diff.tv_sec = 0; gettimeofday(&tv_end, NULL); work->pool = NULL; status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_TRUE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } mythr->cgpu->status = LIFE_WELL; if (opt_debug) applog(LOG_DEBUG, "Popping ping in gpuminer thread"); tq_pop(mythr->q, NULL); /* Wait for a ping to start */ gettimeofday(&tv_workstart, NULL); /* obtain new work from internal workio thread */ if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) { applog(LOG_ERR, "work retrieval failed, exiting " "gpu mining thread %d", thr_id); goto out; } requested = false; precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64)); work->blk.nonce = 0; while (1) { struct timeval tv_gpustart, tv_gpuend; suseconds_t gpu_us; gettimeofday(&tv_gpustart, NULL); timeval_subtract(&diff, &tv_gpustart, &tv_gpuend); /* This finish flushes the readbuffer set with CL_FALSE later */ clFinish(clState->commandQueue); gettimeofday(&tv_gpuend, NULL); timeval_subtract(&diff, &tv_gpuend, &tv_gpustart); gpu_us = diff.tv_sec * 1000000 + diff.tv_usec; decay_time(&gpu_ms_average, gpu_us / 1000); if (opt_dynamic) { /* Try to not let the GPU be out for longer than 6ms, but * increase intensity when the system is idle, unless * dynamic is disabled. */ if (gpu_ms_average > 7) { if (scan_intensity > -10) scan_intensity--; } else if (gpu_ms_average < 3) { if (scan_intensity < 10) scan_intensity++; } } set_threads_hashes(vectors, &threads, &hashes, globalThreads, localThreads[0]); if (diff.tv_sec > opt_scantime || work->blk.nonce >= MAXTHREADS - hashes || work_restart[thr_id].restart || stale_work(work)) { /* Ignore any reads since we're getting new work and queue a clean buffer */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } memset(res, 0, BUFFERSIZE); gettimeofday(&tv_workstart, NULL); if (opt_debug) applog(LOG_DEBUG, "getwork thread %d", thr_id); /* obtain new work from internal workio thread */ if (unlikely(!get_work(work, requested, mythr, thr_id, hash_div))) { applog(LOG_ERR, "work retrieval failed, exiting " "gpu mining thread %d", thr_id); goto out; } requested = false; precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64)); work_restart[thr_id].restart = 0; /* Flushes the writebuffer set with CL_FALSE above */ clFinish(clState->commandQueue); } status = queue_kernel_parameters(clState, &work->blk); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; } /* MAXBUFFERS entry is used as a flag to say nonces exist */ if (res[MAXBUFFERS]) { /* Clear the buffer again */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } if (opt_debug) applog(LOG_DEBUG, "GPU %d found something?", gpu); postcalc_hash_async(mythr, work, res); memset(res, 0, BUFFERSIZE); clFinish(clState->commandQueue); } status = clEnqueueNDRangeKernel(clState->commandQueue, *kernel, 1, NULL, globalThreads, localThreads, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)"); goto out; } status = clEnqueueReadBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)"); goto out;} gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashes_done += hashes; total_hashes += hashes; work->blk.nonce += hashes; if (diff.tv_sec >= cycle) { hashmeter(thr_id, &diff, hashes_done); gettimeofday(&tv_start, NULL); hashes_done = 0; } timeval_subtract(&diff, &tv_end, &tv_workstart); if (!requested) { #if 0 if (diff.tv_sec > request_interval) hash_div = (MAXTHREADS / total_hashes) ? : 1; #endif if (diff.tv_sec > request_interval || work->blk.nonce > request_nonce) { thread_reportout(mythr); if (unlikely(!queue_request(mythr, false))) { applog(LOG_ERR, "Failed to queue_request in