/* * Copyright 2013 Andrew Smith * Copyright 2013 Con Kolivas * Copyright 2013 Chris Savery * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include #include #include #include #include #include #include #include #include #include "config.h" #ifdef WIN32 #include #endif #include "compat.h" #include "miner.h" #include "usbutils.h" #define K1 "K1" #define K16 "K16" #define K64 "K64" #define MIDSTATE_BYTES 32 #define MERKLE_OFFSET 64 #define MERKLE_BYTES 12 #define REPLY_SIZE 15 // adequate for all types of replies #define MAX_KLINES 1024 // unhandled reply limit #define REPLY_WAIT_TIME 100 // poll interval for a cmd waiting it's reply #define CMD_REPLY_RETRIES 8 // how many retries for cmds #define MAX_WORK_COUNT 4 // for now, must be binary multiple and match firmware #define TACH_FACTOR 87890 // fan rpm divisor struct device_drv klondike_drv; typedef struct klondike_header { uint8_t cmd; uint8_t dev; uint8_t buf[REPLY_SIZE-2]; } HEADER; #define K_2(_bytes) ((int)(_bytes[0]) + \ ((int)(_bytes[1]) << 8)) #define K_4(_bytes) ((uint64_t)(_bytes[0]) + \ ((uint64_t)(_bytes[1]) << 8) + \ ((uint64_t)(_bytes[2]) << 16) + \ ((uint64_t)(_bytes[3]) << 24)) #define K_SERIAL(_serial) K_4(_serial) #define K_HASHCOUNT(_hashcount) K_2(_hashcount) #define K_MAXCOUNT(_maxcount) K_2(_maxcount) #define K_NONCE(_nonce) K_4(_nonce) #define K_HASHCLOCK(_hashclock) K_2(_hashclock) #define SET_HASHCLOCK(_hashclock, _value) do { \ (_hashclock)[0] = (uint8_t)((_value) & 0xff); \ (_hashclock)[1] = (uint8_t)(((_value) >> 8) & 0xff); \ } while(0) #define KSENDHD(_add) (sizeof(char) + sizeof(uint8_t) + _add) typedef struct klondike_id { uint8_t cmd; uint8_t dev; uint8_t version; uint8_t product[7]; uint8_t serial[4]; } IDENTITY; typedef struct klondike_status { uint8_t cmd; uint8_t dev; uint8_t state; uint8_t chipcount; uint8_t slavecount; uint8_t workqc; uint8_t workid; uint8_t temp; uint8_t fanspeed; uint8_t errorcount; uint8_t hashcount[2]; uint8_t maxcount[2]; uint8_t noise; } WORKSTATUS; typedef struct _worktask { uint8_t cmd; uint8_t dev; uint8_t workid; uint8_t midstate[32]; uint8_t merkle[12]; } WORKTASK; typedef struct _workresult { uint8_t cmd; uint8_t dev; uint8_t workid; uint8_t nonce[4]; } WORKRESULT; typedef struct klondike_cfg { uint8_t cmd; uint8_t dev; uint8_t hashclock[2]; uint8_t temptarget; uint8_t tempcritical; uint8_t fantarget; uint8_t pad2; } WORKCFG; typedef struct kline { union { HEADER hd; IDENTITY id; WORKSTATUS ws; WORKTASK wt; WORKRESULT wr; WORKCFG cfg; }; } KLINE; typedef struct device_info { uint32_t noncecount; uint32_t nextworkid; uint16_t lasthashcount; uint64_t totalhashcount; uint32_t rangesize; uint32_t *chipstats; } DEVINFO; typedef struct klist { struct klist *prev; struct klist *next; KLINE kline; struct timeval tv_when; int block_seq; bool ready; bool working; } KLIST; struct klondike_info { bool shutdown; pthread_rwlock_t stat_lock; struct thr_info replies_thr; cglock_t klist_lock; KLIST *used; KLIST *free; int kline_count; int used_count; int block_seq; KLIST *status; DEVINFO *devinfo; KLIST *cfg; int noncecount; uint64_t hashcount; uint64_t errorcount; uint64_t noisecount; // us Delay from USB reply to being processed double delay_count; double delay_total; double delay_min; double delay_max; struct timeval tv_last_nonce_received; // Time from recieving one nonce to the next double nonce_count; double nonce_total; double