/* * Copyright 2013 Con Kolivas * Copyright 2012-2013 Xiangfu * Copyright 2012 Luke Dashjr * Copyright 2012 Andrew Smith * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #include #include #include #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif #else #include "compat.h" #include #include #endif #include "elist.h" #include "miner.h" #include "usbutils.h" #include "driver-avalon.h" #include "hexdump.c" #include "util.h" int opt_avalon_temp = AVALON_TEMP_TARGET; int opt_avalon_overheat = AVALON_TEMP_OVERHEAT; int opt_avalon_fan_min = AVALON_DEFAULT_FAN_MIN_PWM; int opt_avalon_fan_max = AVALON_DEFAULT_FAN_MAX_PWM; int opt_avalon_freq_min = AVALON_MIN_FREQUENCY; int opt_avalon_freq_max = AVALON_MAX_FREQUENCY; int opt_bitburner_core_voltage = BITBURNER_DEFAULT_CORE_VOLTAGE; bool opt_avalon_auto; static int option_offset = -1; struct device_drv avalon_drv; static int avalon_init_task(struct avalon_task *at, uint8_t reset, uint8_t ff, uint8_t fan, uint8_t timeout, uint8_t asic_num, uint8_t miner_num, uint8_t nonce_elf, uint8_t gate_miner, int frequency) { uint16_t *lefreq16; uint8_t *buf; static bool first = true; if (unlikely(!at)) return -1; if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0)) return -1; memset(at, 0, sizeof(struct avalon_task)); if (unlikely(reset)) { at->reset = 1; at->fan_eft = 1; at->timer_eft = 1; first = true; } at->flush_fifo = (ff ? 1 : 0); at->fan_eft = (fan ? 1 : 0); if (unlikely(first && !at->reset)) { at->fan_eft = 1; at->timer_eft = 1; first = false; } at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM); at->timeout_data = timeout; at->asic_num = asic_num; at->miner_num = miner_num; at->nonce_elf = nonce_elf; at->gate_miner_elf = 1; at->asic_pll = 1; if (unlikely(gate_miner)) { at-> gate_miner = 1; at->asic_pll = 0; } buf = (uint8_t *)at; buf[5] = 0x00; buf[8] = 0x74; buf[9] = 0x01; buf[10] = 0x00; buf[11] = 0x00; lefreq16 = (uint16_t *)&buf[6]; *lefreq16 = htole16(frequency * 8); return 0; } static inline void avalon_create_task(struct avalon_task *at, struct work *work) { memcpy(at->midstate, work->midstate, 32); memcpy(at->data, work->data + 64, 12); } static int avalon_write(struct cgpu_info *avalon, char *buf, ssize_t len, int ep) { int err, amount; err = usb_write(avalon, buf, len, &amount, ep); applog(LOG_DEBUG, "%s%i: usb_write got err %d", avalon->drv->name, avalon->device_id, err); if (unlikely(err != 0)) { applog(LOG_WARNING, "usb_write error on avalon_write"); return AVA_SEND_ERROR; } if (amount != len) { applog(LOG_WARNING, "usb_write length mismatch on avalon_write"); return AVA_SEND_ERROR; } return AVA_SEND_OK; } static int avalon_send_task(const struct avalon_task *at, struct cgpu_info *avalon) { uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM]; int delay, ret, i, ep = C_AVALON_TASK; struct avalon_info *info; cgtimer_t ts_start; uint32_t nonce_range; size_t nr_len; if (at->nonce_elf) nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num; else nr_len = AVALON_WRITE_SIZE; memcpy(buf, at, AVALON_WRITE_SIZE); if (at->nonce_elf) { nonce_range = (uint32_t)0xffffffff / at->asic_num; for (i = 0; i < at->asic_num; i++) { buf[AVALON_WRITE_SIZE + (i * 4) + 3] = (i * nonce_range & 0xff000000) >> 24; buf[AVALON_WRITE_SIZE + (i * 4) + 2] = (i * nonce_range & 0x00ff0000) >> 16; buf[AVALON_WRITE_SIZE + (i * 4) + 1] = (i * nonce_range & 0x0000ff00) >> 8; buf[AVALON_WRITE_SIZE + (i * 4) + 0] = (i * nonce_range & 0x000000ff) >> 0; } } #if defined(__BIG_ENDIAN__) || defined(MIPSEB) uint8_t tt = 0; tt = (buf[0] & 0x0f) << 4; tt |= ((buf[0] & 0x10) ? (1 << 3) : 0); tt |= ((buf[0] & 0x20) ? (1 << 2) : 0); tt |= ((buf[0] & 0x40) ? (1 << 1) : 0); tt |= ((buf[0] & 0x80) ? (1 << 0) : 0); buf[0] = tt; tt = (buf[4] & 0x0f) << 4; tt |= ((buf[4] & 0x10) ? (1 << 3) : 0); tt |= ((buf[4] & 0x20) ? (1 << 2) : 0); tt |= ((buf[4] & 0x40) ? (1 << 1) : 0); tt |= ((buf[4] & 0x80) ? (1 << 0) : 0); buf[4] = tt; #endif info = avalon->device_data; delay = nr_len * 10 * 1000000; delay = delay / info->baud; delay += 4000; if (at->reset) { ep = C_AVALON_RESET; nr_len = 1; } if (opt_debug) { applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len); hexdump(buf, nr_len); } cgsleep_prepare_r(&ts_start); ret = avalon_write(avalon, (char *)buf, nr_len, ep); cgsleep_us_r(&ts_start, delay); applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %dus", delay); return ret; } static bool avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar, struct work *work) { uint32_t nonce; info = avalon->device_data; info->matching_work[work->subid]++; nonce = htole32(ar->nonce); applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce); return submit_nonce(thr, work, nonce); } /* Wait until the ftdi chip returns a CTS saying we can send more data. */ static void wait_avalon_ready(struct cgpu_info *avalon) { while (avalon_buffer_full(avalon)) { cgsleep_ms(40); } } #define