gpuminer_thread %d", thr_id); goto out; } thread_reportin(mythr); requested = true; } } if (unlikely(!gpu_devices[gpu])) { applog(LOG_WARNING, "Thread %d being disabled", thr_id); mythr->rolling = mythr->cgpu->rolling = 0; if (opt_debug) applog(LOG_DEBUG, "Popping wakeup ping in gpuminer thread"); tq_pop(mythr->q, NULL); /* Ignore ping that's popped */ applog(LOG_WARNING, "Thread %d being re-enabled", thr_id); } } out: thread_reportin(mythr); applog(LOG_ERR, "Thread %d failure, exiting", thr_id); tq_freeze(mythr->q); return NULL; } #endif /* HAVE_OPENCL */ static void restart_threads(void) { int i; if (block_changed == BLOCK_DETECT) block_changed = BLOCK_NONE; /* Discard old queued requests and get new ones */ flush_requests(); for (i = 0; i < mining_threads; i++) work_restart[i].restart = 1; } /* Stage another work item from the work returned in a longpoll */ static void convert_to_work(json_t *val, bool rolltime) { struct work *work; bool rc; work = make_work(); rc= work_decode(json_object_get(val, "result"), work); if (unlikely(!rc)) { applog(LOG_ERR, "Could not convert longpoll data to work"); return; } work->pool = current_pool(); work->rolltime = rolltime; if (opt_debug) applog(LOG_DEBUG, "Pushing converted work to stage thread"); if (unlikely(!tq_push(thr_info[stage_thr_id].q, work))) applog(LOG_ERR, "Could not tq_push work in convert_to_work"); else if (opt_debug) applog(LOG_DEBUG, "Converted longpoll data to work"); } static void *longpoll_thread(void *userdata) { struct thr_info *mythr = userdata; CURL *curl = NULL; char *copy_start, *hdr_path, *lp_url = NULL; bool need_slash = false; int failures = 0; struct pool *pool = current_pool(); pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); goto out; } if (opt_debug) applog(LOG_DEBUG, "Popping hdr path in longpoll thread"); hdr_path = tq_pop(mythr->q, NULL); if (!hdr_path) { applog(LOG_WARNING, "No long-poll found on this server"); goto out; } /* full URL */ if (strstr(hdr_path, "://")) { lp_url = hdr_path; hdr_path = NULL; } /* absolute path, on current server */ else { copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path; if (pool->rpc_url[strlen(pool->rpc_url) - 1] != '/') need_slash = true; lp_url = malloc(strlen(pool->rpc_url) + strlen(copy_start) + 2); if (!lp_url) goto out; sprintf(lp_url, "%s%s%s", pool->rpc_url, need_slash ? "/" : "", copy_start); } free(hdr_path); applog(LOG_WARNING, "Long-polling activated for %s", lp_url); while (1) { struct timeval start, end; bool rolltime; json_t *val; gettimeofday(&start, NULL); val = json_rpc_call(curl, lp_url, pool->rpc_userpass, rpc_req, false, true, &rolltime, pool); if (likely(val)) { /* Keep track of who ordered a restart_threads to make * sure it's only done once per new block */ if (block_changed != BLOCK_DETECT) { block_changed = BLOCK_LP; new_blocks++; applog(LOG_WARNING, "LONGPOLL detected new block on network, waiting on fresh work"); restart_threads(); } else { applog(LOG_WARNING, "LONGPOLL received after new block already detected"); block_changed = BLOCK_NONE; } convert_to_work(val, rolltime); failures = 0; json_decref(val); } else { /* Some pools regularly drop the longpoll request so * only see this as longpoll failure if it happens * immediately and just restart it the rest of the * time. */ gettimeofday(&end, NULL); if (end.tv_sec - start.tv_sec > 30) continue; if (failures++ < 10) { sleep(30); applog(LOG_WARNING, "longpoll failed, sleeping for 30s"); } else { applog(LOG_ERR, "longpoll failed, ending thread"); goto out; } } } out: free(lp_url); tq_freeze(mythr->q); if (curl) curl_easy_cleanup(curl); return NULL; } static