/* * Copyright 2012 Andrew Smith * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include "logging.h" #include "miner.h" #include "usbutils.h" #ifdef USE_ICARUS #define DRV_ICARUS 1 #endif #ifdef USE_BITFORCE #define DRV_BITFORCE 2 #endif #ifdef USE_MODMINER #define DRV_MODMINER 3 #endif #define DRV_LAST -1 #define USB_CONFIG 1 #define EPI(x) (LIBUSB_ENDPOINT_IN | (unsigned char)(x)) #define EPO(x) (LIBUSB_ENDPOINT_OUT | (unsigned char)(x)) #ifdef WIN32 #define BITFORCE_TIMEOUT_MS 500 #define MODMINER_TIMEOUT_MS 200 #else #define BITFORCE_TIMEOUT_MS 200 #define MODMINER_TIMEOUT_MS 100 #endif #ifdef USE_BITFORCE static struct usb_endpoints bfl_eps[] = { #ifdef WIN32 { LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(1), 0 }, { LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(2), 0 } #else { LIBUSB_TRANSFER_TYPE_BULK, 512, EPI(1), 0 }, { LIBUSB_TRANSFER_TYPE_BULK, 512, EPO(2), 0 } #endif }; #endif #ifdef USE_MODMINER static struct usb_endpoints mmq_eps[] = { { LIBUSB_TRANSFER_TYPE_BULK, 64, EPI(3), 0 }, { LIBUSB_TRANSFER_TYPE_BULK, 64, EPO(3), 0 } }; #endif // TODO: Add support for (at least) Isochronous endpoints static struct usb_find_devices find_dev[] = { /* #ifdef USE_ICARUS { DRV_ICARUS, "ICA", 0x067b, 0x0230, true, EPI(3), EPO(2), 1 }, { DRV_ICARUS, "LOT", 0x0403, 0x6001, false, EPI(0), EPO(0), 1 }, { DRV_ICARUS, "CM1", 0x067b, 0x0230, false, EPI(0), EPO(0), 1 }, #endif */ #ifdef USE_BITFORCE { .drv = DRV_BITFORCE, .name = "BFL", .idVendor = 0x0403, .idProduct = 0x6014, .config = 1, .interface = 0, .timeout = BITFORCE_TIMEOUT_MS, .epcount = ARRAY_SIZE(bfl_eps), .eps = bfl_eps }, #endif #ifdef USE_MODMINER { .drv = DRV_MODMINER, .name = "MMQ", .idVendor = 0x1fc9, .idProduct = 0x0003, .config = 1, .interface = 1, .timeout = MODMINER_TIMEOUT_MS, .epcount = ARRAY_SIZE(mmq_eps), .eps = mmq_eps }, #endif { DRV_LAST, NULL, 0, 0, 0, 0, 0, 0, NULL } }; #ifdef USE_BITFORCE extern struct device_api bitforce_api; #endif #ifdef USE_ICARUS extern struct device_api icarus_api; #endif #ifdef USE_MODMINER extern struct device_api modminer_api; #endif /* * Our own internal list of used USB devices * So two drivers or a single driver searching * can't touch the same device during detection */ struct usb_list { uint8_t bus_number; uint8_t device_address; uint8_t filler[2]; struct usb_list *prev; struct usb_list *next; }; #define STRBUFLEN 256 static const char *BLANK = ""; static pthread_mutex_t *list_lock = NULL; static struct usb_list *usb_head = NULL; struct cg_usb_stats_item { uint64_t count; double total_delay; double min_delay; double max_delay; struct timeval first; struct timeval last; }; #define CMD_CMD 0 #define CMD_TIMEOUT 1 #define CMD_ERROR 2 struct cg_usb_stats_details { int seq; struct cg_usb_stats_item item[CMD_ERROR+1]; }; struct cg_usb_stats { char *name; int device_id; struct cg_usb_stats_details *details; }; #define SEQ0 0 #define SEQ1 1 static struct cg_usb_stats *usb_stats = NULL; static int next_stat = 0; static const char **usb_commands; static const char *C_PING_S = "Ping"; static const char *C_CLEAR_S = "Clear"; static const char *C_REQUESTVERSION_S = "RequestVersion"; static const char *C_GETVERSION_S = "GetVersion"; static const char *C_REQUESTFPGACOUNT_S = "RequestFPGACount"; static const char *C_GETFPGACOUNT_S = "GetFPGACount"; static const char *C_STARTPROGRAM_S = "StartProgram"; static const char *C_STARTPROGRAMSTATUS_S = "StartProgramStatus"; static const char *C_PROGRAM_S = "Program"; static const char *C_PROGRAMSTATUS_S = "ProgramStatus"; static const char *C_PROGRAMSTATUS2_S = "ProgramStatus2"; static const char *C_FINALPROGRAMSTATUS_S = "FinalProgramStatus"; static const char *C_SETCLOCK_S = "SetClock"; static const char *C_REPLYSETCLOCK_S = "ReplySetClock"; static const char *C_REQUESTUSERCODE_S = "RequestUserCode"; static const char *C_GETUSERCODE_S = "GetUserCode"; static const char *C_REQUESTTEMPERATURE_S = "RequestTemperature"; static const char *C_GETTEMPERATURE_S = "GetTemperature"; static const char *C_SENDWORK_S = "SendWork"; static const char *C_SENDWORKSTATUS_S = "SendWorkStatus"; static const char *C_REQUESTWORKSTATUS_S = "RequestWorkStatus"; static const char *C_GETWORKSTATUS_S = "GetWorkStatus"; static