/* * Copyright 2011 Con Kolivas * Copyright 2010 Jeff Garzik * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #endif #include #include #include #include "compat.h" #include "miner.h" #include "findnonce.h" #include "ocl.h" #define PROGRAM_NAME "cgminer" #define DEF_RPC_URL "http://127.0.0.1:8332/" #define DEF_RPC_USERNAME "rpcuser" #define DEF_RPC_PASSWORD "rpcpass" #define DEF_RPC_USERPASS DEF_RPC_USERNAME ":" DEF_RPC_PASSWORD #ifdef __linux /* Linux specific policy and affinity management */ #include static inline void drop_policy(void) { struct sched_param param; #ifdef SCHED_BATCH #ifdef SCHED_IDLE if (unlikely(sched_setscheduler(0, SCHED_IDLE, ¶m) == -1)) #endif sched_setscheduler(0, SCHED_BATCH, ¶m); #endif } static inline void affine_to_cpu(int id, int cpu) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(cpu, &set); sched_setaffinity(0, sizeof(&set), &set); applog(LOG_INFO, "Binding cpu mining thread %d to cpu %d", id, cpu); } #else static inline void drop_policy(void) { } static inline void affine_to_cpu(int id, int cpu) { } #endif enum workio_commands { WC_GET_WORK, WC_SUBMIT_WORK, WC_DIE, }; struct workio_cmd { enum workio_commands cmd; struct thr_info *thr; union { struct work *work; } u; }; enum sha256_algos { ALGO_C, /* plain C */ ALGO_4WAY, /* parallel SSE2 */ ALGO_VIA, /* VIA padlock */ ALGO_CRYPTOPP, /* Crypto++ (C) */ ALGO_CRYPTOPP_ASM32, /* Crypto++ 32-bit assembly */ ALGO_SSE2_64, /* SSE2 for x86_64 */ }; static const char *algo_names[] = { [ALGO_C] = "c", #ifdef WANT_SSE2_4WAY [ALGO_4WAY] = "4way", #endif #ifdef WANT_VIA_PADLOCK [ALGO_VIA] = "via", #endif [ALGO_CRYPTOPP] = "cryptopp", #ifdef WANT_CRYPTOPP_ASM32 [ALGO_CRYPTOPP_ASM32] = "cryptopp_asm32", #endif #ifdef WANT_X8664_SSE2 [ALGO_SSE2_64] = "sse2_64", #endif }; bool opt_debug = false; bool opt_protocol = false; bool want_longpoll = true; bool have_longpoll = false; bool use_syslog = false; static bool opt_quiet = false; static int opt_retries = -1; static int opt_fail_pause = 5; static int opt_log_interval = 5; bool opt_log_output = false; static int opt_queue = 0; int opt_vectors; int opt_worksize; int opt_scantime = 60; static const bool opt_time = true; #ifdef WANT_X8664_SSE2 static enum sha256_algos opt_algo = ALGO_SSE2_64; #else static enum sha256_algos opt_algo = ALGO_C; #endif static int nDevs; static int opt_g_threads = 2; static int gpu_threads; static bool forced_n_threads; static int opt_n_threads; static int num_processors; static int scan_intensity = 4; static char *rpc_url; static char *rpc_userpass; static char *rpc_user, *rpc_pass; struct thr_info *thr_info; static int work_thr_id; int longpoll_thr_id; static int stage_thr_id; struct work_restart *work_restart = NULL; pthread_mutex_t time_lock; static pthread_mutex_t hash_lock; static pthread_mutex_t qd_lock; static double total_mhashes_done; static struct timeval total_tv_start, total_tv_end; static int accepted, rejected; int hw_errors; static int total_queued; static unsigned int getwork_requested = 0; static char current_block[37]; static char blank[37]; static void applog_and_exit(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vapplog(LOG_ERR, fmt, ap); va_end(ap); exit(1); } /* FIXME: Use asprintf for better errors. */ static char *set_algo(const char *arg, enum sha256_algos *algo) { enum sha256_algos i; for (i = 0; i < ARRAY_SIZE(algo_names); i++) { if (algo_names[i] && !strcmp(arg, algo_names[i])) { *algo = i; return NULL; } } return "Unknown algorithm"; } static void show_algo(char buf[OPT_SHOW_LEN], const enum sha256_algos *algo) { strncpy(buf, algo_names[*algo], OPT_SHOW_LEN); } static char *set_int_range(const char *arg, int *i, int min, int max) { char *err = opt_set_intval(arg, i); if (err) return err; if (*i < min || *i > max) return "Value out of range"; return NULL; } static char *set_int_0_to_9999(const char *arg, int *i) { return set_int_range(arg, i, 0, 9999); } static char *set_int_0_to_14(const char *arg, int *i) { return set_int_range(arg, i, 0, 14); } static char *force_nthreads_int(const char *arg, int *i) { forced_n_threads = true; return set_int_range(arg, i, 0, 9999); } static char *set_int_0_to_10(const char *arg, int *i) { return set_int_range(arg, i, 0, 10); } static char *set_url(const char *arg, char **p) { opt_set_charp(arg, p); if (strncmp(arg, "http://", 7) && strncmp(arg, "https://", 8)) return "URL must start with http:// or https://"; return NULL; } static char *set_vector(const char *arg, int *i) { char *err = opt_set_intval(arg, i); if (err) return err; if (*i != 1 && *i != 2 && *i != 4) return "Valid vectors are 1, 2 or 4"; return NULL; } static char *enable_debug(bool *flag) { *flag = true; /* Turn out verbose output, too. */ opt_log_output = true; return NULL; } /* These options are available from config file or commandline */ static struct opt_table opt_config_table[] = { OPT_WITH_ARG("--algo|-a", set_algo, show_algo, &opt_algo, "Specify sha256 implementation:\n" "\tc\t\tLinux kernel sha256, implemented in C" #ifdef WANT_SSE2_4WAY "\n\t4way\t\ttcatm's 4-way SSE2 implementation" #endif #ifdef WANT_VIA_PADLOCK "\n\tvia\t\tVIA padlock implementation" #endif "\n\tcryptopp\tCrypto++ C/C++ implementation" #ifdef WANT_CRYPTOPP_ASM32 "\n\tcryptopp_asm32\tCrypto++ 32-bit assembler implementation" #endif #ifdef WANT_X8664_SSE2 "\n\tsse2_64\t\tSSE2 implementation for x86_64 machines" #endif ), OPT_WITH_ARG("--cpu-threads|-t", force_nthreads_int, opt_show_intval, &opt_n_threads, "Number of miner CPU threads"), OPT_WITHOUT_ARG("--debug|-D", enable_debug, &opt_debug, "Enable debug output"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--gpu-threads|-g", set_int_0_to_10, opt_show_intval, &opt_g_threads, "Number of threads per GPU (0 - 10)"), OPT_WITH_ARG("--intensity|-I", set_int_0_to_14, opt_show_intval, &scan_intensity, "Intensity of GPU scanning (0 - 14)"), #endif OPT_WITH_ARG("--log|-l", set_int_0_to_9999, opt_show_intval, &opt_log_interval, "Interval in seconds between log output"), OPT_WITHOUT_ARG("--no-longpoll", opt_set_invbool, &want_longpoll, "Disable X-Long-Polling support"), OPT_WITH_ARG("--pass|-p", opt_set_charp, NULL, &rpc_pass, "Password for bitcoin JSON-RPC server"), OPT_WITHOUT_ARG("--protocol-dump|-P", opt_set_bool, &opt_protocol, "Verbose dump of protocol-level activities"), OPT_WITH_ARG("--queue|-Q", set_int_0_to_9999, opt_show_intval, &opt_queue, "Number of extra work items to queue"), OPT_WITHOUT_ARG("--quiet|-q", opt_set_bool, &opt_quiet, "Disable per-thread hashmeter output"), OPT_WITH_ARG("--retries|-r", opt_set_intval, opt_show_intval, &opt_retries, "Number of times to retry before giving up, if JSON-RPC call fails (-1 means never)"), OPT_WITH_ARG("--retry-pause|-R", set_int_0_to_9999, opt_show_intval, &opt_fail_pause, "Number of seconds to pause, between retries"), OPT_WITH_ARG("--scan-time|-s", set_int_0_to_9999, opt_show_intval, &opt_scantime, "Upper bound on time spent scanning current work, in seconds"), #ifdef HAVE_SYSLOG_H OPT_WITHOUT_ARG("--syslog", opt_set_bool, &use_syslog, "Use system log for output messages (default: standard error)"), #endif OPT_WITH_ARG("--url|-o", set_url, opt_show_charp, &rpc_url, "URL