AVALON_CTS (1 << 4) static inline bool avalon_cts(char c) { return (c & AVALON_CTS); } static int avalon_read(struct cgpu_info *avalon, unsigned char *buf, size_t bufsize, int timeout, int ep) { size_t total = 0, readsize = bufsize + 2; char readbuf[AVALON_READBUF_SIZE]; int err, amount, ofs = 2, cp; err = usb_read_once_timeout(avalon, readbuf, readsize, &amount, timeout, ep); applog(LOG_DEBUG, "%s%i: Get avalon read got err %d", avalon->drv->name, avalon->device_id, err); if (amount < 2) goto out; /* The first 2 of every 64 bytes are status on FTDIRL */ while (amount > 2) { cp = amount - 2; if (cp > 62) cp = 62; memcpy(&buf[total], &readbuf[ofs], cp); total += cp; amount -= cp + 2; ofs += 64; } out: return total; } static int avalon_reset(struct cgpu_info *avalon, bool initial) { struct avalon_result ar; int ret, i, spare; struct avalon_task at; uint8_t *buf, *tmp; struct timespec p; struct avalon_info *info = avalon->device_data; /* Send reset, then check for result */ avalon_init_task(&at, 1, 0, AVALON_DEFAULT_FAN_MAX_PWM, AVALON_DEFAULT_TIMEOUT, AVALON_DEFAULT_ASIC_NUM, AVALON_DEFAULT_MINER_NUM, 0, 0, AVALON_DEFAULT_FREQUENCY); wait_avalon_ready(avalon); ret = avalon_send_task(&at, avalon); if (unlikely(ret == AVA_SEND_ERROR)) return -1; if (!initial) { applog(LOG_ERR, "%s%d reset sequence sent", avalon->drv->name, avalon->device_id); return 0; } ret = avalon_read(avalon, (unsigned char *)&ar, AVALON_READ_SIZE, AVALON_RESET_TIMEOUT, C_GET_AVALON_RESET); /* What do these sleeps do?? */ p.tv_sec = 0; p.tv_nsec = AVALON_RESET_PITCH; nanosleep(&p, NULL); /* Look for the first occurrence of 0xAA, the reset response should be: * AA 55 AA 55 00 00 00 00 00 00 */ spare = ret - 10; buf = tmp = (uint8_t *)&ar; if (opt_debug) { applog(LOG_DEBUG, "%s%d reset: get:", avalon->drv->name, avalon->device_id); hexdump(tmp, AVALON_READ_SIZE); } for (i = 0; i <= spare; i++) { buf = &tmp[i]; if (buf[0] == 0xAA) break; } i = 0; if (buf[0] == 0xAA && buf[1] == 0x55 && buf[2] == 0xAA && buf[3] == 0x55) { for (i = 4; i < 11; i++) if (buf[i] != 0) break; } if (i != 11) { applog(LOG_ERR, "%s%d: Reset failed! not an Avalon?" " (%d: %02x %02x %02x %02x)", avalon->drv->name, avalon->device_id, i, buf[0], buf[1], buf[2], buf[3]); /* FIXME: return 1; */ } else { /* buf[44]: minor * buf[45]: day * buf[46]: year,month, d6: 201306 */ info->ctlr_ver = ((buf[46] >> 4) + 2000) * 1000000 + (buf[46] & 0x0f) * 10000 + buf[45] * 100 + buf[44]; applog(LOG_WARNING, "%s%d: Reset succeeded (Controller version: %d)", avalon->drv->name, avalon->device_id, info->ctlr_ver); } return 0; } static int avalon_calc_timeout(int frequency) { return AVALON_TIMEOUT_FACTOR / frequency; } static bool get_options(int this_option_offset, int *baud, int *miner_count, int *asic_count, int *timeout, int *frequency) { char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2, *colon3, *colon4; bool timeout_default; size_t max; int i, tmp; if (opt_avalon_options == NULL) buf[0] = '\0'; else { ptr = opt_avalon_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } if (!(*buf)) return false; colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; tmp = atoi(buf); switch (tmp) { case 115200: *baud = 115200; break; case 57600: *baud = 57600; break; case 38400: *baud = 38400; break; case 19200: *baud = 19200; break; default: quit(1, "Invalid avalon-options for baud (%s) " "must be 115200, 57600, 38400 or 19200", buf); } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { tmp = atoi(colon); if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) { *miner_count = tmp; } else { quit(1, "Invalid avalon-options for " "miner_count (%s) must be 1 ~ %d", colon, AVALON_DEFAULT_MINER_NUM); } } if (colon2 && *colon2) { colon3 = strchr(colon2, ':'); if (colon3) *(colon3++) = '\0'; tmp = atoi(colon2); if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM) *asic_count = tmp; else { quit(1, "Invalid avalon-options for " "asic_count (%s) must be 1 ~ %d", colon2, AVALON_DEFAULT_ASIC_NUM); } timeout_default = false; if (colon3 && *colon3) { colon4 = strchr(colon3, ':'); if (colon4) *(colon4++) = '\0'; if (tolower(*colon3) == 'd') timeout_default = true; else { tmp = atoi(colon3); if (tmp > 0 && tmp <= 0xff) *timeout = tmp; else { quit(1, "Invalid avalon-options for " "timeout (%s) must be 1 ~ %d", colon3, 0xff); } } if (colon4 && *colon4) { tmp = atoi(colon4); if (tmp < AVALON_MIN_FREQUENCY || tmp > AVALON_MAX_FREQUENCY) { quit(1, "Invalid avalon-options for frequency, must be %d <= frequency <= %d", AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY); } *frequency = tmp; if (timeout_default) *timeout = avalon_calc_timeout(*frequency); } } } } return true; } char *set_avalon_fan(char *arg) { int val1, val2, ret; ret = sscanf(arg, "%d-%d", &val1, &val2); if (ret < 1) return "No values passed to avalon-fan"; if (ret == 1) val2 = val1; if (val1 < 0 || val1 > 100 || val2 < 0 || val2 > 100 || val2 < val1) return "Invalid value passed to avalon-fan"; opt_avalon_fan_min = val1 * AVALON_PWM_MAX / 100; opt_avalon_fan_max = val2 * AVALON_PWM_MAX / 100; return NULL; } char *set_avalon_freq(char *arg) { int val1, val2, ret; ret = sscanf(arg, "%d-%d", &val1, &val2); if (ret < 1) return "No values passed to avalon-freq"; if (ret == 1) val2 = val1; if (val1 < AVALON_MIN_FREQUENCY || val1 > AVALON_MAX_FREQUENCY || val2 < AVALON_MIN_FREQUENCY || val2 > AVALON_MAX_FREQUENCY || val2 < val1) return "Invalid value passed to avalon-freq"; opt_avalon_freq_min = val1; opt_avalon_freq_max = val2; return NULL; } static void avalon_idle(struct cgpu_info *avalon, struct avalon_info *info) { int i; wait_avalon_ready(avalon); /* Send idle to all miners */ for (i = 0; i < info->miner_count; i++) { struct avalon_task at; if (unlikely(avalon_buffer_full(avalon))) break; info->idle++; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, info->frequency); avalon_send_task(&at, avalon); } applog(LOG_WARNING, "%s%i: Idling %d miners", avalon->drv->name, avalon->device_id, i); wait_avalon_ready(avalon); } static void avalon_initialise(struct cgpu_info *avalon) { int err, interface; if (avalon->usbinfo.nodev) return; interface = usb_interface(avalon); // Reset err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_RESET, interface, C_RESET); applog(LOG_DEBUG, "%s%i: reset got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set latency err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_LATENCY, AVALON_LATENCY, interface, C_LATENCY); applog(LOG_DEBUG, "%s%i: latency got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set data err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, FTDI_VALUE_DATA_AVA, interface, C_SETDATA); applog(LOG_DEBUG, "%s%i: data got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set the baud err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_AVA, (FTDI_INDEX_BAUD_AVA & 0xff00) | interface, C_SETBAUD); applog(LOG_DEBUG, "%s%i: setbaud got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set Modem Control err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM, interface, C_SETMODEM); applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set Flow Control err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW, interface, C_SETFLOW); applog(LOG_DEBUG, "%s%i: setflowctrl got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; /* Avalon repeats the following */ // Set Modem Control err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM, interface, C_SETMODEM); applog(LOG_DEBUG, "%s%i: setmodemctrl 2 got err %d", avalon->drv->name, avalon->device_id, err); if (avalon->usbinfo.nodev) return; // Set Flow Control err = usb_transfer(avalon, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW, interface, C_SETFLOW); applog(LOG_DEBUG, "%s%i: setflowctrl 2 got err %d", avalon->drv->name, avalon->device_id, err); } static bool bitburner_set_core_voltage(struct cgpu_info *avalon, int core_voltage) { uint8_t buf[2]; int err; if (usb_ident(avalon) == IDENT_BTB) { buf[0] = (uint8_t)core_voltage; buf[1] = (uint8_t)(core_voltage >> 8); err = usb_transfer_data(avalon, FTDI_TYPE_OUT, BITBURNER_REQUEST, BITBURNER_VALUE, BITBURNER_INDEX_SET_VOLTAGE, (uint32_t *)buf, sizeof(buf), C_BB_SET_VOLTAGE); if (unlikely(err < 0)) { applog(LOG_ERR, "%s%i: SetCoreVoltage failed: err = %d", avalon->drv->name, avalon->device_id, err); return false; } else { applog(LOG_WARNING, "%s%i: Core voltage set to %d millivolts", avalon->drv->name, avalon->device_id, core_voltage); } return true; } return false; } static int bitburner_get_core_voltage(struct cgpu_info *avalon) { uint8_t buf[2]; int err; int amount; if (usb_ident(avalon) == IDENT_BTB) { err = usb_transfer_read(avalon, FTDI_TYPE_IN, BITBURNER_REQUEST, BITBURNER_VALUE, BITBURNER_INDEX_GET_VOLTAGE, (char *)buf, sizeof(buf), &amount, C_BB_GET_VOLTAGE); if (unlikely(err != 0 || amount != 2)) { applog(LOG_ERR, "%s%i: GetCoreVoltage failed: err = %d, amount = %d", avalon->drv->name, avalon->device_id, err, amount); return 0; } else { return (int)(buf[0] + ((unsigned int)buf[1] << 8)); } } else { return 0; } } static void bitburner_get_version(struct cgpu_info *avalon) { struct avalon_info *info = avalon->device_data; uint8_t buf[3]; int err; int amount; err = usb_transfer_read(avalon, FTDI_TYPE_IN, BITBURNER_REQUEST, BITBURNER_VALUE, BITBURNER_INDEX_GET_VERSION, (char *)buf, sizeof(buf), &amount, C_GETVERSION); if (unlikely(err != 0 || amount != sizeof(buf))) { applog(LOG_DEBUG, "%s%i: GetVersion failed: err=%d, amt=%d assuming %d.%d.