nonce_min; double nonce_max; }; static KLIST *new_klist_set(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *klist = NULL; int i; klist = calloc(MAX_KLINES, sizeof(*klist)); if (!klist) quit(1, "Failed to calloc klist - when old count=%d", klninfo->kline_count); klninfo->kline_count += MAX_KLINES; klist[0].prev = NULL; klist[0].next = &(klist[1]); for (i = 1; i < MAX_KLINES-1; i++) { klist[i].prev = &klist[i-1]; klist[i].next = &klist[i+1]; } klist[MAX_KLINES-1].prev = &(klist[MAX_KLINES-2]); klist[MAX_KLINES-1].next = NULL; return klist; } static KLIST *allocate_kitem(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem = NULL; int ran_out = 0; char errbuf[1024]; cg_wlock(&klninfo->klist_lock); if (klninfo->free == NULL) { ran_out = klninfo->kline_count; klninfo->free = new_klist_set(klncgpu); snprintf(errbuf, sizeof(errbuf), "%s%i: KLINE count exceeded %d, now %d", klncgpu->drv->name, klncgpu->device_id, ran_out, klninfo->kline_count); } kitem = klninfo->free; klninfo->free = klninfo->free->next; if (klninfo->free) klninfo->free->prev = NULL; kitem->next = klninfo->used; kitem->prev = NULL; if (kitem->next) kitem->next->prev = kitem; klninfo->used = kitem; kitem->ready = false; kitem->working = false; memset((void *)&(kitem->kline), 0, sizeof(kitem->kline)); klninfo->used_count++; cg_wunlock(&klninfo->klist_lock); if (ran_out > 0) applog(LOG_ERR, "%s", errbuf); return kitem; } static void release_kitem(struct cgpu_info *klncgpu, KLIST *kitem) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); cg_wlock(&klninfo->klist_lock); if (kitem == klninfo->used) klninfo->used = kitem->next; if (kitem->next) kitem->next->prev = kitem->prev; if (kitem->prev) kitem->prev->next = kitem->next; kitem->next = klninfo->free; if (klninfo->free) klninfo->free->prev = kitem; kitem->prev = NULL; klninfo->free = kitem; klninfo->used_count--; cg_wunlock(&klninfo->klist_lock); } static double cvtKlnToC(uint8_t temp) { double Rt, stein, celsius; if (temp == 0) return 0.0; Rt = 1000.0 * 255.0 / (double)temp - 1000.0; stein = log(Rt / 2200.0) / 3987.0; stein += 1.0 / (double)(25.0 + 273.15); celsius = (1.0 / stein) - 273.15; // For display of bad data if (celsius < 0.0) celsius = 0.0; if (celsius > 200.0) celsius = 200.0; return celsius; } static int cvtCToKln(double deg) { double Rt, stein, temp; if (deg < 0.0) deg = 0.0; stein = 1.0 / (deg + 273.15); stein -= 1.0 / (double)(25.0 + 273.15); Rt = exp(stein * 3987.0) * 2200.0; if (Rt == -1000.0) Rt++; temp = 1000.0 * 256.0 / (Rt + 1000.0); if (temp > 255) temp = 255; if (temp < 0) temp = 0; return (int)temp; } // Change this to LOG_WARNING if you wish to always see the replies #define READ_DEBUG LOG_DEBUG //#define READ_DEBUG LOG_ERR static void display_kline(struct cgpu_info *klncgpu, KLINE *kline) { char *hexdata; switch (kline->hd.cmd) { case '=': applog(READ_DEBUG, "%s (%s) work [%c] dev=%d workid=%d" " nonce=0x%08x", klncgpu->drv->dname, klncgpu->device_path, kline->wr.cmd, (int)(kline->wr.dev), (int)(kline->wr.workid), (unsigned int)K_NONCE(kline->wr.nonce)); break; case 'S': case 'W': case 'A': case 'E': applog(READ_DEBUG, "%s (%s) status [%c] dev=%d chips=%d" " slaves=%d workcq=%d workid=%d temp=%d fan=%d" " errors=%d hashes=%d max=%d