// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of // phatk and others. // Modified version copyright 2011-2012 Con Kolivas // This file is taken and modified from the public-domain poclbm project, and // we have therefore decided to keep it public-domain in Phoenix. #ifdef VECTORS4 typedef uint4 u; #elif defined VECTORS2 typedef uint2 u; #else typedef uint u; #endif __constant uint K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; // This part is not from the stock poclbm kernel. It's part of an optimization // added in the Phoenix Miner. // Some AMD devices have a BFI_INT opcode, which behaves exactly like the // SHA-256 ch function, but provides it in exactly one instruction. If // detected, use it for ch. Otherwise, construct ch out of simpler logical // primitives. #ifdef BITALIGN #pragma OPENCL EXTENSION cl_amd_media_ops : enable #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y) #else #define rotr(x, y) rotate((u)x, (u)(32 - y)) #endif #ifdef BFI_INT // Well, slight problem... It turns out BFI_INT isn't actually exposed to // OpenCL (or CAL IL for that matter) in any way. However, there is // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via // amd_bytealign, takes the same inputs, and provides the same output. // We can use that as a placeholder for BFI_INT and have the application // patch it after compilation. // This is the BFI_INT function #define ch(x, y, z) amd_bytealign(x, y, z) // Ma can also be implemented in terms of BFI_INT... #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) ) // AMD's KernelAnalyzer throws errors compiling the kernel if we use // amd_bytealign on constants with vectors enabled, so we use this to avoid // problems. (this is used 4 times, and likely optimized out by the compiler.) #define Ma2(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x) #else // BFI_INT //GCN actually fails if manually patched with BFI_INT #define ch(x, y, z) bitselect((u)z, (u)y, (u)x) #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x) #define Ma2(x, y, z) Ma(x, y, z) #endif __kernel __attribute__((vec_type_hint(u))) __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) void search(const uint state0, const uint state1, const uint state2, const uint state3, const uint state4, const uint state5, const uint state6, const uint state7, const uint b1, const uint c1, const uint f1, const uint g1, const uint h1, const u base, const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e2, const uint D1A, const uint C1addK5, const uint B1addK6, const uint W16addK16, const uint W17addK17, const uint PreVal4addT1, const uint Preval0, __global uint * output) { u W[24]; u *Vals = &W[16]; // Now put at W[16] to be in same array const u nonce = base + (uint)(get_global_id(0)); Vals[0]=Preval0; Vals[0]+=nonce; Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],b1,c1); Vals[3]+=D1A; Vals[7]=Vals[3]; Vals[7]+=h1; Vals[4]=PreVal4addT1; Vals[4]+=nonce; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[2]=C1addK5; Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],b1); Vals[6]=Vals[2]; Vals[6]+=g1; Vals[3]+=Ma2(g1,Vals[4],f1); Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma2(f1,Vals[3],Vals[4]); Vals[1]=B1addK6; Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[5]=Vals[1]; Vals[5]+=f1; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[7]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[8]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[9]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[10]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[11]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[12]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[13]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[14]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=0xC19BF3F4U; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=W16addK16; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=W17addK17; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); W[2]+=fw2; Vals[5]+=W[2]; Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[18]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[3]=nonce; W[3]+=fw3; Vals[4]+=W[3]; Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[19]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[4]=0x80000000U; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); Vals[3]+=W[4]; Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[20]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); Vals[2]+=W[5]; Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[21]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[6]=0x00000280U; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); Vals[1]+=W[6]; Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[22]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[7]=fw0; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); Vals[0]+=W[7]; Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[23]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); W[8]=fw1; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); Vals[7]+=W[8]; Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[24]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); Vals[6]+=W[9]; Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[25]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); Vals[5]+=W[10]; Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[26]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); Vals[4]+=W[11]; Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[27]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); Vals[3]+=W[12]; Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[28]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); Vals[2]+=W[13]; Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[29]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[14]=0x00a00055U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); Vals[1]+=W[14]; Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[30]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[15]=fw15; W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); Vals[0]+=W[15]; Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[31]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); W[0]=fw01r; W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); Vals[7]+=W[0]; Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[32]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); W[1]=fw1; W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); Vals[6]+=W[1]; Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[33]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[34]; Vals[5]+=W[2]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[35]; Vals[4]+=W[3]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[36]; Vals[3]+=W[4]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[37]; Vals[2]+=W[5]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[38]; Vals[1]+=W[6]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[39]; Vals[0]+=W[7]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