%d", avalon->drv->name, avalon->device_id, err, amount, BITBURNER_VERSION1, BITBURNER_VERSION2, BITBURNER_VERSION3); info->version1 = BITBURNER_VERSION1; info->version2 = BITBURNER_VERSION2; info->version3 = BITBURNER_VERSION3; } else { info->version1 = buf[0]; info->version2 = buf[1]; info->version3 = buf[2]; } } static bool avalon_detect_one(libusb_device *dev, struct usb_find_devices *found) { int baud, miner_count, asic_count, timeout, frequency; int this_option_offset = ++option_offset; struct avalon_info *info; struct cgpu_info *avalon; bool configured; int ret; avalon = usb_alloc_cgpu(&avalon_drv, AVALON_MINER_THREADS); baud = AVALON_IO_SPEED; miner_count = AVALON_DEFAULT_MINER_NUM; asic_count = AVALON_DEFAULT_ASIC_NUM; timeout = AVALON_DEFAULT_TIMEOUT; frequency = AVALON_DEFAULT_FREQUENCY; configured = get_options(this_option_offset, &baud, &miner_count, &asic_count, &timeout, &frequency); if (!usb_init(avalon, dev, found)) goto shin; /* Even though this is an FTDI type chip, we want to do the parsing * all ourselves so set it to std usb type */ avalon->usbdev->usb_type = USB_TYPE_STD; usb_set_pps(avalon, AVALON_USB_PACKETSIZE); /* We have a real Avalon! */ avalon_initialise(avalon); avalon->device_data = calloc(sizeof(struct avalon_info), 1); if (unlikely(!(avalon->device_data))) quit(1, "Failed to calloc avalon_info data"); info = avalon->device_data; if (configured) { info->baud = baud; info->miner_count = miner_count; info->asic_count = asic_count; info->timeout = timeout; info->frequency = frequency; } else { info->baud = AVALON_IO_SPEED; info->miner_count = AVALON_DEFAULT_MINER_NUM; info->asic_count = AVALON_DEFAULT_ASIC_NUM; info->timeout = AVALON_DEFAULT_TIMEOUT; info->frequency = AVALON_DEFAULT_FREQUENCY; } info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM; info->temp_max = 0; /* This is for check the temp/fan every 3~4s */ info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1; if (info->temp_history_count <= 0) info->temp_history_count = 1; info->temp_history_index = 0; info->temp_sum = 0; info->temp_old = 0; if (!add_cgpu(avalon)) goto unshin; ret = avalon_reset(avalon, true); if (ret && !configured) goto unshin; update_usb_stats(avalon); avalon_idle(avalon, info); applog(LOG_DEBUG, "Avalon Detected: %s " "(miner_count=%d asic_count=%d timeout=%d frequency=%d)", avalon->device_path, info->miner_count, info->asic_count, info->timeout, info->frequency); if (usb_ident(avalon) == IDENT_BTB) { if (opt_bitburner_core_voltage < BITBURNER_MIN_COREMV || opt_bitburner_core_voltage > BITBURNER_MAX_COREMV) { quit(1, "Invalid bitburner-voltage %d must be %dmv - %dmv", opt_bitburner_core_voltage, BITBURNER_MIN_COREMV, BITBURNER_MAX_COREMV); } else bitburner_set_core_voltage(avalon, opt_bitburner_core_voltage); bitburner_get_version(avalon); } return true; unshin: usb_uninit(avalon); shin: free(avalon->device_data); avalon->device_data = NULL; avalon = usb_free_cgpu(avalon); return false; } static void avalon_detect(void) { usb_detect(&avalon_drv, avalon_detect_one); } static void avalon_init(struct cgpu_info *avalon) { applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path); } static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar) { return clone_queued_work_bymidstate(avalon, (char *)ar->midstate, 32, (char *)ar->data, 64, 12); } static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar); static void avalon_inc_nvw(struct avalon_info *info, struct thr_info *thr) { applog(LOG_INFO, "%s%d: No matching work - HW error", thr->cgpu->drv->name, thr->cgpu->device_id); inc_hw_errors(thr); info->no_matching_work++; } static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info, struct thr_info *thr, char *buf, int *offset) { int i, spare = *offset - AVALON_READ_SIZE; bool found = false; for (i = 0; i <= spare; i++) { struct avalon_result *ar; struct work *work; ar = (struct avalon_result *)&buf[i]; work = avalon_valid_result(avalon, ar); if (work) { bool gettemp = false; found = true; if (avalon_decode_nonce(thr, avalon, info, ar, work)) { mutex_lock(&info->lock); if (!info->nonces++) gettemp = true; info->auto_nonces++; mutex_unlock(&info->lock); } else if (opt_avalon_auto) { mutex_lock(&info->lock); info->auto_hw++; mutex_unlock(&info->lock); } free_work(work); if (gettemp) avalon_update_temps(avalon, info, ar); break; } } if (!found) { spare = *offset - AVALON_READ_SIZE; /* We are buffering and haven't accumulated one more corrupt * work result. */ if (spare < (int)AVALON_READ_SIZE) return; avalon_inc_nvw(info, thr); } else { spare = AVALON_READ_SIZE + i; if (i) { if (i >= (int)AVALON_READ_SIZE) avalon_inc_nvw(info, thr); else applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", i); } } *offset -= spare; memmove(buf, buf + spare, *offset); } static void avalon_running_reset(struct cgpu_info *avalon, struct avalon_info *info) { avalon_reset(avalon, false); avalon_idle(avalon, info); avalon->results = 0; info->reset = false; } static void *avalon_get_results(void *userdata) { struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct avalon_info *info = avalon->device_data; const int rsize = AVALON_FTDI_READSIZE; char readbuf[AVALON_READBUF_SIZE]; struct thr_info *thr = info->thr; cgtimer_t ts_start; int offset = 0, ret = 0; char threadname[24]; snprintf(threadname, 24, "ava_recv/%d", avalon->device_id); RenameThread(threadname); cgsleep_prepare_r(&ts_start); while (likely(!avalon->shutdown)) { unsigned char buf[rsize]; if (offset >= (int)AVALON_READ_SIZE) avalon_parse_results(avalon, info, thr, readbuf, &offset); if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) { /* This should never happen */ applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer"); offset = 0; } if (unlikely(info->reset)) { avalon_running_reset(avalon, info); /* Discard anything in the buffer */ offset = 0; } /* As the usb read returns after just 1ms, sleep long enough * to leave the interface idle for writes to occur, but do not * sleep if we have been receiving data, and we do not yet have * a full result as more may be coming. */ if (ret < 1 || offset == 0) cgsleep_ms_r(&ts_start, AVALON_READ_TIMEOUT); cgsleep_prepare_r(&ts_start); ret = avalon_read(avalon, buf, rsize, AVALON_READ_TIMEOUT, C_AVALON_READ); if (ret < 1) continue; if (opt_debug) { applog(LOG_DEBUG, "Avalon: get:"); hexdump((uint8_t *)buf, ret); } memcpy(&readbuf[offset], &buf, ret); offset += ret; } return NULL; } static void avalon_rotate_array(struct cgpu_info *avalon) { avalon->queued = 0; if (++avalon->work_array >= AVALON_ARRAY_SIZE) avalon->work_array = 0; } static void bitburner_rotate_array(struct cgpu_info *avalon) { avalon->queued = 0; if (++avalon->work_array >= BITBURNER_ARRAY_SIZE) avalon->work_array = 0; } static void avalon_set_timeout(struct avalon_info *info) { info->timeout = avalon_calc_timeout(info->frequency); } static void avalon_set_freq(struct cgpu_info *avalon, int frequency) { struct avalon_info *info = avalon->device_data; info->frequency = frequency; if (info->frequency > opt_avalon_freq_max) info->frequency = opt_avalon_freq_max; if (info->frequency < opt_avalon_freq_min) info->frequency = opt_avalon_freq_min; avalon_set_timeout(info); applog(LOG_WARNING, "%s%i: Set frequency to %d, timeout %d", avalon->drv->name, avalon->device_id, info->frequency, info->timeout); } static void avalon_inc_freq(struct avalon_info *info) { info->frequency += 2; if (info->frequency > opt_avalon_freq_max) info->frequency = opt_avalon_freq_max; avalon_set_timeout(info); applog(LOG_NOTICE, "Avalon increasing frequency to %d, timeout %d", info->frequency, info->timeout); } static void avalon_dec_freq(struct avalon_info *info) { info->frequency -= 1; if (info->frequency < opt_avalon_freq_min) info->frequency = opt_avalon_freq_min; avalon_set_timeout(info); applog(LOG_NOTICE, "Avalon decreasing frequency to %d, timeout %d", info->frequency, info->timeout); } static void avalon_reset_auto(struct avalon_info *info) { info->auto_queued = info->auto_nonces = info->auto_hw = 0; } static void avalon_adjust_freq(struct avalon_info *info, struct cgpu_info *avalon) { if (opt_avalon_auto && info->auto_queued >= AVALON_AUTO_CYCLE) { mutex_lock(&info->lock); if (!info->optimal) { if (info->fan_pwm >= opt_avalon_fan_max) { applog(LOG_WARNING, "%s%i: Above optimal temperature, throttling", avalon->drv->name, avalon->device_id); avalon_dec_freq(info); } } else if (info->auto_nonces >= (AVALON_AUTO_CYCLE * 19 / 20) && info->auto_nonces <= (AVALON_AUTO_CYCLE * 21 / 20)) { int total = info->auto_nonces + info->auto_hw; /* Try to keep hw errors < 2% */ if (info->auto_hw * 100 < total) avalon_inc_freq(info); else if (info->auto_hw * 66 > total) avalon_dec_freq(info); } avalon_reset_auto(info); mutex_unlock(&info->lock); } } static void *avalon_send_tasks(void *userdata) { struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct avalon_info *info = avalon->device_data; const int avalon_get_work_count = info->miner_count; char threadname[24]; snprintf(threadname, 24, "ava_send/%d", avalon->device_id); RenameThread(threadname); while (likely(!avalon->shutdown)) { int start_count, end_count, i, j, ret; cgtimer_t ts_start; struct avalon_task at; bool idled = false; int64_t us_timeout; while (avalon_buffer_full(avalon)) cgsleep_ms(40); avalon_adjust_freq(info, avalon); /* A full nonce range */ us_timeout = 0x100000000ll / info->asic_count / info->frequency; cgsleep_prepare_r(&ts_start); mutex_lock(&info->qlock); start_count = avalon->work_array * avalon_get_work_count; end_count = start_count + avalon_get_work_count; for (i = start_count, j = 0; i < end_count; i++, j++) { if (avalon_buffer_full(avalon)) { applog(LOG_INFO, "%s%i: Buffer full after only %d of %d work queued", avalon->drv->name, avalon->device_id, j, avalon_get_work_count); break; } if (likely(j < avalon->queued && !info->overheat && avalon->works[i])) { avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 