noise=%d", klncgpu->drv->dname, klncgpu->device_path, kline->ws.cmd, (int)(kline->ws.dev), (int)(kline->ws.chipcount), (int)(kline->ws.slavecount), (int)(kline->ws.workqc), (int)(kline->ws.workid), (int)(kline->ws.temp), (int)(kline->ws.fanspeed), (int)(kline->ws.errorcount), K_HASHCOUNT(kline->ws.hashcount), K_MAXCOUNT(kline->ws.maxcount), (int)(kline->ws.noise)); break; case 'C': applog(READ_DEBUG, "%s (%s) config [%c] dev=%d clock=%d" " temptarget=%d tempcrit=%d fan=%d", klncgpu->drv->dname, klncgpu->device_path, kline->cfg.cmd, (int)(kline->cfg.dev), K_HASHCLOCK(kline->cfg.hashclock), (int)(kline->cfg.temptarget), (int)(kline->cfg.tempcritical), (int)(kline->cfg.fantarget)); break; case 'I': applog(READ_DEBUG, "%s (%s) info [%c] version=0x%02x prod=%.7s" " serial=0x%08x", klncgpu->drv->dname, klncgpu->device_path, kline->hd.cmd, (int)(kline->id.version), kline->id.product, (unsigned int)K_SERIAL(kline->id.serial)); break; default: hexdata = bin2hex((unsigned char *)&(kline->hd.dev), REPLY_SIZE - 1); applog(LOG_ERR, "%s (%s) [%c:%s] unknown and ignored", klncgpu->drv->dname, klncgpu->device_path, kline->hd.cmd, hexdata); free(hexdata); break; } } static KLIST *SendCmdGetReply(struct cgpu_info *klncgpu, KLINE *kline, int datalen) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem; int retries = CMD_REPLY_RETRIES; int err, amt, writ; if (klncgpu->usbinfo.nodev) return NULL; writ = KSENDHD(datalen); err = usb_write(klncgpu, (char *)kline, writ, &amt, C_REQUESTRESULTS); if (err < 0 || amt != writ) { applog(LOG_ERR, "%s (%s) Cmd:%c Dev:%d, write failed (%d:%d:%d)", klncgpu->drv->dname, klncgpu->device_path, kline->hd.cmd, (int)kline->hd.dev, writ, amt, err); } while (retries-- > 0 && klninfo->shutdown == false) { cgsleep_ms(REPLY_WAIT_TIME); cg_rlock(&klninfo->klist_lock); kitem = klninfo->used; while (kitem) { if (kitem->kline.hd.cmd == kline->hd.cmd && kitem->kline.hd.dev == kline->hd.dev && kitem->ready == true && kitem->working == false) { kitem->working = true; cg_runlock(&klninfo->klist_lock); return kitem; } kitem = kitem->next; } cg_runlock(&klninfo->klist_lock); } return NULL; } static bool klondike_get_stats(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem; KLINE kline; int slaves, dev; if (klncgpu->usbinfo.nodev || klninfo->status == NULL) return false; applog(LOG_DEBUG, "Klondike getting status"); slaves = klninfo->status[0].kline.ws.slavecount; // loop thru devices and get status for each for (dev = 0; dev <= slaves; dev++) { kline.hd.cmd = 'S'; kline.hd.dev = dev; kitem = SendCmdGetReply(klncgpu, &kline, 0); if (kitem != NULL) { wr_lock(&(klninfo->stat_lock)); memcpy((void *)(&(klninfo->status[dev])), (void *)kitem, sizeof(*kitem)); wr_unlock(&(klninfo->stat_lock)); release_kitem(klncgpu, kitem); kitem = NULL; } } // todo: detect slavecount change and realloc space return true; } static bool klondike_init(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem; KLINE kline; int slaves, dev; kline.hd.cmd = 'S'; kline.hd.dev = 0; kitem = SendCmdGetReply(klncgpu, &kline, 0); if (kitem == NULL) return false; slaves = kitem->kline.ws.slavecount; release_kitem(klncgpu, kitem); kitem = NULL; if (klninfo->status == NULL) { applog(LOG_DEBUG, "Klondike initializing data"); // alloc space for status, devinfo and cfg for master and slaves klninfo->status = calloc(slaves+1, sizeof(KLIST)); if (unlikely(!klninfo->status)) quit(1, "Failed to calloc status array in klondke_get_stats"); klninfo->devinfo = calloc(slaves+1, sizeof(DEVINFO)); if (unlikely(!klninfo->devinfo)) quit(1, "Failed