const char *C_REQUESTIDENTIFY_S = "RequestIdentify"; static const char *C_GETIDENTIFY_S = "GetIdentify"; static const char *C_REQUESTFLASH_S = "RequestFlash"; static const char *C_REQUESTSENDWORK_S = "RequestSendWork"; static const char *C_REQUESTSENDWORKSTATUS_S = "RequestSendWorkStatus"; static const char *C_RESET_S = "Reset"; static const char *C_SETBAUD_S = "SetBaud"; static const char *C_SETDATA_S = "SetDataCtrl"; static const char *C_SETFLOW_S = "SetFlowCtrl"; static const char *C_SETMODEM_S = "SetModemCtrl"; static const char *C_PURGERX_S = "PurgeRx"; static const char *C_PURGETX_S = "PurgeTx"; #ifdef EOL #undef EOL #endif #define EOL "\n" static const char *DESDEV = "Device"; static const char *DESCON = "Config"; static const char *DESSTR = "String"; static const char *DESINT = "Interface"; static const char *DESEP = "Endpoint"; static const char *DESHID = "HID"; static const char *DESRPT = "Report"; static const char *DESPHY = "Physical"; static const char *DESHUB = "Hub"; static const char *EPIN = "In: "; static const char *EPOUT = "Out: "; static const char *EPX = "?: "; static const char *CONTROL = "Control"; static const char *ISOCHRONOUS_X = "Isochronous+?"; static const char *ISOCHRONOUS_N_X = "Isochronous+None+?"; static const char *ISOCHRONOUS_N_D = "Isochronous+None+Data"; static const char *ISOCHRONOUS_N_F = "Isochronous+None+Feedback"; static const char *ISOCHRONOUS_N_I = "Isochronous+None+Implicit"; static const char *ISOCHRONOUS_A_X = "Isochronous+Async+?"; static const char *ISOCHRONOUS_A_D = "Isochronous+Async+Data"; static const char *ISOCHRONOUS_A_F = "Isochronous+Async+Feedback"; static const char *ISOCHRONOUS_A_I = "Isochronous+Async+Implicit"; static const char *ISOCHRONOUS_D_X = "Isochronous+Adaptive+?"; static const char *ISOCHRONOUS_D_D = "Isochronous+Adaptive+Data"; static const char *ISOCHRONOUS_D_F = "Isochronous+Adaptive+Feedback"; static const char *ISOCHRONOUS_D_I = "Isochronous+Adaptive+Implicit"; static const char *ISOCHRONOUS_S_X = "Isochronous+Sync+?"; static const char *ISOCHRONOUS_S_D = "Isochronous+Sync+Data"; static const char *ISOCHRONOUS_S_F = "Isochronous+Sync+Feedback"; static const char *ISOCHRONOUS_S_I = "Isochronous+Sync+Implicit"; static const char *BULK = "Bulk"; static const char *INTERRUPT = "Interrupt"; static const char *UNKNOWN = "Unknown"; static const char *destype(uint8_t bDescriptorType) { switch (bDescriptorType) { case LIBUSB_DT_DEVICE: return DESDEV; case LIBUSB_DT_CONFIG: return DESCON; case LIBUSB_DT_STRING: return DESSTR; case LIBUSB_DT_INTERFACE: return DESINT; case LIBUSB_DT_ENDPOINT: return DESEP; case LIBUSB_DT_HID: return DESHID; case LIBUSB_DT_REPORT: return DESRPT; case LIBUSB_DT_PHYSICAL: return DESPHY; case LIBUSB_DT_HUB: return DESHUB; } return UNKNOWN; } static const char *epdir(uint8_t bEndpointAddress) { switch (bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) { case LIBUSB_ENDPOINT_IN: return EPIN; case LIBUSB_ENDPOINT_OUT: return EPOUT; } return EPX; } static const char *epatt(uint8_t bmAttributes) { switch(bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) { case LIBUSB_TRANSFER_TYPE_CONTROL: return CONTROL; case LIBUSB_TRANSFER_TYPE_BULK: return BULK; case LIBUSB_TRANSFER_TYPE_INTERRUPT: return INTERRUPT; case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: switch(bmAttributes & LIBUSB_ISO_SYNC_TYPE_MASK) { case LIBUSB_ISO_SYNC_TYPE_NONE: switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) { case LIBUSB_ISO_USAGE_TYPE_DATA: return ISOCHRONOUS_N_D; case LIBUSB_ISO_USAGE_TYPE_FEEDBACK: return ISOCHRONOUS_N_F; case LIBUSB_ISO_USAGE_TYPE_IMPLICIT: return ISOCHRONOUS_N_I; } return ISOCHRONOUS_N_X; case LIBUSB_ISO_SYNC_TYPE_ASYNC: switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) { case LIBUSB_ISO_USAGE_TYPE_DATA: return ISOCHRONOUS_A_D; case LIBUSB_ISO_USAGE_TYPE_FEEDBACK: return ISOCHRONOUS_A_F; case LIBUSB_ISO_USAGE_TYPE_IMPLICIT: return ISOCHRONOUS_A_I; } return ISOCHRONOUS_A_X; case LIBUSB_ISO_SYNC_TYPE_ADAPTIVE: switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) { case LIBUSB_ISO_USAGE_TYPE_DATA: return ISOCHRONOUS_D_D; case LIBUSB_ISO_USAGE_TYPE_FEEDBACK: return ISOCHRONOUS_D_F; case LIBUSB_ISO_USAGE_TYPE_IMPLICIT: return ISOCHRONOUS_D_I; } return ISOCHRONOUS_D_X; case LIBUSB_ISO_SYNC_TYPE_SYNC: switch(bmAttributes & LIBUSB_ISO_USAGE_TYPE_MASK) { case LIBUSB_ISO_USAGE_TYPE_DATA: return ISOCHRONOUS_S_D; case LIBUSB_ISO_USAGE_TYPE_FEEDBACK: return ISOCHRONOUS_S_F; case LIBUSB_ISO_USAGE_TYPE_IMPLICIT: return ISOCHRONOUS_S_I; } return ISOCHRONOUS_S_X; } return ISOCHRONOUS_X; } return UNKNOWN; } static void append(char **buf, char *append, size_t *off, size_t *len) { int new = strlen(append); if ((new + *off) >= *len) { *len *= 2; *buf = realloc(*buf, *len); } strcpy(*buf + *off, append); *off += new; } static bool setgetdes(ssize_t count, libusb_device *dev, struct libusb_device_handle *handle, struct libusb_config_descriptor **config, int cd, char **buf, size_t *off, size_t *len) { char tmp[512]; int err; err = libusb_set_configuration(handle, cd); if (err) { sprintf(tmp, EOL " ** dev %d: Failed to set config descriptor to %d, err %d", (int)count, cd, err); append(buf, tmp, off, len); return false; } err = libusb_get_active_config_descriptor(dev, config); if (err) { sprintf(tmp, EOL " ** dev %d: Failed to get active config descriptor set to %d, err %d", (int)count, cd, err); append(buf, tmp, off, len); return false; } sprintf(tmp, EOL " ** dev %d: Set & Got active config descriptor to %d, err %d", (int)count, cd, err); append(buf, tmp, off, len); return true; } static void usb_full(ssize_t count, libusb_device *dev, char **buf, size_t *off, size_t *len) { struct libusb_device_descriptor desc; struct libusb_device_handle *handle; struct libusb_config_descriptor *config; const struct libusb_interface_descriptor *idesc; const struct libusb_endpoint_descriptor *epdesc; unsigned char man[STRBUFLEN+1]; unsigned char prod[STRBUFLEN+1]; unsigned char ser[STRBUFLEN+1]; char tmp[512]; int err, i, j, k; err = libusb_get_device_descriptor(dev, &desc); if (err) { sprintf(tmp, EOL ".USB dev %d: Failed to get descriptor, err %d", (int)count, err); append(buf, tmp, off, len); return; } sprintf(tmp, EOL ".USB dev %d: Device Descriptor:" EOL "\tLength: %d" EOL "\tDescriptor Type: %s" EOL "\tUSB: %04x" EOL "\tDeviceClass: %d" EOL "\tDeviceSubClass: %d" EOL "\tDeviceProtocol: %d" EOL "\tMaxPacketSize0: %d" EOL "\tidVendor: %04x" EOL "\tidProduct: %04x" EOL "\tDeviceRelease: %x" EOL "\tNumConfigurations: %d", (int)count, (int)(desc.bLength), destype(desc.bDescriptorType), desc.bcdUSB, (int)(desc.bDeviceClass), (int)(desc.bDeviceSubClass), (int)(desc.bDeviceProtocol), (int)(desc.bMaxPacketSize0), desc.idVendor, desc.idProduct, desc.bcdDevice, (int)(desc.bNumConfigurations)); append(buf, tmp, off, len); err = libusb_open(dev, &handle); if (err) { sprintf(tmp, EOL " ** dev %d: Failed to open, err %d", (int)count, err); append(buf, tmp, off, len); return; } if (libusb_kernel_driver_active(handle, 0) == 1) { sprintf(tmp, EOL " * dev %d: kernel attached", (int)count); append(buf, tmp, off, len); } err = libusb_get_active_config_descriptor(dev, &config); if (err) { if (!setgetdes(count, dev, handle, &config, 1, buf, off, len) && !setgetdes(count, dev, handle, &config, 0, buf, off, len)) { libusb_close(handle); sprintf(tmp, EOL " ** dev %d: Failed to set config descriptor to %d or %d", (int)count, 1, 0); append(buf, tmp, off, len); return; } } sprintf(tmp, EOL " dev %d: Active Config:" EOL "\tDescriptorType: %s" EOL "\tNumInterfaces: %d" EOL "\tConfigurationValue: %d" EOL "\tAttributes: %d" EOL "\tMaxPower: %d", (int)count, destype(config->bDescriptorType), (int)(config->bNumInterfaces), (int)(config->iConfiguration), (int)(config->bmAttributes), (int)(config->MaxPower)); append(buf, tmp, off, len); for (i = 0; i < (int)(config->bNumInterfaces); i++) { for (j = 0; j < config->interface[i].num_altsetting; j++) { idesc = &(config->interface[i].altsetting[j]); sprintf(tmp, EOL " _dev %d: Interface Descriptor %d:" EOL "\tDescriptorType: %s" EOL "\tInterfaceNumber: %d" EOL "\tNumEndpoints: %d" EOL "\tInterfaceClass: %d" EOL "\tInterfaceSubClass: %d" EOL "\tInterfaceProtocol: %d", (int)count, j, destype(idesc->bDescriptorType), (int)(idesc->bInterfaceNumber), (int)(idesc->bNumEndpoints), (int)(idesc->bInterfaceClass), (int)(idesc->bInterfaceSubClass), (int)(idesc->bInterfaceProtocol)); append(buf, tmp, off, len); for (k = 0; k < (int)(idesc->bNumEndpoints); k++) { epdesc = &(idesc->endpoint[k]); sprintf(tmp, EOL " __dev %d: Interface %d Endpoint %d:" EOL "\tDescriptorType: %s" EOL "\tEndpointAddress: %s0x%x" EOL "\tAttributes: %s" EOL "\tMaxPacketSize: %d" EOL "\tInterval: %d" EOL "\tRefresh: %d", (int)count, (int)(idesc->bInterfaceNumber), k, destype(epdesc->bDescriptorType), epdir(epdesc->bEndpointAddress), (int)(epdesc->bEndpointAddress), epatt(epdesc->bmAttributes), epdesc->wMaxPacketSize, (int)(epdesc->bInterval), (int)(epdesc->bRefresh)); append(buf, tmp, off, len); } } } libusb_free_config_descriptor(config); config = NULL; err = libusb_get_string_descriptor_ascii(handle, desc.iManufacturer, man, STRBUFLEN); if (err < 0) sprintf((char *)man, "** err(%d)", err); err = libusb_get_string_descriptor_ascii(handle, desc.iProduct, prod, STRBUFLEN); if (err < 0) sprintf((char *)prod, "** err(%d)", err); err = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, ser, STRBUFLEN); if (err < 0) sprintf((char *)ser, "** err(%d)", err); sprintf(tmp, EOL " dev %d: More Info:" EOL "\tManufacturer: '%s'" EOL "\tProduct: '%s'" EOL "\tSerial '%s'", (int)count, man, prod, ser); append(buf, tmp, off, len); libusb_close(handle); } // Function to dump all USB devices static void usb_all() { libusb_device **list; ssize_t count, i; char *buf; size_t len, off; count = libusb_get_device_list(NULL, &list); if (count < 0) { applog(LOG_ERR, "USB all: failed, err %d", (int)count); return; } if (count == 0) applog(LOG_WARNING, "USB all: found no devices"); else { len = 10000; buf = malloc(len+1); sprintf(buf, "USB all: found %d devices", (int)count); off = strlen(buf); for (i = 0; i < count; i++) usb_full(i, list[i], &buf, &off, &len); applog(LOG_WARNING, "%s", buf); free(buf); } libusb_free_device_list(list, 1); } static void cgusb_check_init() { mutex_lock(&cgusb_lock); if (list_lock == NULL) { list_lock = calloc(1, sizeof(*list_lock)); mutex_init(list_lock); // N.B. environment LIBUSB_DEBUG also sets libusb_set_debug() if (opt_usbdump >= 0) { libusb_set_debug(NULL, opt_usbdump); usb_all(); } usb_commands = malloc(sizeof(*usb_commands) * C_MAX); // use constants so the stat generation is very quick // and the association between number and name can't // be missalined easily usb_commands[C_PING] = C_PING_S; usb_commands[C_CLEAR] = C_CLEAR_S; usb_commands[C_REQUESTVERSION] = C_REQUESTVERSION_S; usb_commands[C_GETVERSION] = C_GETVERSION_S; usb_commands[C_REQUESTFPGACOUNT] = C_REQUESTFPGACOUNT_S; usb_commands[C_GETFPGACOUNT] = C_GETFPGACOUNT_S; usb_commands[C_STARTPROGRAM] = C_STARTPROGRAM_S; usb_commands[C_STARTPROGRAMSTATUS] = C_STARTPROGRAMSTATUS_S; usb_commands[C_PROGRAM] = C_PROGRAM_S; usb_commands[C_PROGRAMSTATUS] = C_PROGRAMSTATUS_S; usb_commands[C_PROGRAMSTATUS2] = C_PROGRAMSTATUS2_S; usb_commands[C_FINALPROGRAMSTATUS] = C_FINALPROGRAMSTATUS_S; usb_commands[C_SETCLOCK] = C_SETCLOCK_S; usb_commands[C_REPLYSETCLOCK] = C_REPLYSETCLOCK_S; usb_commands[C_REQUESTUSERCODE] = C_REQUESTUSERCODE_S; usb_commands[C_GETUSERCODE] = C_GETUSERCODE_S; usb_commands[C_REQUESTTEMPERATURE] = C_REQUESTTEMPERATURE_S; usb_commands[C_GETTEMPERATURE] = C_GETTEMPERATURE_S; usb_commands[C_SENDWORK] = C_SENDWORK_S; usb_commands[C_SENDWORKSTATUS] = C_SENDWORKSTATUS_S; usb_commands[C_REQUESTWORKSTATUS] = C_REQUESTWORKSTATUS_S; usb_commands[C_GETWORKSTATUS] = C_GETWORKSTATUS_S; usb_commands[C_REQUESTIDENTIFY] = C_REQUESTIDENTIFY_S; usb_commands[C_GETIDENTIFY] = C_GETIDENTIFY_S; usb_commands[C_REQUESTFLASH] = C_REQUESTFLASH_S; usb_commands[C_REQUESTSENDWORK] = C_REQUESTSENDWORK_S; usb_commands[C_REQUESTSENDWORKSTATUS] = C_REQUESTSENDWORKSTATUS_S; usb_commands[C_RESET] = C_RESET_S; usb_commands[C_SETBAUD] = C_SETBAUD_S; usb_commands[C_SETDATA] = C_SETDATA_S; usb_commands[C_SETFLOW] = C_SETFLOW_S; usb_commands[C_SETMODEM] = C_SETMODEM_S; usb_commands[C_PURGERX] = C_PURGERX_S; usb_commands[C_PURGETX] = C_PURGETX_S; } mutex_unlock(&cgusb_lock); } static bool in_use(libusb_device *dev, bool lock) { struct usb_list *usb_tmp; bool used = false; uint8_t bus_number; uint8_t device_address; bus_number = libusb_get_bus_number(dev); device_address = libusb_get_device_address(dev); if (lock) mutex_lock(list_lock); if ((usb_tmp = usb_head)) do { if (bus_number == usb_tmp->bus_number && device_address == usb_tmp->device_address) { used = true; break; } usb_tmp = usb_tmp->next; } while (usb_tmp != usb_head); if (lock) mutex_unlock(list_lock); return used; } static void add_used(libusb_device *dev, bool lock) { struct usb_list *usb_tmp; char buf[128]; uint8_t bus_number; uint8_t device_address; bus_number = libusb_get_bus_number(dev); device_address = libusb_get_device_address(dev); if (lock) mutex_lock(list_lock); if (in_use(dev, false)) { if (lock) mutex_unlock(list_lock); sprintf(buf, "add_used() duplicate bus_number %d device_address %d", bus_number, device_address); quit(1, buf); } usb_tmp = malloc(sizeof(*usb_tmp)); usb_tmp->bus_number = bus_number; usb_tmp->device_address = device_address; if (usb_head) { // add to end usb_tmp->prev = usb_head->prev; usb_tmp->next = usb_head; usb_head->prev = usb_tmp; usb_tmp->prev->next = usb_tmp; } else { usb_tmp->prev = usb_tmp; usb_tmp->next = usb_tmp; usb_head = usb_tmp; } if (lock) mutex_unlock(list_lock); } static void release(uint8_t bus_number, uint8_t device_address, bool lock) { struct usb_list *usb_tmp; bool found = false; char buf[128]; if (lock) mutex_lock(list_lock); usb_tmp = usb_head; if (usb_tmp) do { if (bus_number == usb_tmp->bus_number && device_address == usb_tmp->device_address) { found = true; break; } usb_tmp = usb_tmp->next; } while (usb_tmp != usb_head); if (!found) { if (lock) mutex_unlock(list_lock); sprintf(buf, "release() unknown: bus_number %d device_address %d", bus_number, device_address); quit(1, buf); } if (usb_tmp->next == usb_tmp) { usb_head = NULL; } else { usb_tmp->next->prev = usb_tmp->prev; usb_tmp->prev->next = usb_tmp->next; } if (lock) mutex_unlock(list_lock); free(usb_tmp); } static void release_dev(libusb_device *dev, bool lock) { uint8_t bus_number; uint8_t device_address; bus_number = libusb_get_bus_number(dev); device_address = libusb_get_device_address(dev); release(bus_number, device_address, lock); } #if 0 static void release_cgusb(struct cg_usb_device *cgusb, bool lock) { release(cgusb->bus_number, cgusb->device_address, lock); } #endif static struct cg_usb_device *free_cgusb(struct cg_usb_device *cgusb) { if (cgusb->serial_string && cgusb->serial_string != BLANK) free(cgusb->serial_string); if (cgusb->manuf_string && cgusb->manuf_string != BLANK) free(cgusb->manuf_string); if (cgusb->prod_string && cgusb->prod_string != BLANK) free(cgusb->prod_string); free(cgusb->descriptor); free(cgusb); return NULL; } void usb_uninit(struct cgpu_info *cgpu) { libusb_release_interface(cgpu->usbdev->handle, cgpu->usbdev->found->interface); libusb_close(cgpu->usbdev->handle); cgpu->usbdev = free_cgusb(cgpu->usbdev); } bool usb_init(struct cgpu_info *cgpu, struct libusb_device *dev, struct usb_find_devices *found) { struct cg_usb_device *cgusb = NULL; struct libusb_config_descriptor *config = NULL; const struct libusb_interface_descriptor *idesc; const struct libusb_endpoint_descriptor *epdesc; unsigned char strbuf[STRBUFLEN+1]; int err, i, j, k; cgusb = calloc(1, sizeof(*cgusb)); cgusb->found = found; cgusb->bus_number = libusb_get_bus_number(dev); cgusb->device_address = libusb_get_device_address(dev); cgusb->descriptor = calloc(1, sizeof(*(cgusb->descriptor))); err = libusb_get_device_descriptor(dev, cgusb->descriptor); if (err) { applog(LOG_ERR, "USB init failed to get descriptor, err %d", err); goto dame; } err = libusb_open(dev, &(cgusb->handle)); if (err) { switch (err) { case LIBUSB_ERROR_ACCESS: applog(LOG_ERR, "USB init open device failed, err %d, you dont have priviledge to access the device", err); break; #ifdef WIN32 // Windows specific message case LIBUSB_ERROR_NOT_SUPPORTED: applog(LOG_ERR, "USB init, open device failed, err %d, you need to install a Windows USB driver for the device", err); break; #endif default: applog(LOG_ERR, "USB init, open device failed, err %d", err); } goto dame; } if (libusb_kernel_driver_active(cgusb->handle, 0) == 1) { applog(LOG_DEBUG, "USB init, kernel attached ..."); if (libusb_detach_kernel_driver(cgusb->handle, 0) == 0) applog(LOG_DEBUG, "USB init, kernel detached successfully"); else