void stop_longpoll(void) { struct thr_info *thr = &thr_info[longpoll_thr_id]; tq_freeze(thr->q); pthread_cancel(*thr->pth); have_longpoll = false; } static void start_longpoll(void) { struct thr_info *thr = &thr_info[longpoll_thr_id]; tq_thaw(thr->q); if (unlikely(thr_info_create(thr, NULL, longpoll_thread, thr))) quit(1, "longpoll thread create failed"); pthread_detach(*thr->pth); } static void restart_longpoll(void) { stop_longpoll(); if (want_longpoll) start_longpoll(); } static void *reinit_cpu(void *userdata) { pthread_detach(pthread_self()); #if 0 struct cgpu_info *cgpu = (struct cgpu_info *)userdata; int cpu = cgpu->cpu_gpu; long thr_id = ....(long)userdata; struct thr_info *thr = &thr_info[thr_id]; int cpu = dev_from_id(thr_id); cpus[cpu].alive = false; thr->rolling = thr->cgpu->rolling = 0; tq_freeze(thr->q); if (!pthread_cancel(*thr->pth)) pthread_join(*thr->pth, NULL); free(thr->q); thr->q = tq_new(); if (!thr->q) quit(1, "Failed to tq_new in reinit_cputhread"); applog(LOG_INFO, "Reinit CPU thread %d", thr_id); if (unlikely(thr_info_create(thr, NULL, miner_thread, thr))) { applog(LOG_ERR, "thread %d create failed", thr_id); return NULL; } tq_push(thr->q, &ping); applog(LOG_WARNING, "Thread %d restarted", thr_id); #endif return NULL; } #ifdef HAVE_OPENCL /* We have only one thread that ever re-initialises GPUs, thus if any GPU * init command fails due to a completely wedged GPU, the thread will never * return, unable to harm other GPUs. If it does return, it means we only had * a soft failure and then the reinit_gpu thread is ready to tackle another * GPU */ static void *reinit_gpu(void *userdata) { struct thr_info *mythr = userdata; struct cgpu_info *cgpu; struct thr_info *thr; struct timeval now; char name[256]; int thr_id; int gpu; pthread_detach(pthread_self()); select_cgpu: cgpu = tq_pop(mythr->q, NULL); if (!cgpu) goto out; if (clDevicesNum() != nDevs) { applog(LOG_WARNING, "Hardware not reporting same number of active devices, will not attempt to restart GPU"); goto out; } gpu = cgpu->cpu_gpu; gpu_devices[gpu] = false; for (thr_id = 0; thr_id < gpu_threads; thr_id ++) { if (dev_from_id(thr_id) != gpu) continue; thr = &thr_info[thr_id]; thr->rolling = thr->cgpu->rolling = 0; if (!pthread_cancel(*thr->pth)) { applog(LOG_WARNING, "Thread %d still exists, killing it off", thr_id); } else applog(LOG_WARNING, "Thread %d no longer exists", thr_id); } for (thr_id = 0; thr_id < gpu_threads; thr_id ++) { if (dev_from_id(thr_id) != gpu) continue; thr = &thr_info[thr_id]; /* Lose this ram cause we may get stuck here! */ //tq_freeze(thr->q); thr->q = tq_new(); if (!thr->q) quit(1, "Failed to tq_new in reinit_gpu"); /* Lose this ram cause we may dereference in the dying thread! */ //free(clState); applog(LOG_INFO, "Reinit GPU thread %d", thr_id); clStates[thr_id] = initCl(gpu, name, sizeof(name)); if (!clStates[thr_id]) { applog(LOG_ERR, "Failed to reinit GPU thread %d", thr_id); goto out; } applog(LOG_INFO, "initCl() finished. Found %s", name); if (unlikely(thr_info_create(thr, NULL, gpuminer_thread, thr))) { applog(LOG_ERR, "thread %d create failed", thr_id); return NULL; } applog(LOG_WARNING, "Thread %d restarted", thr_id); } gettimeofday(&now, NULL); get_datestamp(cgpu->init, &now); gpu_devices[gpu] = true; for (thr_id = 0; thr_id < gpu_threads; thr_id ++) { if (dev_from_id(thr_id) != gpu) continue; thr = &thr_info[thr_id]; tq_push(thr->q, &ping); } goto select_cgpu; out: return NULL; } #else static void *reinit_gpu(void *userdata) { } #endif static void reinit_device(struct cgpu_info *cgpu) { if (cgpu->is_gpu) tq_push(thr_info[gpur_thr_id].q, cgpu); else