to calloc devinfo array in klondke_get_stats"); klninfo->cfg = calloc(slaves+1, sizeof(KLIST)); if (unlikely(!klninfo->cfg)) quit(1, "Failed to calloc cfg array in klondke_get_stats"); } // zero init triggers read back only memset(&(kline.cfg), 0, sizeof(kline.cfg)); kline.cfg.cmd = 'C'; int size = 2; // boundaries are checked by device, with valid values returned if (opt_klondike_options != NULL) { int hashclock; double temp1, temp2; sscanf(opt_klondike_options, "%d:%lf:%lf:%"SCNu8, &hashclock, &temp1, &temp2, &kline.cfg.fantarget); SET_HASHCLOCK(kline.cfg.hashclock, hashclock); kline.cfg.temptarget = cvtCToKln(temp1); kline.cfg.tempcritical = cvtCToKln(temp2); kline.cfg.fantarget = (int)255*kline.cfg.fantarget/100; size = sizeof(kline.cfg) - 2; } for (dev = 0; dev <= slaves; dev++) { kline.cfg.dev = dev; kitem = SendCmdGetReply(klncgpu, &kline, size); if (kitem != NULL) { memcpy((void *)&(klninfo->cfg[dev]), kitem, sizeof(*kitem)); applog(LOG_WARNING, "Klondike config (%d: Clk: %d, T:%.0lf, C:%.0lf, F:%d)", dev, K_HASHCLOCK(klninfo->cfg[dev].kline.cfg.hashclock), cvtKlnToC(klninfo->cfg[dev].kline.cfg.temptarget), cvtKlnToC(klninfo->cfg[dev].kline.cfg.tempcritical), (int)100*klninfo->cfg[dev].kline.cfg.fantarget/256); release_kitem(klncgpu, kitem); kitem = NULL; } } klondike_get_stats(klncgpu); for (dev = 0; dev <= slaves; dev++) { klninfo->devinfo[dev].rangesize = ((uint64_t)1<<32) / klninfo->status[dev].kline.ws.chipcount; klninfo->devinfo[dev].chipstats = calloc(klninfo->status[dev].kline.ws.chipcount*2 , sizeof(uint32_t)); } int tries = 2; bool ok = false; kline.hd.cmd = 'E'; kline.hd.dev = 0; kline.hd.buf[0] = '1'; while (tries-- > 0) { kitem = SendCmdGetReply(klncgpu, &kline, 1); if (kitem) { release_kitem(klncgpu, kitem); kitem = NULL; ok = true; break; } } if (!ok) applog(LOG_ERR, "%s%i: failed to enable", klncgpu->drv->name, klncgpu->device_id); return ok; } static bool klondike_detect_one(struct libusb_device *dev, struct usb_find_devices *found) { struct cgpu_info *klncgpu = usb_alloc_cgpu(&klondike_drv, 1); struct klondike_info *klninfo = NULL; if (unlikely(!klncgpu)) quit(1, "Failed to calloc klncgpu in klondike_detect_one"); klninfo = calloc(1, sizeof(*klninfo)); if (unlikely(!klninfo)) quit(1, "Failed to calloc klninfo in klondke_detect_one"); klncgpu->device_data = (void *)klninfo; klninfo->free = new_klist_set(klncgpu); if (usb_init(klncgpu, dev, found)) { int sent, recd, err; KLIST kitem; int attempts = 0; while (attempts++ < 3) { err = usb_write(klncgpu, "I", 2, &sent, C_REQUESTRESULTS); if (err < 0 || sent != 2) { applog(LOG_ERR, "%s (%s) detect write failed (%d:%d)", klncgpu->drv->dname, klncgpu->device_path, sent, err); } cgsleep_ms(REPLY_WAIT_TIME*10); err = usb_read(klncgpu, (char *)&(kitem.kline), REPLY_SIZE, &recd, C_GETRESULTS); if (err < 0) { applog(LOG_ERR, "%s (%s) detect read failed (%d:%d)", klncgpu->drv->dname, klncgpu->device_path, recd, err); } else if (recd < 1) { applog(LOG_ERR, "%s (%s) detect empty reply (%d)", klncgpu->drv->dname, klncgpu->device_path, recd); } else if (kitem.kline.hd.cmd == 'I' && kitem.kline.hd.dev == 0) { display_kline(klncgpu, &kitem.kline); applog(LOG_DEBUG, "%s (%s) detect successful", klncgpu->drv->dname, klncgpu->device_path); if (!add_cgpu(klncgpu)) break; update_usb_stats(klncgpu); applog(LOG_DEBUG, "Klondike cgpu added"); cglock_init(&klninfo->klist_lock); return