applog(LOG_WARNING, "USB init, kernel detach failed :("); } err = libusb_set_configuration(cgusb->handle, found->config); if (err) { switch(err) { case LIBUSB_ERROR_BUSY: applog(LOG_WARNING, "USB init, %s device %d:%d in use", found->name, cgusb->bus_number, cgusb->device_address); break; default: applog(LOG_DEBUG, "USB init, failed to set config to %d, err %d", found->config, err); } goto cldame; } err = libusb_get_active_config_descriptor(dev, &config); if (err) { applog(LOG_DEBUG, "USB init, failed to get config descriptor %d, err %d", found->config, err); goto cldame; } if ((int)(config->bNumInterfaces) <= found->interface) goto cldame; for (i = 0; i < found->epcount; i++) found->eps[i].found = false; for (i = 0; i < config->interface[found->interface].num_altsetting; i++) { idesc = &(config->interface[found->interface].altsetting[i]); for (j = 0; j < (int)(idesc->bNumEndpoints); j++) { epdesc = &(idesc->endpoint[j]); for (k = 0; k < found->epcount; k++) { if (!found->eps[k].found) { if (epdesc->bmAttributes == found->eps[k].att && epdesc->wMaxPacketSize >= found->eps[k].size && epdesc->bEndpointAddress == found->eps[k].ep) { found->eps[k].found = true; break; } } } } } for (i = 0; i < found->epcount; i++) if (found->eps[i].found == false) goto cldame; err = libusb_claim_interface(cgusb->handle, found->interface); if (err) { applog(LOG_DEBUG, "USB init, claim interface %d failed, err %d", found->interface, err); goto cldame; } cgusb->usbver = cgusb->descriptor->bcdUSB; // TODO: allow this with the right version of the libusb include and running library // cgusb->speed = libusb_get_device_speed(dev); err = libusb_get_string_descriptor_ascii(cgusb->handle, cgusb->descriptor->iProduct, strbuf, STRBUFLEN); if (err > 0) cgusb->prod_string = strdup((char *)strbuf); else cgusb->prod_string = (char *)BLANK; err = libusb_get_string_descriptor_ascii(cgusb->handle, cgusb->descriptor->iManufacturer, strbuf, STRBUFLEN); if (err > 0) cgusb->manuf_string = strdup((char *)strbuf); else cgusb->manuf_string = (char *)BLANK; err = libusb_get_string_descriptor_ascii(cgusb->handle, cgusb->descriptor->iSerialNumber, strbuf, STRBUFLEN); if (err > 0) cgusb->serial_string = strdup((char *)strbuf); else cgusb->serial_string = (char *)BLANK; // TODO: ? // cgusb->fwVersion <- for temp1/temp2 decision? or serial? (driver-modminer.c) // cgusb->interfaceVersion applog(LOG_DEBUG, "USB init device bus_number=%d device_address=%d usbver=%04x prod='%s' manuf='%s' serial='%s'", (int)(cgusb->bus_number), (int)(cgusb->device_address), cgusb->usbver, cgusb->prod_string, cgusb->manuf_string, cgusb->serial_string); cgpu->usbdev = cgusb; libusb_free_config_descriptor(config); return true; cldame: libusb_close(cgusb->handle); dame: if (config) libusb_free_config_descriptor(config); cgusb = free_cgusb(cgusb); return false; } static bool usb_check_device(struct device_api *api, struct libusb_device *dev, struct usb_find_devices *look) { struct libusb_device_descriptor desc; int err; err = libusb_get_device_descriptor(dev, &desc); if (err) { applog(LOG_DEBUG, "USB check device: Failed to get descriptor, err %d", err); return false; } if (desc.idVendor != look->idVendor || desc.idProduct != look->idProduct) { applog(LOG_DEBUG, "%s looking for %04x:%04x but found %04x:%04x instead", api->name, look->idVendor, look->idProduct, desc.idVendor, desc.idProduct); return false; } applog(LOG_DEBUG, "%s looking for and found %04x:%04x", api->name, look->idVendor, look->idProduct); return true; } static struct usb_find_devices *usb_check_each(int drv, struct device_api *api, struct libusb_device *dev) { struct usb_find_devices *found; int i; for (i = 0; find_dev[i].drv != DRV_LAST; i++) if (find_dev[i].drv == drv) { if (usb_check_device(api, dev, &(find_dev[i]))) { found = malloc(sizeof(*found)); memcpy(found, &(find_dev[i]), sizeof(*found)); return found; } } return NULL; } static struct usb_find_devices *usb_check(__maybe_unused struct device_api *api, __maybe_unused struct libusb_device *dev) { #ifdef USE_BITFORCE if (api == &bitforce_api) return usb_check_each(DRV_BITFORCE, api, dev); #endif #ifdef USE_ICARUS if (api == &icarus_api) return usb_check_each(DRV_ICARUS, api, dev); #endif #ifdef USE_MODMINER