/* * Copyright 2013 Con Kolivas * Copyright 2012-2013 Xiangfu * Copyright 2012 Luke Dashjr * Copyright 2012 Andrew Smith * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #include #ifndef WIN32 #include #include #include #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif #else #include #include #endif #include "elist.h" #include "miner.h" #include "fpgautils.h" #include "driver-avalon.h" #include "hexdump.c" static int option_offset = -1; struct avalon_info **avalon_info; struct device_drv avalon_drv; static int avalon_init_task(struct avalon_task *at, uint8_t reset, uint8_t ff, uint8_t fan, uint8_t timeout, uint8_t asic_num, uint8_t miner_num, uint8_t nonce_elf, uint8_t gate_miner, int frequency) { uint8_t *buf; static bool first = true; if (unlikely(!at)) return -1; if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0)) return -1; memset(at, 0, sizeof(struct avalon_task)); if (unlikely(reset)) { at->reset = 1; at->fan_eft = 1; at->timer_eft = 1; first = true; } at->flush_fifo = (ff ? 1 : 0); at->fan_eft = (fan ? 1 : 0); if (unlikely(first && !at->reset)) { at->fan_eft = 1; at->timer_eft = 1; first = false; } at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM); at->timeout_data = timeout; at->asic_num = asic_num; at->miner_num = miner_num; at->nonce_elf = nonce_elf; at->gate_miner_elf = 1; at->asic_pll = 1; if (unlikely(gate_miner)) { at-> gate_miner = 1; at->asic_pll = 0; } buf = (uint8_t *)at; buf[5] = 0x00; buf[8] = 0x74; buf[9] = 0x01; buf[10] = 0x00; buf[11] = 0x00; if (frequency == 256) { buf[6] = 0x03; buf[7] = 0x08; } else if (frequency == 270) { buf[6] = 0x73; buf[7] = 0x08; } else if (frequency == 282) { buf[6] = 0xd3; buf[7] = 0x08; } else if (frequency == 300) { buf[6] = 0x63; buf[7] = 0x09; } return 0; } static inline void avalon_create_task(struct avalon_task *at, struct work *work) { memcpy(at->midstate, work->midstate, 32); memcpy(at->data, work->data + 64, 12); } static int avalon_send_task(int fd, const struct avalon_task *at, struct cgpu_info *avalon) { size_t ret; int full; struct timespec p; uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM]; size_t nr_len; struct avalon_info *info; uint64_t delay = 32000000; /* Default 32ms for B19200 */ uint32_t nonce_range; int i; if (at->nonce_elf) nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num; else nr_len = AVALON_WRITE_SIZE; memcpy(buf, at, AVALON_WRITE_SIZE); if (at->nonce_elf) { nonce_range = (uint32_t)0xffffffff / at->asic_num; for (i = 0; i < at->asic_num; i++) { buf[AVALON_WRITE_SIZE + (i * 4) + 3] = (i * nonce_range & 0xff000000) >> 24; buf[AVALON_WRITE_SIZE + (i * 4) + 2] = (i * nonce_range & 0x00ff0000) >> 16; buf[AVALON_WRITE_SIZE + (i * 4) + 1] = (i * nonce_range & 0x0000ff00) >> 8; buf[AVALON_WRITE_SIZE + (i * 4) + 0] = (i * nonce_range & 0x000000ff) >> 0; } } #if defined(__BIG_ENDIAN__) || defined(MIPSEB) uint8_t tt = 0; tt = (buf[0] & 0x0f) << 4; tt |= ((buf[0] & 0x10) ? (1 << 3) : 0); tt |= ((buf[0] & 0x20) ? (1 << 2) : 0); tt |= ((buf[0] & 0x40) ? (1 << 1) : 0); tt |= ((buf[0] & 0x80) ? (1 << 0) : 0); buf[0] = tt; tt = (buf[4] & 0x0f) << 4; tt |= ((buf[4] & 0x10) ? (1 << 3) : 0); tt |= ((buf[4] & 0x20) ? (1 << 2) : 0); tt |= ((buf[4] & 0x40) ? (1 << 1) : 0); tt |= ((buf[4] & 0x80) ? (1 << 0) : 0); buf[4] = tt; #endif if (likely(avalon)) { info = avalon_info[avalon->device_id]; delay = nr_len * 10 * 1000000000ULL; delay = delay / info->baud; } if (at->reset) nr_len = 1; if (opt_debug) { applog(LOG_DEBUG, "Avalon: Sent(%d):", nr_len); hexdump((uint8_t *)buf, nr_len); } ret = write(fd, buf, nr_len); if (unlikely(ret != nr_len)) return AVA_SEND_ERROR; p.tv_sec = 0; p.tv_nsec = (long)delay + 4000000; nanosleep(&p, NULL); applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec); full = avalon_buffer_full(fd); applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s", ((full == AVA_BUFFER_FULL) ? "Yes" : "No")); if (unlikely(full == AVA_BUFFER_FULL)) return AVA_SEND_BUFFER_FULL; return AVA_SEND_BUFFER_EMPTY; } static int avalon_gets(int fd, uint8_t *buf, int read_count, struct thr_info *thr, struct timeval *tv_finish) { ssize_t ret = 0; int rc = 0; int read_amount = AVALON_READ_SIZE; bool first = true; while (true) { struct timeval timeout = {0, 100000}; fd_set rd; FD_ZERO(&rd); FD_SET(fd, &rd); ret = select(fd + 1, &rd, NULL, NULL, &timeout); if (unlikely(ret < 0)) return AVA_GETS_ERROR; if (ret) { ret = read(fd, buf, read_amount); if (unlikely(ret < 0)) return AVA_GETS_ERROR; if (likely(first)) { if (likely(tv_finish)) gettimeofday(tv_finish, NULL); first = false; } if (likely(ret >= read_amount)) return AVA_GETS_OK; buf += ret; read_amount -= ret; continue; } rc++; if (rc >= read_count) { if (opt_debug) { applog(LOG_WARNING, "Avalon: No data in %.2f seconds", (float)rc/(float)AVALON_TIME_FACTOR); } return AVA_GETS_TIMEOUT; } if (thr && thr->work_restart) { if (opt_debug) { applog(LOG_WARNING, "Avalon: Work restart at %.2f seconds", (float)(rc)/(float)AVALON_TIME_FACTOR); } return AVA_GETS_RESTART; } } } static int avalon_get_result(int fd, struct avalon_result *ar, struct thr_info *thr, struct timeval *tv_finish) { struct cgpu_info *avalon; struct avalon_info *info; uint8_t result[AVALON_READ_SIZE]; int ret, read_count = AVALON_RESET_FAULT_DECISECONDS * AVALON_TIME_FACTOR; if (likely(thr)) { avalon = thr->cgpu; info = avalon_info[avalon->device_id]; read_count = info->read_count; } memset(result, 0, AVALON_READ_SIZE); ret = avalon_gets(fd, result, read_count, thr, tv_finish); if (ret == AVA_GETS_OK) { if (opt_debug) { applog(LOG_DEBUG, "Avalon: get:"); hexdump((uint8_t *)result, AVALON_READ_SIZE); } memcpy((uint8_t *)ar, result, AVALON_READ_SIZE); } return ret; } static int avalon_decode_nonce(struct thr_info *thr, struct work **work, struct avalon_result *ar, uint32_t *nonce) { struct cgpu_info *avalon; struct avalon_info *info; int avalon_get_work_count, i; if (unlikely(!work)) return -1; avalon = thr->cgpu; info = avalon_info[avalon->device_id]; avalon_get_work_count = info->miner_count; for (i = 0; i < avalon_get_work_count; i++) { if (work[i] && !memcmp(ar->data, work[i]->data + 64, 12) && !memcmp(ar->midstate, work[i]->midstate, 32)) break; } if (i == avalon_get_work_count) return -1; info->matching_work[i]++; *nonce = htole32(ar->nonce); applog(LOG_DEBUG, "Avalon: match to work[%d](%p): %d",i, work[i], info->matching_work[i]); return i; } static int avalon_reset(int fd, struct avalon_result *ar) { struct avalon_task at; uint8_t *buf; int ret, i = 0; struct timespec p; avalon_init_task(&at, 1, 0, AVALON_DEFAULT_FAN_MAX_PWM, AVALON_DEFAULT_TIMEOUT, AVALON_DEFAULT_ASIC_NUM, AVALON_DEFAULT_MINER_NUM, 0, 0, AVALON_DEFAULT_FREQUENCY); ret = avalon_send_task(fd, &at, NULL); if (ret == AVA_SEND_ERROR) return 1; avalon_get_result(fd, ar, NULL, NULL); buf = (uint8_t *)ar; /* Sometimes there is one extra 0 byte for some reason in the buffer, * so work around it. */ if (buf[0] == 0) buf = (uint8_t *)(ar + 1); if (buf[0] == 0xAA && buf[1] == 0x55 && buf[2] == 0xAA && buf[3] == 0x55) { for (i = 4; i < 11; i++) if (buf[i] != 0) break; } p.tv_sec = 0; p.tv_nsec = AVALON_RESET_PITCH; nanosleep(&p, NULL); if (i != 11) { applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?" " (%d: %02x %02x %02x %02x)", i, buf[0], buf[1], buf[2], buf[3]); /* FIXME: return 1; */ } else applog(LOG_WARNING, "Avalon: Reset succeeded"); return 0; } static void avalon_idle(struct cgpu_info *avalon) { int i, ret; struct avalon_task at; int fd = avalon->device_fd; struct avalon_info *info = avalon_info[avalon->device_id]; int avalon_get_work_count = info->miner_count; i = 0; while (true) { avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, info->frequency); ret = avalon_send_task(fd, &at, avalon); if (unlikely(ret == AVA_SEND_ERROR || (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == avalon_get_work_count * 2)))) { applog(LOG_ERR, "AVA%i: Comms error", avalon->device_id); return; } if (i + 1 == avalon_get_work_count * 2) break; if (ret == AVA_SEND_BUFFER_FULL) break; i++; } applog(LOG_ERR, "Avalon: Goto idle mode"); } static void get_options(int this_option_offset, int *baud, int *miner_count, int *asic_count, int *timeout, int *frequency) { char err_buf[BUFSIZ+1]; char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2, *colon3, *colon4; size_t max; int i, tmp; if (opt_avalon_options == NULL) buf[0] = '\0'; else { ptr = opt_avalon_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } *baud = AVALON_IO_SPEED; *miner_count = AVALON_DEFAULT_MINER_NUM - 8; *asic_count = AVALON_DEFAULT_ASIC_NUM; *timeout = AVALON_DEFAULT_TIMEOUT; *frequency = AVALON_DEFAULT_FREQUENCY; if (!(*buf)) return; colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; tmp = atoi(buf); switch (tmp) { case 115200: *baud = 115200; break; case 57600: *baud = 57600; break; case 38400: *baud = 38400; break; case 19200: *baud = 19200; break; default: sprintf(err_buf, "Invalid avalon-options for baud (%s) " "must be 115200, 57600, 38400 or 19200", buf); quit(1, err_buf); } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { tmp = atoi(colon); if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) { *miner_count = tmp; } else { sprintf(err_buf, "Invalid avalon-options for " "miner_count (%s) must be 1 ~ %d", colon, AVALON_DEFAULT_MINER_NUM); quit(1, err_buf); } } if (colon2 && *colon2) { colon3 = strchr(colon2, ':'); if (colon3) *(colon3++) = '\0'; tmp = atoi(colon2); if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM) *asic_count = tmp; else { sprintf(err_buf, "Invalid avalon-options for " "asic_count (%s) must be 1 ~ %d", colon2, AVALON_DEFAULT_ASIC_NUM); quit(1, err_buf); } if (colon3 && *colon3) { colon4 = strchr(colon3, ':'); if (colon4) *(colon4++) = '\0'; tmp = atoi(colon3); if (tmp > 0 && tmp <= 0xff) *timeout = tmp; else { sprintf(err_buf, "Invalid avalon-options for " "timeout (%s) must be 1 ~ %d", colon3, 0xff); quit(1, err_buf); } if (colon4 && *colon4) { tmp = atoi(colon4); switch (tmp) { case 256: case 270: case 282: case 300: *frequency = tmp; break; default: sprintf(err_buf, "Invalid avalon-options for " "frequency must be 256/270/282/300"); quit(1, err_buf); } } } } } } static bool avalon_detect_one(const char *devpath) { struct avalon_info *info; struct avalon_result ar; int fd, ret; int baud, miner_count, asic_count, timeout, frequency = 0; struct cgpu_info *avalon; int this_option_offset = ++option_offset; get_options(this_option_offset, &baud, &miner_count, &asic_count, &timeout, &frequency); applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s " "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)", devpath, baud, miner_count, asic_count, timeout, frequency); fd = avalon_open2(devpath, baud, true); if (unlikely(fd == -1)) { applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath); return