for bitcoin JSON-RPC server"), OPT_WITH_ARG("--user|-u", opt_set_charp, NULL, &rpc_user, "Username for bitcoin JSON-RPC server"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--vectors|-v", set_vector, NULL, &opt_vectors, "Override detected optimal vector width (1, 2 or 4)"), #endif OPT_WITHOUT_ARG("--verbose", opt_set_bool, &opt_log_output, "Log verbose output to stderr as well as status output"), #ifdef HAVE_OPENCL OPT_WITH_ARG("--worksize|-w", set_int_0_to_9999, opt_show_intval, &opt_worksize, "Override detected optimal worksize"), #endif OPT_WITH_ARG("--userpass|-O", opt_set_charp, NULL, &rpc_userpass, "Username:Password pair for bitcoin JSON-RPC server"), OPT_ENDTABLE }; static char *parse_config(json_t *config) { static char err_buf[200]; json_t *val; struct opt_table *opt; for (opt = opt_config_table; opt->type != OPT_END; opt++) { char *p, *name; /* We don't handle subtables. */ assert(!(opt->type & OPT_SUBTABLE)); /* Pull apart the option name(s). */ name = strdup(opt->names); for (p = strtok(name, "|"); p; p = strtok(NULL, "|")) { char *err; /* Ignore short options. */ if (p[1] != '-') continue; val = json_object_get(config, p+2); if (!val) continue; if ((opt->type & OPT_HASARG) && json_is_string(val)) { err = opt->cb_arg(json_string_value(val), opt->u.arg); } else if ((opt->type&OPT_NOARG) && json_is_true(val)) { err = opt->cb(opt->u.arg); } else { err = "Invalid value"; } if (err) { sprintf(err_buf, "Parsing JSON option %s: %s", p, err); return err_buf; } } free(name); } return NULL; } static char *load_config(const char *arg, void *unused) { json_error_t err; json_t *config; config = json_load_file(arg, &err); if (!json_is_object(config)) return "JSON decode of file failed"; /* Parse the config now, so we can override it. That can keep pointers * so don't free config object. */ return parse_config(config); } static char *print_ndevs_and_exit(int *ndevs) { printf("%i", *ndevs); exit(*ndevs); } /* These options are available from commandline only */ static struct opt_table opt_cmdline_table[] = { OPT_WITH_ARG("--config|-c", load_config, NULL, NULL, "Load a JSON-format configuration file\n" "See example-cfg.json for an example configuration."), OPT_WITHOUT_ARG("--help|-h", opt_usage_and_exit, #ifdef HAVE_OPENCL "\nBuilt with CPU and GPU mining support.\n\n", #else "\nBuilt with CPU mining support only.\n\n", #endif "Print this message"), OPT_WITHOUT_ARG("--ndevs|-n", print_ndevs_and_exit, &nDevs, "Display number of detected GPUs and exit"), OPT_ENDTABLE }; static bool jobj_binary(const json_t *obj, const char *key, void *buf, size_t buflen) { const char *hexstr; json_t *tmp; tmp = json_object_get(obj, key); if (unlikely(!tmp)) { applog(LOG_ERR, "JSON key '%s' not found", key); return false; } hexstr = json_string_value(tmp); if (unlikely(!hexstr)) { applog(LOG_ERR, "JSON key '%s' is not a string", key); return false; } if (!hex2bin(buf, hexstr, buflen)) return false; return true; } static bool work_decode(const json_t *val, struct work *work) { if (unlikely(!jobj_binary(val, "midstate", work->midstate, sizeof(work->midstate)))) { applog(LOG_ERR, "JSON inval midstate"); goto err_out; } if (unlikely(!jobj_binary(val, "data", work->data, sizeof(work->data)))) { applog(LOG_ERR, "JSON inval data"); goto err_out; } if (unlikely(!jobj_binary(val, "hash1", work->hash1, sizeof(work->hash1)))) { applog(LOG_ERR, "JSON inval hash1"); goto err_out; } if (unlikely(!jobj_binary(val, "target", work->target, sizeof(work->target)))) { applog(LOG_ERR, "JSON inval target"); goto