// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of // phatk and others. // Modified version copyright 2011-2012 Con Kolivas // This file is taken and modified from the public-domain poclbm project, and // we have therefore decided to keep it public-domain in Phoenix. #ifdef VECTORS4 typedef uint4 u; #elif defined VECTORS2 typedef uint2 u; #else typedef uint u; #endif __constant uint K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; // This part is not from the stock poclbm kernel. It's part of an optimization // added in the Phoenix Miner. // Some AMD devices have a BFI_INT opcode, which behaves exactly like the // SHA-256 ch function, but provides it in exactly one instruction. If // detected, use it for ch. Otherwise, construct ch out of simpler logical // primitives. #ifdef BITALIGN #pragma OPENCL EXTENSION cl_amd_media_ops : enable #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y) #ifdef BFI_INT // Well, slight problem... It turns out BFI_INT isn't actually exposed to // OpenCL (or CAL IL for that matter) in any way. However, there is // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via // amd_bytealign, takes the same inputs, and provides the same output. // We can use that as a placeholder for BFI_INT and have the application // patch it after compilation. // This is the BFI_INT function #define ch(x, y, z) amd_bytealign(x, y, z) // Ma can also be implemented in terms of BFI_INT... #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) ) #else // BFI_INT // Later SDKs optimise this to BFI INT without patching and GCN // actually fails if manually patched with BFI_INT #define ch(x, y, z) bitselect((u)z, (u)y, (u)x) #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x) #endif #else // BITALIGN #define ch(x, y, z) (z ^ (x & (y ^ z))) #define Ma(x, y, z) ((x & z) | (y & (x | z))) #define rotr(x, y) rotate((u)x, (u)(32 - y)) #endif // AMD's KernelAnalyzer throws errors compiling the kernel if we use // amd_bytealign on constants with vectors enabled, so we use this to avoid // problems. (this is used 4 times, and likely optimized out by the compiler.) #define Ma2(x, y, z) ((y & z) | (x & (y | z))) __kernel void search(const uint state0, const uint state1, const uint state2, const uint state3, const uint state4, const uint state5, const uint state6, const uint state7, const uint b1, const uint c1, const uint d1, const uint f1, const uint g1, const uint h1, const u base, const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, __global uint * output) { u W[24]; //u Vals[8]; Now put at W[16] to be in same array #ifdef VECTORS4 const u nonce = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u); #elif defined VECTORS2 const u nonce = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u); #else const u nonce = base + get_local_id(0) + get_group_id(0) * (WORKSIZE); #endif W[20]=fcty_e; W[20]+=nonce; W[16]=W[20]; W[16]+=state0; W[19]=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=d1; W[19]+=ch(W[16],b1,c1); W[19]+=0xB956C25B; W[23]=W[19]; W[23]+=h1; W[20]+=fcty_e2; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[18]=c1; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],b1); W[18]+=K[5]; W[22]=W[18]; W[22]+=g1; W[19]+=Ma2(g1,W[20],f1); W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[17]=b1; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[6]; W[21]=W[17]; W[21]+=f1; W[18]+=Ma2(f1,W[19],W[20]); W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[7]; W[17]+=Ma(W[20],W[18],W[19]); W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[16]+=Ma(W[19],W[17],W[18]); W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[8]; W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[9]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[22]+=Ma(W[17],W[23],W[16]); W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[10]; W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[11]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[20]+=Ma(W[23],W[21],W[22]); W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[12]; W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[13]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[18]+=Ma(W[21],W[19],W[20]); W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[14]; W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=0xC19BF3F4; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[16]; W[23]+=fw0; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[17]; W[22]+=fw1; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); W[2]+=fw2; W[21]+=W[2]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[18]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]=nonce; W[3]+=fw3; W[20]+=W[3]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[19]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[4]+=0x80000000; W[19]+=W[4]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[20]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=W[5]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[21]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[6]+=0x00000280U; W[17]+=W[6]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[22]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[7]+=fw0; W[16]+=W[7]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[23]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[8]+=fw1; W[23]+=W[8]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[24]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[25]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=W[10]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[26]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[27]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[19]+=W[12]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[28]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[18]+=W[13]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[29]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[14]=0x00a00055U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[17]+=W[14]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[30]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[15]=fw15; W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[16]+=W[15]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[31]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[0]=fw01r; W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[23]+=W[0]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[32]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[1]=fw1; W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[22]+=W[1]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[33]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); W[21]+=K[34]; W[21]+=W[2]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[35]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); W[20]+=W[3]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[19]+=K[36]; W[19]+=W[4]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[37]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=W[5]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[17]+=K[38]; W[17]+=W[6]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[39]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[16]+=W[7]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[23]+=K[40]; W[23]+=W[8]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[41]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=K[42]; W[21]+=W[10]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[43]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[19]+=K[44]; W[19]+=W[12]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[45]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[18]+=W[13]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[17]+=K[46]; W[17]+=W[14]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[47]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[16]+=W[15]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[23]+=K[48]; W[23]+=W[0]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[49]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[22]+=W[1]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); W[21]+=K[50]; W[21]+=W[2]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[51]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); W[20]+=W[3]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[19]+=K[52]; W[19]+=W[4]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[53]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=W[5]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[17]+=K[54]; W[17]+=W[6]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[55]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[16]+=W[7]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[23]+=K[56]; W[23]+=W[8]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[57]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=K[58]; W[21]+=W[10]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[59]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[19]+=K[60]; W[19]+=W[12]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[61]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[18]+=W[13]