true; } } usb_uninit(klncgpu); } free(klninfo->free); free(klninfo); free(klncgpu); return false; } static void klondike_detect(bool __maybe_unused hotplug) { usb_detect(&klondike_drv, klondike_detect_one); } static void klondike_identify(__maybe_unused struct cgpu_info *klncgpu) { /* KLINE kline; kline.hd.cmd = 'I'; kline.hd.dev = 0; SendCmdGetReply(klncgpu, &kline, KSENDHD(0)); */ } static void klondike_check_nonce(struct cgpu_info *klncgpu, KLIST *kitem) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); struct work *work, *tmp; KLINE *kline = &(kitem->kline); struct timeval tv_now; double us_diff; uint32_t nonce = K_NONCE(kline->wr.nonce) - 0xC0; applog(LOG_DEBUG, "Klondike FOUND NONCE (%02x:%08x)", kline->wr.workid, (unsigned int)nonce); HASH_ITER(hh, klncgpu->queued_work, work, tmp) { if (work->queued && (work->subid == (kline->wr.dev*256 + kline->wr.workid))) { wr_lock(&(klninfo->stat_lock)); klninfo->devinfo[kline->wr.dev].noncecount++; klninfo->noncecount++; wr_unlock(&(klninfo->stat_lock)); // kline->wr.nonce = le32toh(kline->wr.nonce - 0xC0); applog(LOG_DEBUG, "Klondike SUBMIT NONCE (%02x:%08x)", kline->wr.workid, (unsigned int)nonce); cgtime(&tv_now); bool ok = submit_nonce(klncgpu->thr[0], work, nonce); applog(LOG_DEBUG, "Klondike chip stats %d, %08x, %d, %d", kline->wr.dev, (unsigned int)nonce, klninfo->devinfo[kline->wr.dev].rangesize, klninfo->status[kline->wr.dev].kline.ws.chipcount); klninfo->devinfo[kline->wr.dev].chipstats[(nonce / klninfo->devinfo[kline->wr.dev].rangesize) + (ok ? 0 : klninfo->status[kline->wr.dev].kline.ws.chipcount)]++; us_diff = us_tdiff(&tv_now, &(kitem->tv_when)); if (klninfo->delay_count == 0) { klninfo->delay_min = us_diff; klninfo->delay_max = us_diff; } else { if (klninfo->delay_min > us_diff) klninfo->delay_min = us_diff; if (klninfo->delay_max < us_diff) klninfo->delay_max = us_diff; } klninfo->delay_count++; klninfo->delay_total += us_diff; us_diff = us_tdiff(&(kitem->tv_when), &(klninfo->tv_last_nonce_received)); if (klninfo->nonce_count == 0) { klninfo->nonce_min = us_diff; klninfo->nonce_max = us_diff; } else { if (klninfo->nonce_min > us_diff) klninfo->nonce_min = us_diff; if (klninfo->nonce_max < us_diff) klninfo->nonce_max = us_diff; } klninfo->nonce_count++; klninfo->nonce_total += us_diff; memcpy(&(klninfo->tv_last_nonce_received), &(kitem->tv_when), sizeof(klninfo->tv_last_nonce_received)); return; } } applog(LOG_ERR, "%s%i:%d unknown work (%02x:%08x) - ignored", klncgpu->drv->name, klncgpu->device_id, kline->wr.dev, kline->wr.workid, (unsigned int)nonce); //inc_hw_errors(klncgpu->thr[0]); } // thread to keep looking for replies static void *klondike_get_replies(void *userdata) { struct cgpu_info *klncgpu = (struct cgpu_info *)userdata; struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem = NULL; char *hexdata; int err, recd; applog(LOG_ERR, "Klondike listening for replies"); while (klninfo->shutdown == false) { if (klncgpu->usbinfo.nodev) return NULL; if (kitem == NULL) kitem = allocate_kitem(klncgpu); else memset((void *)&(kitem->kline), 0, sizeof(kitem->kline)); err = usb_read(klncgpu, (char *)&(kitem->kline), REPLY_SIZE, &recd, C_GETRESULTS); if (!err && recd == REPLY_SIZE) { cgtime(&(kitem->tv_when)); kitem->block_seq = klninfo->block_seq; if (opt_log_level <= READ_DEBUG) { hexdata = bin2hex((unsigned char *)&(kitem->kline.hd.dev), recd-1); applog(READ_DEBUG, "%s (%s) reply [%c:%s]", klncgpu->drv->dname, klncgpu->device_path, kitem->kline.hd.cmd, hexdata); free(hexdata); } switch (kitem->kline.hd.cmd) { case '=': klondike_check_nonce(klncgpu, kitem); display_kline(klncgpu, &kitem->kline); break; case 'S': case 'W': case 'A': case 'E': wr_lock(&(klninfo->stat_lock)); klninfo->errorcount += kitem->kline.ws.errorcount; klninfo->noisecount += kitem->kline.ws.noise; wr_unlock(&(klninfo->stat_lock)); display_kline(klncgpu, &kitem->kline); kitem->ready = true; kitem = NULL; break; case 'C': display_kline(klncgpu, &kitem->kline); kitem->ready = true; kitem = NULL; break; case 'I': display_kline(klncgpu, &kitem->kline); kitem->ready = true; kitem = NULL; break; default: display_kline(klncgpu, &kitem->kline); break; } } } return NULL; } static void klondike_flush_work(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem; KLINE kline; int slaves, dev; klninfo->block_seq++; applog(LOG_DEBUG, "Klondike flushing work"); slaves = klninfo->status[0].kline.ws.slavecount; kline.hd.cmd = 'A'; for (dev = 0; dev <= slaves; dev++) { kline.hd.dev = dev; kitem = SendCmdGetReply(klncgpu, &kline, KSENDHD(0)); if (kitem != NULL) { wr_lock(&(klninfo->stat_lock)); memcpy((void *)&(klninfo->status[dev]), kitem, sizeof(*kitem)); wr_unlock(&(klninfo->stat_lock)); release_kitem(klncgpu, kitem); kitem = NULL; } } } static bool klondike_thread_prepare(struct thr_info *thr) { struct cgpu_info *klncgpu = thr->cgpu; struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); if (thr_info_create(&(klninfo->replies_thr), NULL, klondike_get_replies, (void *)klncgpu)) { applog(LOG_ERR, "%s%i: thread create failed", klncgpu->drv->name, klncgpu->device_id); return false; } pthread_detach(klninfo->replies_thr.pth); // let the listening get started cgsleep_ms(100); return klondike_init(klncgpu); } static bool klondike_thread_init(struct thr_info *thr) { struct cgpu_info *klncgpu = thr->cgpu; if (klncgpu->usbinfo.nodev) return false; klondike_flush_work(klncgpu); return true; } static void klondike_shutdown(struct thr_info *thr) { struct cgpu_info *klncgpu = thr->cgpu; struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); KLIST *kitem; KLINE kline; int dev; applog(LOG_DEBUG, "Klondike shutting down work"); kline.hd.cmd = 'E'; for (dev = 0; dev <= klninfo->status[0].kline.ws.slavecount; dev++) { kline.hd.dev = dev; kline.hd.buf[0] = '0'; kitem = SendCmdGetReply(klncgpu, &kline, KSENDHD(1)); if (kitem) release_kitem(klncgpu, kitem); } klncgpu->shutdown = klninfo->shutdown = true; } static void klondike_thread_enable(struct thr_info *thr) { struct cgpu_info *klncgpu = thr->cgpu; if (klncgpu->usbinfo.nodev) return; /* KLINE kline; kline.hd.cmd = 'E'; kline.hd.dev = dev; kline.hd.buf[0] = '0'; kitem = SendCmdGetReply(klncgpu, &kline, KSENDHD(1)); */ } static bool klondike_send_work(struct cgpu_info *klncgpu, int dev, struct work *work) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); struct work *tmp; KLINE kline; if (klncgpu->usbinfo.nodev) return false; kline.wt.cmd = 'W'; kline.wt.dev = dev; memcpy(kline.wt.midstate, work->midstate, MIDSTATE_BYTES); memcpy(kline.wt.merkle, work->data + MERKLE_OFFSET, MERKLE_BYTES); kline.wt.workid = (uint8_t)(klninfo->devinfo[dev].nextworkid++ & 0xFF); work->subid = dev*256 + kline.wt.workid; if (opt_log_level <= LOG_DEBUG) { char *hexdata = bin2hex((void *)&kline.wt, sizeof(kline.wt)); applog(LOG_DEBUG, "WORKDATA: %s", hexdata); free(hexdata); } applog(LOG_DEBUG, "Klondike sending work (%d:%02x)", dev, kline.wt.workid); KLIST *kitem = SendCmdGetReply(klncgpu, &kline, sizeof(kline.wt)); if (kitem != NULL) { wr_lock(&(klninfo->stat_lock)); memcpy((void *)&(klninfo->status[dev]), kitem, sizeof(*kitem)); wr_unlock(&(klninfo->stat_lock)); release_kitem(klncgpu, kitem); kitem = NULL; // remove old work HASH_ITER(hh, klncgpu->queued_work, work, tmp) { if (work->queued && (work->subid == (int)(dev*256 + ((klninfo->devinfo[dev].nextworkid-2*MAX_WORK_COUNT) & 0xFF)))) work_completed(klncgpu, work); } return true; } return false; } static bool klondike_queue_full(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); struct work *work = NULL; int dev, queued, slaves; slaves = klninfo->status[0].kline.ws.slavecount; for (queued = 0; queued < MAX_WORK_COUNT-1; queued++) for (dev = 0; dev <= slaves; dev++) if (klninfo->status[dev].kline.ws.workqc <= queued) { if (!work) work = get_queued(klncgpu); if (unlikely(!work)) return false; if (klondike_send_work(klncgpu, dev, work)) { work = NULL; break; } } return true; } static int64_t klondike_scanwork(struct thr_info *thr) { struct cgpu_info *klncgpu = thr->cgpu; struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); int64_t newhashcount = 0; int dev, slaves; if (klncgpu->usbinfo.nodev) return -1; restart_wait(thr, 200); if (klninfo->status != NULL) { rd_lock(&(klninfo->stat_lock)); slaves = klninfo->status[0].kline.ws.slavecount; for (dev = 0; dev <= slaves; dev++) { uint64_t newhashdev = 0, hashcount; int maxcount; hashcount = K_HASHCOUNT(klninfo->status[dev].kline.ws.hashcount); maxcount = K_MAXCOUNT(klninfo->status[dev].kline.ws.maxcount); if (klninfo->devinfo[dev].lasthashcount > hashcount) // todo: chg this to check workid for wrapped instead newhashdev += maxcount; // hash counter wrapped newhashdev += hashcount - klninfo->devinfo[dev].lasthashcount; klninfo->devinfo[dev].lasthashcount = hashcount; if (maxcount != 0) klninfo->hashcount += (newhashdev << 32) / maxcount; // todo: check stats for critical conditions } newhashcount += 0xffffffffull * (uint64_t)klninfo->noncecount; klninfo->noncecount = 0; rd_unlock(&(klninfo->stat_lock)); } return newhashcount; } static void get_klondike_statline_before(char *buf, size_t siz, struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); uint8_t temp = 0xFF; uint16_t fan = 0; uint16_t clock = 0; int dev, slaves; char tmp[16]; if (klninfo->status == NULL) { blank_get_statline_before(buf, siz, klncgpu); return; } rd_lock(&(klninfo->stat_lock)); slaves = klninfo->status[0].kline.ws.slavecount; for (dev = 0; dev <= slaves; dev++) { if (klninfo->status[dev].kline.ws.temp < temp) temp = klninfo->status[dev].kline.ws.temp; fan += klninfo->cfg[dev].kline.cfg.fantarget; clock += (uint16_t)K_HASHCLOCK(klninfo->cfg[dev].kline.cfg.hashclock); } fan /= slaves + 1; clock /= slaves + 1; rd_unlock(&(klninfo->stat_lock)); snprintf(tmp, sizeof(tmp), "%2.0fC", cvtKlnToC(temp)); if (strlen(tmp) < 4) strcat(tmp, " "); tailsprintf(buf, siz, "%3dMHz %3d%% %s| ", (int)clock, fan*100/255, tmp); } static struct api_data *klondike_api_stats(struct cgpu_info *klncgpu) { struct klondike_info *klninfo = (struct klondike_info *)(klncgpu->device_data); struct api_data *root = NULL; char buf[32]; int dev, slaves; if (klninfo->status == NULL) return