false; } /* We have a real Avalon! */ avalon = calloc(1, sizeof(struct cgpu_info)); avalon->drv = &avalon_drv; avalon->device_path = strdup(devpath); avalon->device_fd = fd; avalon->threads = AVALON_MINER_THREADS; add_cgpu(avalon); ret = avalon_reset(fd, &ar); if (ret) { ; /* FIXME: I think IT IS avalon and wait on reset; * avalon_close(fd); * return false; */ } avalon_info = realloc(avalon_info, sizeof(struct avalon_info *) * (total_devices + 1)); applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d", devpath, avalon->device_id); avalon_info[avalon->device_id] = (struct avalon_info *) malloc(sizeof(struct avalon_info)); if (unlikely(!(avalon_info[avalon->device_id]))) quit(1, "Failed to malloc avalon_info"); info = avalon_info[avalon->device_id]; memset(info, 0, sizeof(struct avalon_info)); info->baud = baud; info->miner_count = miner_count; info->asic_count = asic_count; info->timeout = timeout; info->read_count = ((float)info->timeout * AVALON_HASH_TIME_FACTOR * AVALON_TIME_FACTOR) / (float)info->miner_count; info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; info->temp_max = 0; /* This is for check the temp/fan every 3~4s */ info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1; if (info->temp_history_count <= 0) info->temp_history_count = 1; info->temp_history_index = 0; info->temp_sum = 0; info->temp_old = 0; info->frequency = frequency; /* Do something for failed reset ? */ if (0) { /* Set asic to idle mode after detect */ avalon_idle(avalon); avalon->device_fd = -1; avalon_close(fd); } return true; } static inline void avalon_detect() { serial_detect(&avalon_drv, avalon_detect_one); } static void __avalon_init(struct cgpu_info *avalon) { applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path); } static void avalon_init(struct cgpu_info *avalon) { struct avalon_result ar; int fd, ret; avalon->device_fd = -1; fd = avalon_open(avalon->device_path, avalon_info[avalon->device_id]->baud); if (unlikely(fd == -1)) { applog(LOG_ERR, "Avalon: Failed to open on %s", avalon->device_path); return; } ret = avalon_reset(fd, &ar); if (ret) { avalon_close(fd); return; } avalon->device_fd = fd; __avalon_init(avalon); } static bool avalon_prepare(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon_info[avalon->device_id]; struct timeval now; avalon->works = calloc(info->miner_count * sizeof(struct work *), 1); if (!avalon->works) quit(1, "Failed to calloc avalon works in avalon_prepare"); __avalon_init(avalon); gettimeofday(&now, NULL); get_datestamp(avalon->init, &now); return true; } static void avalon_free_work(struct thr_info *thr, struct work **works) { struct cgpu_info *avalon; struct avalon_info *info; int i; if (unlikely(!works)) return; avalon = thr->cgpu; info = avalon_info[avalon->device_id]; for (i = 0; i < info->miner_count; i++) { if (likely(works[i])) { work_completed(avalon, works[i]); works[i] = NULL; } } } static void do_avalon_close(struct thr_info *thr) { struct avalon_result ar; struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon_info[avalon->device_id]; sleep(1); avalon_reset(avalon->device_fd, &ar); avalon_idle(avalon); avalon_close(avalon->device_fd); avalon->device_fd = -1; info->no_matching_work = 0; avalon_free_work(thr, info->bulk0); avalon_free_work(thr, info->bulk1); avalon_free_work(thr, info->bulk2); avalon_free_work(thr, info->bulk3); } static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg) { int max; info->fan0 = ar->fan0 * AVALON_FAN_FACTOR; info->fan1 = ar->fan1 * AVALON_FAN_FACTOR; info->fan2 = ar->fan2 * AVALON_FAN_FACTOR; info->temp0 = ar->temp0; info->temp1 = ar->temp1; info->temp2 = ar->temp2; if (ar->temp0 & 0x80) { ar->temp0 &= 0x7f; info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1); } if (ar->temp1 & 0x80) { ar->temp1 &= 0x7f; info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1); } if (ar->temp2 & 0x80) { ar->temp2 &= 0x7f; info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1); } *temp_avg = info->temp2; max = info->temp_max; if (info->temp0 > max) max = info->temp0; if (info->temp1 > max) max = info->temp1; if (info->temp2 > max) max = info->temp2; if (max >= 100) { /* FIXME: fix the root cause on fpga controller firmware */ if (opt_debug) { applog(LOG_DEBUG, "Avalon: temp_max: %d", max); hexdump((uint8_t *)ar, AVALON_READ_SIZE); } return; } info->temp_max = max; } static inline void adjust_fan(struct avalon_info *info) { int temp_new; temp_new = info->temp_sum / info->temp_history_count; if (temp_new < 35) { info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; info->temp_old = temp_new; } else if (temp_new > 55) { info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM; info->temp_old = temp_new; } else if (abs(temp_new - info->temp_old) >= 2) { info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4; info->temp_old = temp_new; } } static bool avalon_fill(struct cgpu_info *avalon) { struct work *work = get_queued(avalon); if (unlikely(!work)) return false; if (avalon->queued == avalon_info[avalon->device_id]->miner_count) return true; avalon->works[avalon->queued++] = work; if (avalon->queued == avalon_info[avalon->device_id]->miner_count) return true; return false; } static int64_t avalon_scanhash(struct thr_info *thr) { struct cgpu_info *avalon; struct work **works; int fd, ret, full; int64_t scanret = 0; struct avalon_info *info; struct avalon_task at; struct avalon_result ar; int i, work_i0, work_i1, work_i2, work_i3; int avalon_get_work_count; struct timeval tv_start, tv_finish, elapsed; uint32_t nonce; int64_t hash_count; static int first_try = 0; int result_count, result_wrong; avalon = thr->cgpu; works = avalon->works; info = avalon_info[avalon->device_id]; avalon_get_work_count = info->miner_count; if (unlikely(avalon->device_fd == -1)) { if (!avalon_prepare(thr)) { applog(LOG_ERR, "AVA%i: Comms error(open)", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); /* fail the device if the reopen attempt fails */ scanret = -1; goto out; } } fd = avalon->device_fd; #ifndef WIN32 tcflush(fd, TCOFLUSH); #endif for (i = 0; i < avalon_get_work_count; i++) { info->bulk0[i] = info->bulk1[i]; info->bulk1[i] = info->bulk2[i]; info->bulk2[i] = info->bulk3[i]; info->bulk3[i] = works[i]; applog(LOG_DEBUG, "Avalon: bulk0/1/2 buffer [%d]: %p, %p, %p, %p", i, info->bulk0[i], info->bulk1[i], info->bulk2[i], info->bulk3[i]); } i = 0; while (true) { avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 0, info->frequency); avalon_create_task(&at, works[i]); ret = avalon_send_task(fd, &at, avalon); if (unlikely(ret == AVA_SEND_ERROR || (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == avalon_get_work_count) && first_try))) { avalon_free_work(thr, info->bulk0); avalon_free_work(thr, info->bulk1); avalon_free_work(thr, info->bulk2); avalon_free_work(thr, info->bulk3); do_avalon_close(thr); applog(LOG_ERR, "AVA%i: Comms error(buffer)", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); first_try = 0; sleep(1); avalon_init(avalon); goto out; /* This should never happen */ } if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == avalon_get_work_count)) { first_try = 1; ret = 0xffffffff; goto