tq_push(thr_info[cpur_thr_id].q, cgpu); } /* Determine which are the first threads belonging to a device and if they're * active */ static bool active_device(int thr_id) { if (thr_id < gpu_threads) { if (thr_id >= total_devices) return false; if (!gpu_devices[dev_from_id(thr_id)]) return false; } else if (thr_id > gpu_threads + num_processors) return false; return true; } /* Makes sure the hashmeter keeps going even if mining threads stall, updates * the screen at regular intervals, and restarts threads if they appear to have * died. */ static void *watchdog_thread(void *userdata) { const unsigned int interval = opt_log_interval / 2 ? : 1; static struct timeval rotate_tv; struct timeval zero_tv; bool statwin = false; pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); memset(&zero_tv, 0, sizeof(struct timeval)); gettimeofday(&rotate_tv, NULL); while (1) { int i; struct timeval now; sleep(interval); if (requests_queued() < opt_queue) queue_request(NULL, false); hashmeter(-1, &zero_tv, 0); if (curses_active) { statwin ^= true; mutex_lock(&curses_lock); for (i = 0; i < mining_threads; i++) curses_print_status(i); if (statwin) redrawwin(statuswin); else { check_logwinsize(); redrawwin(logwin); } mutex_unlock(&curses_lock); } if (unlikely(work_restart[watchdog_thr_id].restart)) { restart_threads(); work_restart[watchdog_thr_id].restart = 0; } gettimeofday(&now, NULL); for (i = 0; i < total_pools; i++) { struct pool *pool = pools[i]; if (!pool->enabled) continue; /* Test pool is idle once every minute */ if (pool->idle && now.tv_sec - pool->tv_idle.tv_sec > 60) { gettimeofday(&pool->tv_idle, NULL); if (pool_active(pool, true) && pool_tclear(pool, &pool->idle)) pool_resus(pool); } } if (pool_strategy == POOL_ROTATE && now.tv_sec - rotate_tv.tv_sec > 60 * opt_rotate_period) { gettimeofday(&rotate_tv, NULL); switch_pools(NULL); } //for (i = 0; i < mining_threads; i++) { for (i = 0; i < gpu_threads; i++) { struct thr_info *thr = &thr_info[i]; int gpu = thr->cgpu->cpu_gpu; /* Thread is waiting on getwork or disabled */ if (thr->getwork || !gpu_devices[gpu]) continue; if (gpus[gpu].status != LIFE_WELL && now.tv_sec - thr->last.tv_sec < 60) { applog(LOG_ERR, "Thread %d recovered, GPU %d declared WELL!", i, gpu); gpus[gpu].status = LIFE_WELL; } else if (now.tv_sec - thr->last.tv_sec > 60 && gpus[gpu].status == LIFE_WELL) { thr->rolling = thr->cgpu->rolling = 0; gpus[gpu].status = LIFE_SICK; applog(LOG_ERR, "Thread %d idle for more than 60 seconds, GPU %d declared SICK!", i, gpu); /* Sent it a ping, it might respond */ tq_push(thr->q, &ping); } else if (now.tv_sec - thr->last.tv_sec > 300 && gpus[i].status == LIFE_SICK) { gpus[gpu].status = LIFE_DEAD; applog(LOG_ERR, "Thread %d idle for more than 5 minutes, GPU %d declared DEAD!", i, gpu); applog(LOG_ERR, "Attempting to restart GPU"); reinit_device(thr->cgpu); break; } } } return NULL; } static void print_summary(void) { struct timeval diff; int hours, mins, secs, i; double utility, efficiency = 0.0; timeval_subtract(&diff, &total_tv_end, &total_tv_start); hours = diff.tv_sec / 3600; mins = (diff.tv_sec % 3600) / 60; secs = diff.tv_sec % 60; utility = total_accepted / ( total_secs ? total_secs : 1 ) * 60; efficiency = total_getworks ? total_accepted * 100.0 / total_getworks : 0.0; printf("\nSummary of runtime statistics:\n\n"); printf("Started at %s\n", datestamp); printf("CPU hasher algorithm used: %s\n", algo_names[opt_algo]); printf("Runtime: %d hrs : %d mins : %d secs\n", hours, mins, secs); if (total_secs) printf("Average hashrate: %.1f Megahash/s\n", total_mhashes_done / total_secs); printf("Queued work requests: %d\n", total_getworks); printf("Share submissions: %d\n", total_accepted + total_rejected); printf("Accepted shares: %d\n", total_accepted); printf("Rejected shares: %d\n", total_rejected); if (total_accepted || total_rejected) printf("Reject ratio: %.1f\n", (double)(total_rejected * 100) / (double)(total_accepted + total_rejected)); printf("Hardware errors: %d\n", hw_errors); printf("Efficiency (accepted / queued): %.0f%%\n", efficiency); printf("Utility (accepted shares / min): %.2f/min\n\n", utility); printf("Discarded work due to new blocks: %d\n", total_discarded); printf("Stale submissions discarded due to new blocks: %d\n", total_stale); printf("Unable to get work from server occasions: %d\n", total_lo); printf("Work items generated locally: %d\n", local_work); printf("Submitting work remotely delay occasions: %d\n", total_ro); printf("New blocks detected on network: %d\n\n", new_blocks); if (total_pools > 1) { for (i = 0; i < total_pools; i++) { struct pool *pool = pools[i]; printf("Pool: %s\n", pool->rpc_url); printf(" Queued work requests: %d\n", pool->getwork_requested); printf(" Share submissions: %d\n", pool->accepted + pool->rejected); printf(" Accepted shares: %d\n", pool->accepted); printf(" Rejected shares: %d\n", pool->rejected); if (pool->accepted || pool->rejected) printf(" Reject ratio: %.1f\n", (double)(pool->rejected * 100) / (double)(pool->accepted + pool->rejected)); efficiency = pool->getwork_requested ? pool->accepted * 100.0 / pool->getwork_requested : 0.0; printf(" Efficiency (accepted / queued): %.0f%%\n", efficiency); printf(" Discarded work due to new blocks: %d\n", pool->discarded_work); printf(" Stale submissions discarded due to new blocks: %d\n", pool->stale_shares); printf(" Unable to get work from server occasions: %d\n", pool->localgen_occasions); printf(" Submitting work remotely delay occasions: %d\n\n", pool->remotefail_occasions); } } printf("Summary of per device statistics:\n\n"); for (i = 0; i < mining_threads; i++) { if (active_device(i)) print_status(i); } printf("\n"); fflush(stdout); } void quit(int status, const char *format, ...) { va_list ap; disable_curses(); if (format) { va_start(ap, format); vfprintf(stderr, format, ap); va_end(ap); } fprintf(stderr, "\n"); fflush(stderr); exit(status); } static char *curses_input(const char *query) { char *input; echo(); input = malloc(255); if (!input) quit(1, "Failed to malloc input"); leaveok(logwin, false); wlogprint("%s: ", query); wgetnstr(logwin, input, 255); leaveok(logwin, true); noecho(); return input; } static bool input_pool(bool live) { char *url = NULL, *user = NULL, *pass = NULL; struct pool *pool = NULL; bool ret = false; immedok(logwin, true); if (total_pools == MAX_POOLS) { wlogprint("Reached maximum number of pools.\n"); goto out; } wlogprint("Input server details.\n"); url = curses_input("URL"); if (!url) goto out; if (strncmp(url, "http://", 7) && strncmp(url, "https://", 8)) { char *httpinput; httpinput = malloc(255); if (!httpinput) quit(1, "Failed to malloc httpinput"); strcpy(httpinput, "http://"); strncat(httpinput, url, 248); free(url); url = httpinput; } user = curses_input("Username"); if (!user) goto out; pass = curses_input("Password"); if (!pass) goto out; pool = calloc(sizeof(struct pool), 1); if (!pool) quit(1, "Failed to realloc pools in input_pool"); pool->pool_no = total_pools; pool->prio = total_pools; if (unlikely(pthread_mutex_init(&pool->pool_lock, NULL))) quit (1, "Failed to pthread_mutex_init in input_pool"); pool->rpc_url = url; pool->rpc_user = user; pool->rpc_pass = pass; pool->rpc_userpass = malloc(strlen(pool->rpc_user) + strlen(pool->rpc_pass) + 2); if (!pool->rpc_userpass) quit(1, "Failed to malloc userpass"); sprintf(pool->rpc_userpass, "%s:%s", pool->rpc_user, pool->rpc_pass); pool->tv_idle.tv_sec = ~0UL; /* Test the pool before we enable it if we're live running, otherwise * it will be tested separately */ ret = true; if (live && pool_active(pool, false)) pool->enabled = true; pools[total_pools++] = pool; out: immedok(logwin, false); if (!ret) { if (url) free(url); if (user) free(user); if (pass) free(pass); if (pool) free(pool); } return ret; } #if defined(unix) static void fork_monitor() { // Make a pipe: [readFD, writeFD] int pfd[2]; int r = pipe(pfd); if (r<0) { perror("pipe - failed to create pipe for --monitor"); exit(1); } // Make stderr write end of pipe fflush(stderr); r = dup2(pfd[1], 2); if (r<0) { perror("dup2 - failed to alias stderr to write end of pipe for --monitor"); exit(1); } r = close(pfd[1]); if (r<0) { perror("close - failed to close write end of pipe for --monitor"); exit(1); } // Don't allow a dying monitor to kill the main process sighandler_t sr0 = signal(SIGPIPE, SIG_IGN); sighandler_t sr1 = signal(SIGPIPE, SIG_IGN); if (SIG_ERR==sr0 || SIG_ERR==sr1) { perror("signal - failed to edit signal mask for --monitor"); exit(1); } // Fork a child process r = fork(); if (r<0) { perror("fork - failed to fork child process for --monitor"); exit(1); } // Child: launch monitor command if (0==r) { // Make stdin read end of pipe r = dup2(pfd[0], 0); if (r<0) { perror("dup2 - in child, failed to alias read end of pipe to stdin for --monitor"); exit(1); } close(pfd[0]); if (r<0) { perror("close - in child, failed to close read end of pipe for --monitor"); exit(1); } // Launch user specified command execl("/bin/bash", "/bin/bash", "-c", opt_stderr_cmd, (char*)NULL); perror("execl - in child failed to exec user specified command for --monitor"); exit(1); } // Parent: clean up unused fds and bail r = close(pfd[0]); if (r<0) { perror("close - failed to close read end of pipe for --monitor"); exit(1); } } #endif // defined(unix) int main (int argc, char *argv[]) { unsigned int i, x, y, pools_active = 0; struct sigaction handler; struct thr_info *thr; char name[256]; /* This dangerous functions tramples random dynamically allocated * variables so do it before anything at all */ if (unlikely(curl_global_init(CURL_GLOBAL_ALL))) quit(1, "Failed to curl_global_init"); if (unlikely(pthread_mutex_init(&hash_lock, NULL))) quit(1, "Failed to pthread_mutex_init"); if (unlikely(pthread_mutex_init(&qd_lock, NULL))) quit(1, "Failed to pthread_mutex_init"); if (unlikely(pthread_mutex_init(&stgd_lock, NULL))) quit(1, "Failed to pthread_mutex_init"); if (unlikely(pthread_mutex_init(&curses_lock, NULL))) quit(1, "Failed to pthread_mutex_init"); if (unlikely(pthread_mutex_init(&control_lock, NULL))) quit(1, "Failed to pthread_mutex_init"); init_max_name_len(); handler.sa_handler = &sighandler; sigaction(SIGTERM, &handler, &termhandler); sigaction(SIGINT, &handler, &inthandler); gettimeofday(&total_tv_start, NULL); gettimeofday(&total_tv_end, NULL); get_datestamp(datestamp, &total_tv_start); // Hack to make cgminer silent when called recursively on WIN32 int skip_to_bench = 0; #if defined(WIN32) char buf[32]; if (GetEnvironmentVariable("CGMINER_BENCH_ALGO", buf, 16)) skip_to_bench = 1; #endif // defined(WIN32) for (i = 0; i < 36; i++) strcat(current_block, "0"); current_hash = calloc(sizeof(current_hash), 1); if (unlikely(!current_hash)) quit (1, "main OOM"); // Reckon number of cores in the box #if defined(WIN32) DWORD