NULL; rd_lock(&(klninfo->stat_lock)); slaves = klninfo->status[0].kline.ws.slavecount; for (dev = 0; dev <= slaves; dev++) { float fTemp = cvtKlnToC(klninfo->status[dev].kline.ws.temp); sprintf(buf, "Temp %d", dev); root = api_add_temp(root, buf, &fTemp, true); double dClk = (double)K_HASHCLOCK(klninfo->cfg[dev].kline.cfg.hashclock); sprintf(buf, "Clock %d", dev); root = api_add_freq(root, buf, &dClk, true); unsigned int iFan = (unsigned int)100 * klninfo->cfg[dev].kline.cfg.fantarget / 255; sprintf(buf, "Fan Percent %d", dev); root = api_add_int(root, buf, (int *)(&iFan), true); iFan = 0; if (klninfo->status[dev].kline.ws.fanspeed > 0) iFan = (unsigned int)TACH_FACTOR / klninfo->status[dev].kline.ws.fanspeed; sprintf(buf, "Fan RPM %d", dev); root = api_add_int(root, buf, (int *)(&iFan), true); if (klninfo->devinfo[dev].chipstats != NULL) { char data[2048]; char one[32]; int n; sprintf(buf, "Nonces / Chip %d", dev); data[0] = '\0'; for (n = 0; n < klninfo->status[dev].kline.ws.chipcount; n++) { snprintf(one, sizeof(one), "%07d ", klninfo->devinfo[dev].chipstats[n]); strcat(data, one); } root = api_add_string(root, buf, data, true); sprintf(buf, "Errors / Chip %d", dev); data[0] = '\0'; for (n = 0; n < klninfo->status[dev].kline.ws.chipcount; n++) { snprintf(one, sizeof(one), "%07d ", klninfo->devinfo[dev].chipstats[n + klninfo->status[dev].kline.ws.chipcount]); strcat(data, one); } root = api_add_string(root, buf, data, true); } } root = api_add_uint64(root, "Hash Count", &(klninfo->hashcount), true); root = api_add_uint64(root, "Error Count", &(klninfo->errorcount), true); root = api_add_uint64(root, "Noise Count", &(klninfo->noisecount), true); root = api_add_int(root, "KLine Limit", &(klninfo->kline_count), true); root = api_add_int(root, "KLine Used", &(klninfo->used_count), true); root = api_add_elapsed(root, "KQue Delay Count", &(klninfo->delay_count), true); root = api_add_elapsed(root, "KQue Delay Total", &(klninfo->delay_total), true); root = api_add_elapsed(root, "KQue Delay Min", &(klninfo->delay_min), true); root = api_add_elapsed(root, "KQue Delay Max", &(klninfo->delay_max), true); double avg; if (klninfo->delay_count == 0) avg = 0; else avg = klninfo->delay_total / klninfo->delay_count; root = api_add_diff(root, "KQue Delay Avg", &avg, true); root = api_add_elapsed(root, "KQue Nonce Count", &(klninfo->nonce_count), true); root = api_add_elapsed(root, "KQue Nonce Total", &(klninfo->nonce_total), true); root = api_add_elapsed(root, "KQue Nonce Min", &(klninfo->nonce_min), true); root = api_add_elapsed(root, "KQue Nonce Max", &(klninfo->nonce_max), true); if (klninfo->nonce_count == 0) avg = 0; else avg = klninfo->nonce_total / klninfo->nonce_count; root = api_add_diff(root, "KQue Nonce Avg", &avg, true); rd_unlock(&(klninfo->stat_lock)); return root; } struct device_drv klondike_drv = { .drv_id = DRIVER_klondike, .dname = "Klondike", .name = "KLN", .drv_detect = klondike_detect, .get_api_stats = klondike_api_stats, .get_statline_before = get_klondike_statline_before, .get_stats = klondike_get_stats, .identify_device = klondike_identify, .thread_prepare = klondike_thread_prepare, .thread_init = klondike_thread_init, .hash_work = hash_queued_work, .scanwork = klondike_scanwork, .queue_full = klondike_queue_full, .flush_work = klondike_flush_work, .thread_shutdown = klondike_shutdown, .thread_enable = klondike_thread_enable };