out; } works[i]->blk.nonce = 0xffffffff; if (ret == AVA_SEND_BUFFER_FULL) break; i++; } if (unlikely(first_try)) first_try = 0; elapsed.tv_sec = elapsed.tv_usec = 0; gettimeofday(&tv_start, NULL); result_count = 0; result_wrong = 0; hash_count = 0; while (true) { work_i0 = work_i1 = work_i2 = work_i3 = -1; full = avalon_buffer_full(fd); applog(LOG_DEBUG, "Avalon: Buffer full: %s", ((full == AVA_BUFFER_FULL) ? "Yes" : "No")); if (unlikely(full == AVA_BUFFER_EMPTY)) break; ret = avalon_get_result(fd, &ar, thr, &tv_finish); if (unlikely(ret == AVA_GETS_ERROR)) { avalon_free_work(thr, info->bulk0); avalon_free_work(thr, info->bulk1); avalon_free_work(thr, info->bulk2); avalon_free_work(thr, info->bulk3); do_avalon_close(thr); applog(LOG_ERR, "AVA%i: Comms error(read)", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); goto out; } if (unlikely(ret == AVA_GETS_TIMEOUT)) { timersub(&tv_finish, &tv_start, &elapsed); applog(LOG_DEBUG, "Avalon: no nonce in (%ld.%06lds)", elapsed.tv_sec, elapsed.tv_usec); continue; } if (unlikely(ret == AVA_GETS_RESTART)) { avalon_free_work(thr, info->bulk0); avalon_free_work(thr, info->bulk1); avalon_free_work(thr, info->bulk2); avalon_free_work(thr, info->bulk3); break; } result_count++; work_i0 = avalon_decode_nonce(thr, info->bulk0, &ar, &nonce); if (work_i0 < 0) { work_i1 = avalon_decode_nonce(thr, info->bulk1, &ar, &nonce); if (work_i1 < 0) { work_i2 = avalon_decode_nonce(thr, info->bulk2, &ar, &nonce); if (work_i2 < 0) { work_i3 = avalon_decode_nonce(thr, info->bulk3, &ar, &nonce); if (work_i3 < 0) { info->no_matching_work++; result_wrong++; if (opt_debug) { timersub(&tv_finish, &tv_start, &elapsed); applog(LOG_DEBUG,"Avalon: no matching work: %d" " (%ld.%06lds)", info->no_matching_work, elapsed.tv_sec, elapsed.tv_usec); } continue; } else submit_nonce(thr, info->bulk3[work_i3], nonce); } else submit_nonce(thr, info->bulk2[work_i2], nonce); } else submit_nonce(thr, info->bulk1[work_i1], nonce); } else submit_nonce(thr, info->bulk0[work_i0], nonce); hash_count += nonce; if (opt_debug) { timersub(&tv_finish, &tv_start, &elapsed); applog(LOG_DEBUG, "Avalon: nonce = 0x%08x = 0x%08llx hashes " "(%ld.%06lds)", nonce, hash_count, elapsed.tv_sec, elapsed.tv_usec); } } if (result_wrong && result_count == result_wrong) { /* This mean FPGA controller give all wrong result * try to reset the Avalon */ avalon_free_work(thr, info->bulk0); avalon_free_work(thr, info->bulk1); avalon_free_work(thr, info->bulk2); avalon_free_work(thr, info->bulk3); do_avalon_close(thr); applog(LOG_ERR, "AVA%i: FPGA controller mess up", avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); do_avalon_close(thr); sleep(1); avalon_init(avalon); goto out; } avalon_free_work(thr, info->bulk0); record_temp_fan(info, &ar, &(avalon->temp)); applog(LOG_INFO, "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t" "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC", info->fan0, info->fan1, info->fan2, info->temp0, info->temp1, info->temp2, info->temp_max); info->temp_history_index++; info->temp_sum += info->temp2; applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d", info->temp_history_index, info->temp_history_count, info->temp_old); if (info->temp_history_index == info->temp_history_count) { adjust_fan(info); info->temp_history_index = 0; info->temp_sum = 0; } /* * FIXME: Each work split to 10 pieces, each piece send to a * asic(256MHs). one work can be mulit-nonce back. it is not * easy calculate correct hash on such situation. so I simplely * add each nonce to hash_count. base on Utility/m hash_count*2 * give a