0, info->frequency); avalon_create_task(&at, avalon->works[i]); info->auto_queued++; } else { int idle_freq = info->frequency; if (!info->idle++) idled = true; if (unlikely(info->overheat && opt_avalon_auto)) idle_freq = AVALON_MIN_FREQUENCY; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, idle_freq); /* Reset the auto_queued count if we end up * idling any miners. */ avalon_reset_auto(info); } ret = avalon_send_task(&at, avalon); if (unlikely(ret == AVA_SEND_ERROR)) { applog(LOG_ERR, "%s%i: Comms error(buffer)", avalon->drv->name, avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); info->reset = true; break; } } avalon_rotate_array(avalon); pthread_cond_signal(&info->qcond); mutex_unlock(&info->qlock); if (unlikely(idled)) { applog(LOG_WARNING, "%s%i: Idled %d miners", avalon->drv->name, avalon->device_id, idled); } /* Sleep how long it would take to complete a full nonce range * at the current frequency using the clock_nanosleep function * timed from before we started loading new work so it will * fall short of the full duration. */ cgsleep_us_r(&ts_start, us_timeout); } return NULL; } static void *bitburner_send_tasks(void *userdata) { struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct avalon_info *info = avalon->device_data; const int avalon_get_work_count = info->miner_count; char threadname[24]; snprintf(threadname, 24, "ava_send/%d", avalon->device_id); RenameThread(threadname); while (likely(!avalon->shutdown)) { int start_count, end_count, i, j, ret; struct avalon_task at; bool idled = false; while (avalon_buffer_full(avalon)) cgsleep_ms(40); avalon_adjust_freq(info, avalon); /* Give other threads a chance to acquire qlock. */ i = 0; do { cgsleep_ms(40); } while (!avalon->shutdown && i++ < 15 && avalon->queued < avalon_get_work_count); mutex_lock(&info->qlock); start_count = avalon->work_array * avalon_get_work_count; end_count = start_count + avalon_get_work_count; for (i = start_count, j = 0; i < end_count; i++, j++) { while (avalon_buffer_full(avalon)) cgsleep_ms(40); if (likely(j < avalon->queued && !info->overheat && avalon->works[i])) { avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 0, info->frequency); avalon_create_task(&at, avalon->works[i]); info->auto_queued++; } else { int idle_freq = info->frequency; if (!info->idle++) idled = true; if (unlikely(info->overheat && opt_avalon_auto)) idle_freq = AVALON_MIN_FREQUENCY; avalon_init_task(&at, 0, 0, info->fan_pwm, info->timeout, info->asic_count, info->miner_count, 1, 1, idle_freq); /* Reset the auto_queued count if we end up * idling any miners. */ avalon_reset_auto(info); } ret = avalon_send_task(&at, avalon); if (unlikely(ret == AVA_SEND_ERROR)) { applog(LOG_ERR, "%s%i: Comms error(buffer)", avalon->drv->name, avalon->device_id); dev_error(avalon, REASON_DEV_COMMS_ERROR); info->reset = true; break; } } bitburner_rotate_array(avalon); pthread_cond_signal(&info->qcond); mutex_unlock(&info->qlock); if (unlikely(idled)) { applog(LOG_WARNING, "%s%i: Idled %d miners", avalon->drv->name, avalon->device_id, idled); } } return NULL; } static bool avalon_prepare(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; int array_size = AVALON_ARRAY_SIZE; void *(*write_thread_fn)(void *) = avalon_send_tasks; if (usb_ident(avalon) == IDENT_BTB) { array_size = BITBURNER_ARRAY_SIZE; write_thread_fn = bitburner_send_tasks; } free(avalon->works); avalon->works = calloc(info->miner_count * sizeof(struct work *), array_size); if (!avalon->works) quit(1, "Failed to calloc avalon works in avalon_prepare"); info->thr = thr; mutex_init(&info->lock); mutex_init(&info->qlock); if (unlikely(pthread_cond_init(&info->qcond, NULL))) quit(1, "Failed to pthread_cond_init avalon qcond"); if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon)) quit(1, "Failed to create avalon read_thr"); if (pthread_create(&info->write_thr, NULL, write_thread_fn, (void *)avalon)) quit(1, "Failed to create avalon write_thr"); avalon_init(avalon); return true; } static void do_avalon_close(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; pthread_join(info->read_thr, NULL); pthread_join(info->write_thr, NULL); avalon_running_reset(avalon, info); info->no_matching_work = 0; } static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg) { info->fan0 = ar->fan0 * AVALON_FAN_FACTOR; info->fan1 = ar->fan1 * AVALON_FAN_FACTOR; info->fan2 = ar->fan2 * AVALON_FAN_FACTOR; info->temp0 = ar->temp0; info->temp1 = ar->temp1; info->temp2 = ar->temp2; if (ar->temp0 & 0x80) { ar->temp0 &= 0x7f; info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1); } if (ar->temp1 & 0x80) { ar->temp1 &= 0x7f; info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1); } if (ar->temp2 & 0x80) { ar->temp2 &= 0x7f; info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1); } *temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1; if (info->temp0 > info->temp_max) info->temp_max = info->temp0; if (info->temp1 > info->temp_max) info->temp_max = info->temp1; if (info->temp2 > info->temp_max) info->temp_max = info->temp2; } static void temp_rise(struct avalon_info *info, int temp) { if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 3) { info->fan_pwm = AVALON_PWM_MAX; return; } if (temp >= opt_avalon_temp + AVALON_TEMP_HYSTERESIS * 2) info->fan_pwm += 10; else if (temp > opt_avalon_temp) info->fan_pwm += 5; else if (temp >= opt_avalon_temp - AVALON_TEMP_HYSTERESIS) info->fan_pwm += 1; else return; if (info->fan_pwm > opt_avalon_fan_max) info->fan_pwm = opt_avalon_fan_max; } static void temp_drop(struct avalon_info *info, int temp) { if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 3) { info->fan_pwm = opt_avalon_fan_min; return; } if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS * 2) info->fan_pwm -= 10; else if (temp <= opt_avalon_temp - AVALON_TEMP_HYSTERESIS) info->fan_pwm -= 5; else if (temp < opt_avalon_temp) info->fan_pwm -= 1; if (info->fan_pwm < opt_avalon_fan_min) info->fan_pwm = opt_avalon_fan_min; } static inline void adjust_fan(struct avalon_info *info) { int temp_new; temp_new = info->temp_sum / info->temp_history_count; if (temp_new > info->temp_old) temp_rise(info, temp_new); else if (temp_new < info->temp_old) temp_drop(info, temp_new); else { /* temp_new == info->temp_old */ if (temp_new > opt_avalon_temp) temp_rise(info, temp_new); else if (temp_new < opt_avalon_temp - AVALON_TEMP_HYSTERESIS) temp_drop(info, temp_new); } info->temp_old = temp_new; if (info->temp_old <= opt_avalon_temp) info->optimal = true; else info->optimal = false; } static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info, struct avalon_result *ar) { record_temp_fan(info, ar, &(avalon->temp)); applog(LOG_INFO, "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t" "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC", info->fan0, info->fan1, info->fan2, info->temp0, info->temp1, info->temp2, info->temp_max); info->temp_history_index++; info->temp_sum += avalon->temp; applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d", info->temp_history_index, info->temp_history_count, info->temp_old); if (usb_ident(avalon) == IDENT_BTB) { info->core_voltage = bitburner_get_core_voltage(avalon); } if (info->temp_history_index == info->temp_history_count) { adjust_fan(info); info->temp_history_index = 0; info->temp_sum = 0; } if (unlikely(info->temp_old >= opt_avalon_overheat)) { applog(LOG_WARNING, "%s%d overheat! Idling", avalon->drv->name, avalon->device_id); info->overheat = true; } else if (info->overheat && info->temp_old <= opt_avalon_temp) { applog(LOG_WARNING, "%s%d cooled, restarting", avalon->drv->name, avalon->device_id); info->overheat = false; } } static void get_avalon_statline_before(char *buf, size_t bufsiz, struct cgpu_info *avalon) { struct avalon_info *info = avalon->device_data; int lowfan = 10000; if (usb_ident(avalon) == IDENT_BTB) { int temp = info->temp0; if (info->temp2 > temp) temp = info->temp2; if (temp > 99) temp = 99; if (temp < 0) temp = 0; tailsprintf(buf, bufsiz, "%2dC %3d %4dmV | ", temp, info->frequency, info->core_voltage); } else { /* Find the lowest fan speed of the ASIC cooling fans. */ if (info->fan1 >= 0 && info->fan1 < lowfan) lowfan = info->fan1; if (info->fan2 >= 0 && info->fan2 < lowfan) lowfan = info->fan2; tailsprintf(buf, bufsiz, "%2dC/%3dC %04dR | ", info->temp0, info->temp2, lowfan); } } /* We use a replacement algorithm to only remove references to work done from * the buffer when we need the extra space for new work. */ static bool avalon_fill(struct cgpu_info *avalon) { struct avalon_info *info = avalon->device_data; int subid, slot, mc; struct work *work; bool ret = true; mc = info->miner_count; mutex_lock(&info->qlock); if (avalon->queued >= mc) goto out_unlock; work = get_queued(avalon); if (unlikely(!work)) { ret = false; goto out_unlock; } subid = avalon->queued++; work->subid = subid; slot = avalon->work_array * mc + subid; if (likely(avalon->works[slot])) work_completed(avalon, avalon->works[slot]); avalon->works[slot] = work; if (avalon->queued < mc) ret = false; out_unlock: mutex_unlock(&info->qlock); return ret; } static int64_t avalon_scanhash(struct thr_info *thr) { struct cgpu_info *avalon = thr->cgpu; struct avalon_info *info = avalon->device_data; const int miner_count = info->miner_count; struct timeval now, then, tdiff; int64_t hash_count, us_timeout; struct timespec abstime; /* Half nonce range */ us_timeout = 0x80000000ll / info->asic_count / info->frequency; us_to_timeval(&tdiff, us_timeout); cgtime(&now); timeradd(&now, &tdiff, &then); timeval_to_spec(&abstime, &then); /* Wait until avalon_send_tasks signals us that it has completed * sending its work or a full nonce range timeout has occurred */ mutex_lock(&info->qlock); pthread_cond_timedwait(&info->qcond, &info->qlock, &abstime); mutex_unlock(&info->qlock); mutex_lock(&info->lock); hash_count = 0xffffffffull * (uint64_t)info->nonces; avalon->results += info->nonces + info->idle; if (avalon->results > miner_count) avalon->results = miner_count; if (!info->reset) avalon->results--; info->nonces = info->idle = 0; mutex_unlock(&info->lock); /* Check for nothing but consecutive bad results or consistently less * results than we should be getting and reset the FPGA if necessary */ if (usb_ident(avalon) != IDENT_BTB) { if (avalon->results < -miner_count && !info->reset) { applog(LOG_ERR, "%s%d: Result return rate low, resetting!", avalon->drv->name, avalon->device_id); info->reset = true; } } if (unlikely(avalon->usbinfo.nodev)) { applog(LOG_ERR, "%s%d: Device disappeared, shutting down thread", avalon->drv->name, avalon->device_id); avalon->shutdown = true; } /* This hashmeter is just a utility counter based on returned shares */ return hash_count; } static void avalon_flush_work(struct cgpu_info *avalon) { struct avalon_info *info = avalon->device_data; mutex_lock(&info->qlock); /* Will overwrite any work queued */ avalon->queued = 0; pthread_cond_signal(&info->qcond); mutex_unlock(&info->qlock); } static struct api_data *avalon_api_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct avalon_info *info = cgpu->device_data; char buf[64]; int i; double hwp = (cgpu->hw_errors + cgpu->diff1) ? (double)(cgpu->hw_errors) / (double)(cgpu->hw_errors + cgpu->diff1) : 0; root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "miner_count", &(info->miner_count),false); root = api_add_int(root, "asic_count", &(info->asic_count), false); root = api_add_int(root, "timeout", &(info->timeout), false); root = api_add_int(root, "frequency", &(info->frequency), false); root = api_add_int(root, "fan1", &(info->fan0), false); root = api_add_int(root, "fan2", &(info->fan1), false); root = api_add_int(root, "fan3", &(info->fan2), false); root = api_add_int(root, "temp1", &(info->temp0), false); root = api_add_int(root, "temp2", &(info->temp1), false); root = api_add_int(root, "temp3", &(info->temp2), false); root = api_add_int(root, "temp_max", &(info->temp_max), false); root = api_add_percent(root, "Device Hardware%", &hwp, true); root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false); for (i = 0; i < info->miner_count; i++) { char mcw[24]; sprintf(mcw, "match_work_count%d", i + 1); root = api_add_int(root, mcw, &(info->matching_work[i]), false); } if (usb_ident(cgpu) == IDENT_BTB) { root = api_add_int(root, "core_voltage", &(info->core_voltage), false); snprintf(buf, sizeof(buf), "%"PRIu8".%"PRIu8".%"PRIu8, info->version1, info->version2, info->version3); root = api_add_string(root, "version", buf, true); } root = api_add_uint32(root, "Controller Version", &(info->ctlr_ver), false); return root; } static void avalon_shutdown(struct thr_info *thr) { do_avalon_close(thr); } static char *avalon_set_device(struct cgpu_info *avalon, char *option, char *setting, char *replybuf) { int val; if (strcasecmp(option, "help") == 0) { sprintf(replybuf, "freq: range %d-%d millivolts: range %d-%d", AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY, BITBURNER_MIN_COREMV, BITBURNER_MAX_COREMV); return replybuf; } if (strcasecmp(option, "millivolts") == 0 || strcasecmp(option, "mv") == 0) { if (usb_ident(avalon) != IDENT_BTB) { sprintf(replybuf, "%s cannot set millivolts", avalon->drv->name); return replybuf; } if (!setting || !*setting) { sprintf(replybuf, "missing millivolts setting"); return replybuf; } val = atoi(setting); if (val < BITBURNER_MIN_COREMV || val > BITBURNER_MAX_COREMV) { sprintf(replybuf, "invalid millivolts: '%s' valid range %d-%d", setting, BITBURNER_MIN_COREMV, BITBURNER_MAX_COREMV); return replybuf; } if (bitburner_set_core_voltage(avalon, val)) return NULL; else { sprintf(replybuf, "Set millivolts failed"); return replybuf; } } if (strcasecmp(option, "freq") == 0) { if (!setting || !*setting) { sprintf(replybuf, "missing freq setting"); return replybuf; } val = atoi(setting); if (val < AVALON_MIN_FREQUENCY || val > AVALON_MAX_FREQUENCY) { sprintf(replybuf, "invalid freq: '%s' valid range %d-%d", setting, AVALON_MIN_FREQUENCY, AVALON_MAX_FREQUENCY); return replybuf; } avalon_set_freq(avalon, val); return NULL; } sprintf(replybuf, "Unknown option: %s", option); return replybuf; } struct device_drv avalon_drv = { .drv_id = DRIVER_AVALON, .dname = "avalon", .name = "AVA", .drv_detect = avalon_detect, .thread_prepare = avalon_prepare, .hash_work = hash_queued_work, .queue_full = avalon_fill, .scanwork = avalon_scanhash, .flush_work = avalon_flush_work, .get_api_stats = avalon_api_stats, .get_statline_before = get_avalon_statline_before, .set_device = avalon_set_device, .reinit_device = avalon_init, .thread_shutdown = avalon_shutdown, };