system_am; DWORD process_am; BOOL ok = GetProcessAffinityMask( GetCurrentProcess(), &system_am, &process_am ); if (!ok) { applog(LOG_ERR, "couldn't figure out number of processors :("); num_processors = 1; } else { size_t n = 32; num_processors = 0; while (n--) if (process_am & (1< nDevs) quit(1, "More devices specified than exist"); for (i = 0; i < 16; i++) if (gpu_devices[i] && i + 1 > nDevs) quit (1, "Command line options set a device that doesn't exist"); } else { for (i = 0; i < nDevs; i++) gpu_devices[i] = true; total_devices = nDevs; } if (!gpu_threads && !forced_n_threads) { /* Maybe they turned GPU off; restore default CPU threads. */ opt_n_threads = num_processors; } logcursor = 8; gpucursor = logcursor; cpucursor = gpucursor + nDevs; logstart = cpucursor + (opt_n_threads ? num_processors : 0) + 1; logcursor = logstart + 1; /* Set up the ncurses interface */ if (!opt_realquiet && use_curses) { mainwin = initscr(); getmaxyx(mainwin, y, x); statuswin = newwin(logstart, x, 0, 0); leaveok(statuswin, true); logwin = newwin(y - logcursor, 0, logcursor, 0); idlok(logwin, true); scrollok(logwin, true); leaveok(logwin, true); cbreak(); noecho(); test_and_set(&curses_active); } if (!total_pools) { if (curses_active) { if (!input_pool(false)) quit(1, "Pool setup failed"); } else quit(1, "No server specified"); } for (i = 0; i < total_pools; i++) { struct pool *pool = pools[i]; if (!pool->rpc_userpass) { if (!pool->rpc_user || !pool->rpc_pass) quit(1, "No login credentials supplied for pool %u %s", i, pool->rpc_url); pool->rpc_userpass = malloc(strlen(pool->rpc_user) + strlen(pool->rpc_pass) + 2); if (!pool->rpc_userpass) quit(1, "Failed to malloc userpass"); sprintf(pool->rpc_userpass, "%s:%s", pool->rpc_user, pool->rpc_pass); } else { pool->rpc_user = malloc(strlen(pool->rpc_userpass)); if (!pool->rpc_user) quit(1, "Failed to malloc user"); strcpy(pool->rpc_user, pool->rpc_userpass); pool->rpc_user = strtok(pool->rpc_user, ":"); if (!pool->rpc_user) quit(1, "Failed to find colon delimiter in userpass"); } } /* Set the currentpool to pool 0 */ currentpool = pools[0]; #ifdef HAVE_SYSLOG_H if (use_syslog) openlog(PROGRAM_NAME, LOG_PID, LOG_USER); #endif #if defined(unix) if (opt_stderr_cmd) fork_monitor(); #endif // defined(unix) mining_threads = opt_n_threads + gpu_threads; total_threads = mining_threads + 7; work_restart = calloc(total_threads, sizeof(*work_restart)); if (!work_restart) quit(1, "Failed to calloc work_restart"); thr_info = calloc(total_threads, sizeof(*thr)); if (!thr_info) quit(1, "Failed to calloc thr_info"); /* init workio thread info */ work_thr_id = mining_threads; thr = &thr_info[work_thr_id]; thr->id = work_thr_id; thr->q = tq_new(); if (!thr->q) quit(1, "Failed to tq_new"); /* start work I/O thread */ if (thr_info_create(thr, NULL, workio_thread, thr)) quit(1, "workio thread create failed"); /* init longpoll thread info */ longpoll_thr_id = mining_threads + 1; thr = &thr_info[longpoll_thr_id]; thr->id = longpoll_thr_id; thr->q = tq_new(); if (!thr->q) quit(1, "Failed to tq_new"); if (want_longpoll) start_longpoll(); if (opt_n_threads ) { cpus = calloc(num_processors, sizeof(struct cgpu_info)); if (unlikely(!cpus)) quit(1, "Failed to calloc cpus"); } if (gpu_threads) { gpus = calloc(nDevs, sizeof(struct cgpu_info)); if (unlikely(!gpus)) quit(1, "Failed to calloc gpus"); } stage_thr_id = mining_threads + 3; thr = &thr_info[stage_thr_id]; thr->q = tq_new(); if (!thr->q) quit(1, "Failed to tq_new"); /* start stage thread */ if (thr_info_create(thr, NULL, stage_thread, thr)) quit(1, "stage thread create