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[17]+=K[62]; W[17]+=W[14]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[63]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[16]+=W[15]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[16]+=Ma(W[19],W[17],W[18]); W[0]=W[16]; W[7]=state7; W[7]+=W[23]; W[23]=0xF377ED68; W[0]+=state0; W[23]+=W[0]; W[3]=state3; W[3]+=W[19]; W[19]=0xa54ff53a; W[19]+=W[23]; W[1]=W[17]; W[1]+=state1; W[6]=state6; W[6]+=W[22]; W[22]=0x90BB1E3C; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U)); W[2]=state2; W[2]+=W[18]; W[18]=0x3c6ef372U; W[22]+=W[1]; W[18]+=W[22]; W[23]+=0x08909ae5U; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[5]=state5; W[5]+=W[21]; W[21]=0x150C6645B; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],0x510e527fU); W[21]+=W[2]; W[17]=0xbb67ae85U; W[17]+=W[21]; W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[4]=state4; W[4]+=W[20]; W[20]=0x13AC42E24; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=W[3]; W[16]=W[20]; W[16]+=0x6a09e667U; W[21]+=Ma2(0x6a09e667U,W[22],W[23]); W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[4]; W[19]+=W[4]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[5]; W[18]+=W[5]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[6]; W[17]+=W[6]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[7]; W[16]+=W[7]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=0x15807AA98; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[9]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[22]+=Ma(W[17],W[23],W[16]); W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[10]; W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[11]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[20]+=Ma(W[23],W[21],W[22]); W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[12]; W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[13]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[18]+=Ma(W[21],W[19],W[20]); W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[14]; W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=0xC19BF274; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[23]+=K[16]; W[23]+=W[0]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=0x00a00000U; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[17]; W[22]+=W[1]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[18]; W[21]+=W[2]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[19]; W[20]+=W[3]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[20]; W[19]+=W[4]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[21]; W[18]+=W[5]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=0x00000100U; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[17]+=K[22]; W[17]+=W[6]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]+=0x11002000U; W[7]+=W[0]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[23]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[16]+=W[7]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]=0x80000000; W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[23]+=W[8]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[24]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[25]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=W[10]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[26]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[27]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[19]+=W[12]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[28]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[18]+=W[13]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[29]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[14]=0x00400022U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[17]+=W[14]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[30]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[15]=0x00000100U; W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[16]+=W[15]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[31]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[23]+=W[0]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[32]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[22]+=W[1]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[33]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); W[21]+=W[2]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[34]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); W[20]+=W[3]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[35]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[19]+=W[4]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[36]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=W[5]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[37]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[17]+=W[6]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[38]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[16]+=W[7]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[39]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[23]+=W[8]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[40]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[41]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=W[10]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[42]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[43]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[19]+=W[12]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[44]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[18]+=W[13]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[45]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[17]+=W[14]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[46]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[16]+=W[15]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[47]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[23]+=W[0]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[48]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[22]+=W[1]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[49]; W[18]+=W[22]; W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); W[21]+=W[2]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[50]; W[22]+=Ma(W[17],W[23],W[16]); W[17]+=W[21]; W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); W[21]+=Ma(W[16],W[22],W[23]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); W[20]+=W[3]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[51]; W[16]+=W[20]; W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[19]+=W[4]; W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[19]+=ch(W[16],W[17],W[18]); W[19]+=K[52]; W[20]+=Ma(W[23],W[21],W[22]); W[23]+=W[19]; W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); W[19]+=Ma(W[22],W[20],W[21]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); W[18]+=W[5]; W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); W[18]+=ch(W[23],W[16],W[17]); W[18]+=K[53]; W[22]+=W[18]; W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[17]+=W[6]; W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); W[17]+=ch(W[22],W[23],W[16]); W[17]+=K[54]; W[18]+=Ma(W[21],W[19],W[20]); W[21]+=W[17]; W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); W[17]+=Ma(W[20],W[18],W[19]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[16]+=W[7]; W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); W[16]+=ch(W[21],W[22],W[23]); W[16]+=K[55]; W[20]+=W[16]; W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[23]+=W[8]; W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); W[23]+=ch(W[20],W[21],W[22]); W[23]+=K[56]; W[16]+=Ma(W[19],W[17],W[18]); W[19]+=W[23]; W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); W[23]+=Ma(W[18],W[16],W[17]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); W[22]+=W[9]; W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); W[22]+=ch(W[19],W[20],W[21]); W[22]+=K[57]; W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[21]+=W[10]; W[18]+=W[22]; W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); W[21]+=ch(W[18],W[19],W[20]); W[21]+=K[58]; W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[20]+=W[11]; W[17]+=W[21]; W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); W[20]+=ch(W[17],W[18],W[19]); W[20]+=K[59]; W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[23]+=W[12]; W[16]+=W[20]; W[23]+=W[19]; W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); W[23]+=ch(W[16],W[17],W[18]); //W[23]+=K[60]; diffed from 0xA41F32E7 #define FOUND (0x80) #define NFLAG (0x7F) #if defined(VECTORS4) W[23] ^= 0x136032ED; bool result = W[23].x & W[23].y & W[23].z & W[23].w; if (!result) { if (!W[23].x) output[FOUND] = output[NFLAG & nonce.x] = nonce.x; if (!W[23].y) output[FOUND] = output[NFLAG & nonce.y] = nonce.y; if (!W[23].z) output[FOUND] = output[NFLAG & nonce.z] = nonce.z; if (!W[23].w) output[FOUND] = output[NFLAG & nonce.w] = nonce.w; } #elif defined(VECTORS2) W[23] ^= 0x136032ED; bool result = W[23].x & W[23].y; if (!result) { if (!W[23].x) output[FOUND] = output[NFLAG & nonce.x] = nonce.x; if (!W[23].y) output[FOUND] = output[NFLAG & nonce.y] = nonce.y; } #else if (W[23] == 0x136032ED) output[FOUND] = output[NFLAG & nonce] = nonce; #endif }