[40]; Vals[7]+=W[8]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[41]; Vals[6]+=W[9]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[42]; Vals[5]+=W[10]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[43]; Vals[4]+=W[11]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[44]; Vals[3]+=W[12]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[45]; Vals[2]+=W[13]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[46]; Vals[1]+=W[14]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[47]; Vals[0]+=W[15]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[48]; Vals[7]+=W[0]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[49]; Vals[6]+=W[1]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[50]; Vals[5]+=W[2]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[51]; Vals[4]+=W[3]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[52]; Vals[3]+=W[4]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[53]; Vals[2]+=W[5]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[54]; Vals[1]+=W[6]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[55]; Vals[0]+=W[7]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); Vals[7]+=K[56]; Vals[7]+=W[8]; Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); Vals[6]+=K[57]; Vals[6]+=W[9]; Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); Vals[5]+=K[58]; Vals[5]+=W[10]; Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); Vals[4]+=K[59]; Vals[4]+=W[11]; Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); Vals[3]+=K[60]; Vals[3]+=W[12]; Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); Vals[2]+=K[61]; Vals[2]+=W[13]; Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); Vals[1]+=K[62]; Vals[1]+=W[14]; Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); Vals[0]+=K[63]; Vals[0]+=W[15]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); Vals[0]+=state0; W[7]=Vals[0]; W[7]+=0xF377ED68U; W[3]=0xa54ff53aU; W[3]+=W[7]; W[7]+=0x08909ae5U; Vals[1]+=state1; W[6]=Vals[1]; W[6]+=0x90BB1E3CU; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=(0x9b05688cU^(W[3]&0xca0b3af3U)); W[2]=0x3c6ef372U; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma2(0xbb67ae85U,W[7],0x6a09e667U); Vals[2]+=state2; W[5]=Vals[2]; W[5]+=0x50C6645BU; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],0x510e527fU); W[1]=0xbb67ae85U; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma2(0x6a09e667U,W[6],W[7]); Vals[3]+=state3; W[4]=Vals[3]; W[4]+=0x3AC42E24U; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[0]=0x6a09e667U; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); Vals[4]+=state4; W[3]+=Vals[4]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[4]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); Vals[5]+=state5; W[2]+=Vals[5]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[5]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); Vals[6]+=state6; W[1]+=Vals[6]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[6]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); Vals[7]+=state7; W[0]+=Vals[7]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[7]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=0x5807AA98U; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[9]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[10]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[11]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[12]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[13]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[14]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=0xC19BF274U; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); W[7]+=Vals[0]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[16]; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); Vals[1]+=0x00a00000U; W[6]+=Vals[1]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[17]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); W[5]+=Vals[2]; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[18]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); W[4]+=Vals[3]; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[19]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); W[3]+=Vals[4]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[20]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); W[2]+=Vals[5]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[21]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); Vals[6]+=0x00000100U; Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); W[1]+=Vals[6]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[22]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); Vals[7]+=0x11002000U; Vals[7]+=Vals[0]; Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); W[0]+=Vals[7]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[23]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); W[8]=0x80000000U; W[8]+=Vals[1]; W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); W[7]+=W[8]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[24]; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); W[9]=Vals[2]; W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); W[6]+=W[9]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[25]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); W[10]=Vals[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[5]+=W[10]; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[26]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); W[11]=Vals[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[4]+=W[11]; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[27]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); W[12]=Vals[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[3]+=W[12]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[28]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); W[13]=Vals[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[2]+=W[13]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[29]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); W[14]=0x00400022U; W[14]+=Vals[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[1]+=W[14]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[30]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); W[15]=0x00000100U; W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[0]+=W[15]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[31]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); Vals[0]+=W[9]; Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[7]+=Vals[0]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[32]; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); Vals[1]+=W[10]; Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[6]+=Vals[1]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[33]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); Vals[2]+=W[11]; Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); W[5]+=Vals[2]; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[34]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); Vals[3]+=W[12]; Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); W[4]+=Vals[3]; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[35]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); Vals[4]+=W[13]; Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); W[3]+=Vals[4]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[36]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); Vals[5]+=W[14]; Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); W[2]+=Vals[5]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[37]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); Vals[6]+=W[15]; Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); W[1]+=Vals[6]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[38]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); Vals[7]+=Vals[0]; Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); W[0]+=Vals[7]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[39]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=Vals[1]; W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); W[7]+=W[8]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[40]; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=Vals[2]; W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); W[6]+=W[9]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[41]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=Vals[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[5]+=W[10]; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[42]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=Vals[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[4]+=W[11]; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[43]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=Vals[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[3]+=W[12]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[44]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=Vals[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); W[2]+=W[13]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[45]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=Vals[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); W[1]+=W[14]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[46]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); W[0]+=W[15]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[47]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); Vals[0]+=W[9]; Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); W[7]+=Vals[0]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[48]; W[3]+=W[7]; W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=Ma(W[2],W[0],W[1]); Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); Vals[1]+=W[10]; Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); W[6]+=Vals[1]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[49]; W[2]+=W[6]; W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); W[6]+=Ma(W[1],W[7],W[0]); Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); Vals[2]+=W[11]; Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); W[5]+=Vals[2]; W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); W[5]+=ch(W[2],W[3],W[4]); W[5]+=K[50]; W[1]+=W[5]; W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); W[5]+=Ma(W[0],W[6],W[7]); Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); Vals[3]+=W[12]; Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); W[4]+=Vals[3]; W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); W[4]+=ch(W[1],W[2],W[3]); W[4]+=K[51]; W[0]+=W[4]; W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); W[4]+=Ma(W[7],W[5],W[6]); Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); Vals[4]+=W[13]; Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); W[3]+=Vals[4]; W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); W[3]+=ch(W[0],W[1],W[2]); W[3]+=K[52]; W[7]+=W[3]; W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); W[3]+=Ma(W[6],W[4],W[5]); Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); Vals[5]+=W[14]; Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); W[2]+=Vals[5]; W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); W[2]+=ch(W[7],W[0],W[1]); W[2]+=K[53]; W[6]+=W[2]; W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); W[2]+=Ma(W[5],W[3],W[4]); Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); Vals[6]+=W[15]; Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); W[1]+=Vals[6]; W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[1]+=ch(W[6],W[7],W[0]); W[1]+=K[54]; W[5]+=W[1]; W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); W[1]+=Ma(W[4],W[2],W[3]); Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); Vals[7]+=Vals[0]; Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); W[0]+=Vals[7]; W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[0]+=ch(W[5],W[6],W[7]); W[0]+=K[55]; W[4]+=W[0]; W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); W[0]+=Ma(W[3],W[1],W[2]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=Vals[1]; W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); W[7]+=W[8]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); W[7]+=K[56]; W[3]+=W[7]; W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=Vals[2]; W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); W[6]+=W[9]; W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); W[6]+=ch(W[3],W[4],W[5]); W[6]+=K[57]; W[6]+=W[2]; W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=Vals[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); W[5]+=W[10]; W[5]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); W[5]+=ch(W[6],W[3],W[4]); W[5]+=K[58]; W[5]+=W[1]; W[4]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); W[4]+=ch(W[5],W[6],W[3]); W[4]+=W[11]; W[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[4]+=Vals[4]; W[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); W[4]+=K[59]; W[4]+=W[0]; #define FOUND (0x80) #define NFLAG (0x7F) #if defined(VECTORS2) || defined(VECTORS4) W[7]+=Ma(W[2],W[0],W[1]); W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); W[7]+=W[12]; W[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[7]+=Vals[5]; W[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); W[7]+=W[3]; W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); W[7]+=ch(W[4],W[5],W[6]); if (any(W[7] == 0x136032edU)) { if (W[7].x == 0x136032edU) output[FOUND] = output[NFLAG & nonce.x] = nonce.x; if (W[7].y == 0x136032edU) output[FOUND] = output[NFLAG & nonce.y] = nonce.y; #if defined(VECTORS4) if (W[7].z == 0x136032edU) output[FOUND] = output[NFLAG & nonce.z] = nonce.z; if (W[7].w == 0x136032edU) output[FOUND] = output[NFLAG & nonce.w] = nonce.w; #endif } #else if ((W[7]+ Ma(W[2],W[0],W[1])+ (rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22))+ W[12]+ (rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+ Vals[5]+ (rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+ W[3]+ (rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25))+ ch(W[4],W[5],W[6])) == 0x136032edU) output[FOUND] = output[NFLAG & nonce] = nonce; #endif }