if (api == &modminer_api) return usb_check_each(DRV_MODMINER, api, dev); #endif return NULL; } void usb_detect(struct device_api *api, bool (*device_detect)(struct libusb_device *, struct usb_find_devices *)) { libusb_device **list; ssize_t count, i; struct usb_find_devices *found; cgusb_check_init(); count = libusb_get_device_list(NULL, &list); if (count < 0) { applog(LOG_DEBUG, "USB scan devices: failed, err %d", count); return; } if (count == 0) applog(LOG_DEBUG, "USB scan devices: found no devices"); for (i = 0; i < count; i++) { mutex_lock(list_lock); if (in_use(list[i], false)) mutex_unlock(list_lock); else { add_used(list[i], false); mutex_unlock(list_lock); found = usb_check(api, list[i]); if (!found) release_dev(list[i], true); else if (!device_detect(list[i], found)) release_dev(list[i], true); } } libusb_free_device_list(list, 1); } // Set this to 0 to remove stats processing #define DO_USB_STATS 1 #if DO_USB_STATS #define USB_STATS(sgpu, sta, fin, err, cmd, seq) stats(cgpu, sta, fin, err, cmd, seq) #define STATS_TIMEVAL(tv) gettimeofday(tv, NULL) #else #define USB_STATS(sgpu, sta, fin, err, cmd, seq) #define STATS_TIMEVAL(tv) #endif // The stat data can be spurious due to not locking it before copying it - // however that would require the stat() function to also lock and release // a mutex every time a usb read or write is called which would slow // things down more struct api_data *api_usb_stats(__maybe_unused int *count) { #if DO_USB_STATS struct cg_usb_stats_details *details; struct cg_usb_stats *sta; struct api_data *root = NULL; int device; int cmdseq; cgusb_check_init(); if (next_stat == 0) return NULL; while (*count < next_stat * C_MAX * 2) { device = *count / (C_MAX * 2); cmdseq = *count % (C_MAX * 2); (*count)++; sta = &(usb_stats[device]); details = &(sta->details[cmdseq]); // Only show stats that have results if (details->item[CMD_CMD].count == 0 && details->item[CMD_TIMEOUT].count == 0 && details->item[CMD_ERROR].count == 0) continue; root = api_add_string(root, "Name", sta->name, false); root = api_add_int(root, "ID", &(sta->device_id), false); root = api_add_const(root, "Stat", usb_commands[cmdseq/2], false); root = api_add_int(root, "Seq", &(details->seq), true); root = api_add_uint64(root, "Count", &(details->item[CMD_CMD].count), true); root = api_add_double(root, "Total Delay", &(details->item[CMD_CMD].total_delay), true); root = api_add_double(root, "Min Delay", &(details->item[CMD_CMD].min_delay), true); root = api_add_double(root, "Max Delay", &(details->item[CMD_CMD].max_delay), true); root = api_add_uint64(root, "Timeout Count", &(details->item[CMD_TIMEOUT].count), true); root = api_add_double(root, "Timeout Total Delay", &(details->item[CMD_TIMEOUT].total_delay), true); root = api_add_double(root, "Timeout Min Delay", &(details->item[CMD_TIMEOUT].min_delay), true); root = api_add_double(root, "Timeout Max Delay", &(details->item[CMD_TIMEOUT].max_delay), true); root = api_add_uint64(root, "Error Count", &(details->item[CMD_ERROR].count), true); root = api_add_double(root, "Error Total Delay", &(details->item[CMD_ERROR].total_delay), true); root = api_add_double(root, "Error Min Delay", &(details->item[CMD_ERROR].min_delay), true); root = api_add_double(root, "Error Max Delay", &(details->item[CMD_ERROR].max_delay), true); root = api_add_timeval(root, "First Command", &(details->item[CMD_CMD].first), true); root = api_add_timeval(root, "Last Command", &(details->item[CMD_CMD].last), true); root = api_add_timeval(root, "First Timeout", &(details->item[CMD_TIMEOUT].first), true); root = api_add_timeval(root, "Last Timeout", &(details->item[CMD_TIMEOUT].last), true); root = api_add_timeval(root, "First Error", &(details->item[CMD_ERROR].first), true); root = api_add_timeval(root, "Last Error", &(details->item[CMD_ERROR].last), true); return root; } #endif return NULL; } #if DO_USB_STATS static void newstats(struct cgpu_info *cgpu) { int i; cgpu->usbstat = ++next_stat; usb_stats = realloc(usb_stats, sizeof(*usb_stats) * next_stat); usb_stats[next_stat-1].name = cgpu->api->name; usb_stats[next_stat-1].device_id = -1; usb_stats[next_stat-1].details = calloc(1, sizeof(struct cg_usb_stats_details) * C_MAX * 2); for (i = 1; i < C_MAX * 2; i += 2) usb_stats[next_stat-1].details[i].seq = 1; } #endif void update_usb_stats(__maybe_unused struct cgpu_info *cgpu) { #if DO_USB_STATS if (cgpu->usbstat < 1) newstats(cgpu); // we don't know the device_id until after add_cgpu() usb_stats[cgpu->usbstat - 1].device_id = cgpu->device_id; #endif } #if DO_USB_STATS static void stats(struct cgpu_info *cgpu, struct timeval *tv_start, struct timeval *tv_finish, int err, enum usb_cmds cmd, int seq) { struct cg_usb_stats_details *details; double diff; int item; if (cgpu->usbstat < 1) newstats(cgpu); details = &(usb_stats[cgpu->usbstat - 1].details[cmd * 2 + seq]); diff = tdiff(tv_finish, tv_start); switch (err) { case LIBUSB_SUCCESS: item = CMD_CMD; break; case LIBUSB_ERROR_TIMEOUT: item = CMD_TIMEOUT; break; default: item = CMD_ERROR; break; } if (details->item[item].count == 0) { details->item[item].min_delay = diff; memcpy(&(details->item[item].first), tv_start, sizeof(*tv_start)); } else if (diff < details->item[item].min_delay) details->item[item].min_delay = diff; if (diff > details->item[item].max_delay) details->item[item].max_delay = diff; details->item[item].total_delay += diff; memcpy(&(details->item[item].last), tv_start, sizeof(tv_start)); details->item[item].count++; } #endif int _usb_read(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, int eol, enum usb_cmds cmd, bool ftdi) { struct cg_usb_device *usbdev = cgpu->usbdev; #if DO_USB_STATS struct timeval tv_start; #endif struct timeval read_start, tv_finish; unsigned int initial_timeout; double max, done; int err, got, tot, i; bool first = true; if (timeout == DEVTIMEOUT) timeout = usbdev->found->timeout; if (eol == -1) { got = 0; STATS_TIMEVAL(&tv_start); err = libusb_bulk_transfer(usbdev->handle, usbdev->found->eps[ep].ep, (unsigned char *)buf, bufsiz, &got, timeout); STATS_TIMEVAL(&tv_finish); USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0); if (ftdi) { // first 2 bytes returned are an FTDI status if (got > 2) { got -= 2; memmove(buf, buf+2, got+1); } else { got = 0; *buf = '\0'; } } *processed = got; return err; } tot = 0; err = LIBUSB_SUCCESS; initial_timeout = timeout; max = ((double)timeout) / 1000.0; gettimeofday(&read_start, NULL); while (bufsiz) { got = 0; STATS_TIMEVAL(&tv_start); err = libusb_bulk_transfer(usbdev->handle, usbdev->found->eps[ep].ep, (unsigned char *)buf, bufsiz, &got, timeout); gettimeofday(&tv_finish, NULL); USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, first ? SEQ0 : SEQ1); if (ftdi) { // first 2 bytes returned are an FTDI status if (got > 2) { got -= 2; memmove(buf, buf+2, got+1); } else { got = 0; *buf = '\0'; } } tot += got; if (err) break; // WARNING - this will return data past EOL ('if' there is extra data) for (i = 0; i < got; i++) if (buf[i] == eol) goto goteol; buf += got; bufsiz -= got; first = false; done = tdiff(&tv_finish, &read_start); // N.B. this is return LIBUSB_SUCCESS with whatever size has already been read if (unlikely(done >= max)) break; timeout = initial_timeout - (done * 1000); } goteol: *processed = tot; return err; } int _usb_write(struct cgpu_info *cgpu, int ep, char *buf, size_t bufsiz, int *processed, unsigned int timeout, enum usb_cmds cmd) { struct cg_usb_device *usbdev = cgpu->usbdev; #if DO_USB_STATS struct timeval tv_start, tv_finish; #endif int err, sent; sent = 0; STATS_TIMEVAL(&tv_start); err = libusb_bulk_transfer(usbdev->handle, usbdev->found->eps[ep].ep, (unsigned char *)buf, bufsiz, &sent, timeout == DEVTIMEOUT ? usbdev->found->timeout : timeout); STATS_TIMEVAL(&tv_finish); USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0); *processed = sent; return err; } int _usb_transfer(struct cgpu_info *cgpu, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, unsigned int timeout, enum usb_cmds cmd) { struct cg_usb_device *usbdev = cgpu->usbdev; #if DO_USB_STATS struct timeval tv_start, tv_finish; #endif int err; STATS_TIMEVAL(&tv_start); err = libusb_control_transfer(usbdev->handle, request_type, bRequest, wValue, wIndex, NULL, 0, timeout == DEVTIMEOUT ? usbdev->found->timeout : timeout); STATS_TIMEVAL(&tv_finish); USB_STATS(cgpu, &tv_start, &tv_finish, err, cmd, SEQ0); return err; } void usb_cleanup() { // TODO: }