failed"); pthread_detach(*thr->pth); /* Create a unique get work queue */ getq = tq_new(); if (!getq) quit(1, "Failed to create getq"); /* Test each pool to see if we can retrieve and use work and for what * it supports */ for (i = 0; i < total_pools; i++) { struct pool *pool; pool = pools[i]; if (pool_active(pool, false)) { if (!currentpool) currentpool = pool; applog(LOG_INFO, "Pool %d %s active", pool->pool_no, pool->rpc_url); pools_active++; pool->enabled = true; } else { if (pool == currentpool) currentpool = NULL; applog(LOG_WARNING, "Unable to get work from pool %d %s", pool->pool_no, pool->rpc_url); } } if (!pools_active) quit(0, "No pools active! Exiting."); #ifdef HAVE_OPENCL /* start GPU mining threads */ for (i = 0; i < nDevs * opt_g_threads; i++) { int gpu = i % nDevs; struct cgpu_info *cgpu; struct timeval now; gpus[gpu].is_gpu = 1; gpus[gpu].cpu_gpu = gpu; thr = &thr_info[i]; thr->id = i; cgpu = thr->cgpu = &gpus[gpu]; thr->q = tq_new(); if (!thr->q) quit(1, "tq_new failed in starting gpu mining threads"); /* Enable threads for devices set not to mine but disable * their queue in case we wish to enable them later*/ if (gpu_devices[gpu]) { if (opt_debug) applog(LOG_DEBUG, "Pushing ping to thread %d", thr->id); tq_push(thr->q, &ping); } applog(LOG_INFO, "Init GPU thread %i", i); clStates[i] = initCl(gpu, name, sizeof(name)); if (!clStates[i]) { applog(LOG_ERR, "Failed to init GPU thread %d", i); gpu_devices[i] = false; continue; } applog(LOG_INFO, "initCl() finished. Found %s", name); gettimeofday(&now, NULL); get_datestamp(cgpu->init, &now); if (unlikely(thr_info_create(thr, NULL, gpuminer_thread, thr))) quit(1, "thread %d create failed", i); } applog(LOG_INFO, "%d gpu miner threads started", gpu_threads); #else opt_g_threads = 0; #endif /* start CPU mining threads */ for (i = gpu_threads; i < mining_threads; i++) { int cpu = (i - gpu_threads) % num_processors; thr = &thr_info[i]; thr->id = i; cpus[cpu].cpu_gpu = cpu; thr->cgpu = &cpus[cpu]; thr->q = tq_new(); if (!thr->q) quit(1, "tq_new failed in starting cpu mining threads"); thread_reportin(thr); if (unlikely(thr_info_create(thr, NULL, miner_thread, thr))) quit(1, "thread %d create failed", i); } applog(LOG_INFO, "%d cpu miner threads started, " "using SHA256 '%s' algorithm.", opt_n_threads, algo_names[opt_algo]); watchdog_thr_id = mining_threads + 2; thr = &thr_info[watchdog_thr_id]; /* start wakeup thread */ if (thr_info_create(thr, NULL, watchdog_thread, NULL)) quit(1, "wakeup thread create failed"); /* Create curses input thread for keyboard input */ input_thr_id = mining_threads + 4; thr = &thr_info[input_thr_id]; if (thr_info_create(thr, NULL, input_thread, thr)) quit(1, "input thread create failed"); pthread_detach(*thr->pth); /* Create reinit cpu thread */ cpur_thr_id = mining_threads + 5; thr = &thr_info[cpur_thr_id]; thr->q = tq_new(); if (!thr->q) quit(1, "tq_new failed for cpur_thr_id"); if (thr_info_create(thr, NULL, reinit_cpu, thr)) quit(1, "reinit_cpu thread create failed"); /* Create reinit gpu thread */ gpur_thr_id = mining_threads + 6; thr = &thr_info[gpur_thr_id]; thr->q = tq_new(); if (!thr->q) quit(1, "tq_new failed for gpur_thr_id"); if (thr_info_create(thr, NULL, reinit_gpu, thr)) quit(1, "reinit_gpu thread create failed"); /* main loop - simply wait for workio thread to exit */ pthread_join(*thr_info[work_thr_id].pth, NULL); applog(LOG_INFO, "workio thread dead, exiting."); gettimeofday(&total_tv_end, NULL); disable_curses(); if (!opt_realquiet && successful_connect) print_summary(); if (gpu_threads) free(gpus); if (opt_n_threads) free(cpus); curl_global_cleanup(); return 0; }