very good result. * * Any patch will be great. */ scanret = hash_count * 2; out: avalon_free_work(thr, avalon->works); avalon->queued = 0; return scanret; } static struct api_data *avalon_api_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct avalon_info *info = avalon_info[cgpu->device_id]; root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "miner_count", &(info->miner_count),false); root = api_add_int(root, "asic_count", &(info->asic_count), false); root = api_add_int(root, "read_count", &(info->read_count), false); root = api_add_int(root, "timeout", &(info->timeout), false); root = api_add_int(root, "frequency", &(info->frequency), false); root = api_add_int(root, "fan1", &(info->fan0), false); root = api_add_int(root, "fan2", &(info->fan1), false); root = api_add_int(root, "fan3", &(info->fan2), false); root = api_add_int(root, "temp1", &(info->temp0), false); root = api_add_int(root, "temp2", &(info->temp1), false); root = api_add_int(root, "temp3", &(info->temp2), false); root = api_add_int(root, "temp_max", &(info->temp_max), false); root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false); root = api_add_int(root, "matching_work_count1", &(info->matching_work[0]), false); root = api_add_int(root, "matching_work_count2", &(info->matching_work[1]), false); root = api_add_int(root, "matching_work_count3", &(info->matching_work[2]), false); root = api_add_int(root, "matching_work_count4", &(info->matching_work[3]), false); root = api_add_int(root, "matching_work_count5", &(info->matching_work[4]), false); root = api_add_int(root, "matching_work_count6", &(info->matching_work[5]), false); root = api_add_int(root, "matching_work_count7", &(info->matching_work[6]), false); root = api_add_int(root, "matching_work_count8", &(info->matching_work[7]), false); root = api_add_int(root, "matching_work_count9", &(info->matching_work[8]), false); root = api_add_int(root, "matching_work_count10", &(info->matching_work[9]), false); root = api_add_int(root, "matching_work_count11", &(info->matching_work[10]), false); root = api_add_int(root, "matching_work_count12", &(info->matching_work[11]), false); root = api_add_int(root, "matching_work_count13", &(info->matching_work[12]), false); root = api_add_int(root, "matching_work_count14", &(info->matching_work[13]), false); root = api_add_int(root, "matching_work_count15", &(info->matching_work[14]), false); root = api_add_int(root, "matching_work_count16", &(info->matching_work[15]), false); root = api_add_int(root, "matching_work_count17", &(info->matching_work[16]), false); root = api_add_int(root, "matching_work_count18", &(info->matching_work[17]), false); root = api_add_int(root, "matching_work_count19", &(info->matching_work[18]), false); root = api_add_int(root, "matching_work_count20", &(info->matching_work[19]), false); root = api_add_int(root, "matching_work_count21", &(info->matching_work[20]), false); root = api_add_int(root, "matching_work_count22", &(info->matching_work[21]), false); root = api_add_int(root, "matching_work_count23", &(info->matching_work[22]), false); root = api_add_int(root, "matching_work_count24", &(info->matching_work[23]), false); return root; } static void avalon_shutdown(struct thr_info *thr) { do_avalon_close(thr); } struct device_drv avalon_drv = { .dname = "avalon", .name = "AVA", .drv_detect = avalon_detect, .thread_prepare = avalon_prepare, .hash_work = hash_queued_work, .queue_full = avalon_fill, .scanwork = avalon_scanhash, .get_api_stats = avalon_api_stats, .reinit_device = avalon_init, .thread_shutdown = avalon_shutdown, };