err_out; } memset(work->hash, 0, sizeof(work->hash)); return true; err_out: return false; } static double total_secs; static bool submit_upstream_work(const struct work *work) { char *hexstr = NULL; json_t *val, *res; char s[345]; bool rc = false; struct cgpu_info *cgpu = thr_info[work->thr_id].cgpu; CURL *curl = curl_easy_init(); double utility, efficiency; if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); return rc; } /* build hex string */ hexstr = bin2hex(work->data, sizeof(work->data)); if (unlikely(!hexstr)) { applog(LOG_ERR, "submit_upstream_work OOM"); goto out_nofree; } /* build JSON-RPC request */ sprintf(s, "{\"method\": \"getwork\", \"params\": [ \"%s\" ], \"id\":1}\r\n", hexstr); if (opt_debug) applog(LOG_DEBUG, "DBG: sending RPC call: %s", s); /* issue JSON-RPC request */ val = json_rpc_call(curl, rpc_url, rpc_userpass, s, false, false); if (unlikely(!val)) { applog(LOG_ERR, "submit_upstream_work json_rpc_call failed"); goto out; } res = json_object_get(val, "result"); /* Theoretically threads could race when modifying accepted and * rejected values but the chance of two submits completing at the * same time is zero so there is no point adding extra locking */ if (json_is_true(res)) { cgpu->accepted++; accepted++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: true (yay!!!)"); if (!opt_quiet) printf("[Accepted] "); } else { cgpu->rejected++; rejected++; if (opt_debug) applog(LOG_DEBUG, "PROOF OF WORK RESULT: false (booooo)"); if (!opt_quiet) printf("[Rejected] "); } utility = accepted / ( total_secs ? total_secs : 1 ) * 60; efficiency = getwork_requested ? cgpu->accepted * 100.0 / getwork_requested : 0.0; if (!opt_quiet) { printf("[%sPU %d] [%.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m] \n", cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, cgpu->total_mhashes / total_secs, getwork_requested, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, efficiency, utility); } applog(LOG_INFO, "%sPU %d Requested:%d Accepted:%d Rejected:%d HW errors:%d Efficiency:%.0f%% Utility:%.2f/m", cgpu->is_gpu? "G" : "C", cgpu->cpu_gpu, getwork_requested, cgpu->accepted, cgpu->rejected, cgpu->hw_errors, efficiency, utility ); json_decref(val); rc = true; out: free(hexstr); out_nofree: curl_easy_cleanup(curl); return rc; } static const char *rpc_req = "{\"method\": \"getwork\", \"params\": [], \"id\":0}\r\n"; static bool get_upstream_work(struct work *work) { json_t *val; bool rc = false; CURL *curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); return rc; } val = json_rpc_call(curl, rpc_url, rpc_userpass, rpc_req, want_longpoll, false); if (unlikely(!val)) { applog(LOG_ERR, "Failed json_rpc_call in get_upstream_work"); goto out; } rc = work_decode(json_object_get(val, "result"), work); json_decref(val); out: curl_easy_cleanup(curl); return rc; } static void workio_cmd_free(struct workio_cmd *wc) { if (!wc) return; switch (wc->cmd) { case WC_SUBMIT_WORK: free(wc->u.work); break; default: /* do nothing */ break; } memset(wc, 0, sizeof(*wc)); /* poison */ free(wc); } static void kill_work(void) { struct workio_cmd *wc; applog(LOG_INFO, "Received kill message"); wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in kill_work"); /* We're just trying to die anyway, so forget graceful */ exit (1); } wc->cmd = WC_DIE; wc->thr = 0; if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in kill_work"); exit (1); } } static void *get_work_thread(void *userdata) { struct workio_cmd *wc = (struct workio_cmd *)userdata; struct work *ret_work; int failures = 0; pthread_detach(pthread_self()); ret_work = calloc(1, sizeof(*ret_work)); if (unlikely(!ret_work)) { applog(LOG_ERR, "Failed to calloc ret_work in workio_get_work"); kill_work(); goto out; } /* obtain new work from bitcoin via JSON-RPC */ while (!get_upstream_work(ret_work)) { if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "json_rpc_call failed, terminating workio thread"); free(ret_work); kill_work(); goto out; } /* pause, then restart work-request loop */ applog(LOG_ERR, "json_rpc_call failed on get work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } /* send work to requesting thread */ if (unlikely(!tq_push(thr_info[stage_thr_id].q, ret_work))) { applog(LOG_ERR, "Failed to tq_push work in workio_get_work"); kill_work(); free(ret_work); } out: workio_cmd_free(wc); return NULL; } static bool workio_get_work(struct workio_cmd *wc) { pthread_t get_thread; if (unlikely(pthread_create(&get_thread, NULL, get_work_thread, (void *)wc))) { applog(LOG_ERR, "Failed to create get_work_thread"); return false; } return true; } static void *submit_work_thread(void *userdata) { struct workio_cmd *wc = (struct workio_cmd *)userdata; int failures = 0; char *hexstr; pthread_detach(pthread_self()); hexstr = bin2hex(wc->u.work->data, 36); if (unlikely(!hexstr)) { applog(LOG_ERR, "submit_work_thread OOM"); goto out; } if (unlikely(strncmp(hexstr, current_block, 36))) { applog(LOG_INFO, "Stale work detected, discarding"); goto out_free; } /* submit solution to bitcoin via JSON-RPC */ while (!submit_upstream_work(wc->u.work)) { if (unlikely(strncmp(hexstr, current_block, 36))) { applog(LOG_INFO, "Stale work detected, discarding"); goto out_free; } if (unlikely((opt_retries >= 0) && (++failures > opt_retries))) { applog(LOG_ERR, "Failed %d retries ...terminating workio thread", opt_retries); kill_work(); goto out_free; } /* pause, then restart work-request loop */ applog(LOG_ERR, "json_rpc_call failed on submit_work, retry after %d seconds", opt_fail_pause); sleep(opt_fail_pause); } out_free: free(hexstr); out: workio_cmd_free(wc); return NULL; } static bool workio_submit_work(struct workio_cmd *wc) { pthread_t submit_thread; if (unlikely(pthread_create(&submit_thread, NULL, submit_work_thread, (void *)wc))) { applog(LOG_ERR, "Failed to create submit_work_thread"); return false; } return true; } static void *stage_thread(void *userdata) { struct thr_info *mythr = userdata; bool ok = true; unsigned int i; for (i = 0; i < 36; i++) { strcat(current_block, "0"); strcat(blank, "0"); } while (ok) { struct work *work = NULL; char *hexstr; work = tq_pop(mythr->q, NULL); if (unlikely(!work)) { applog(LOG_ERR, "Failed to tq_pop in stage_thread"); ok = false; break; } hexstr = bin2hex(work->data, 36); if (unlikely(!hexstr)) { applog(LOG_ERR, "stage_thread OOM"); break; } /* current_block is blanked out on successful longpoll */ if (likely(strncmp(current_block, blank, 36))) { if (unlikely(strncmp(hexstr, current_block, 36))) { if (want_longpoll) applog(LOG_WARNING, "New block detected, possible missed longpoll, flushing work queue "); else applog(LOG_WARNING, "New block detected, flushing work queue "); /* As we can't flush the work from here, signal * the wakeup thread to restart all the * threads */ work_restart[stage_thr_id].restart = 1; } } memcpy(current_block, hexstr, 36); free(hexstr); if (unlikely(!tq_push(thr_info[0].q, work))) { applog(LOG_ERR, "Failed to tq_push work in stage_thread"); ok = false; break; } } tq_freeze(mythr->q); return NULL; } static void *workio_thread(void *userdata) { struct thr_info *mythr = userdata; bool ok = true; while (ok) { struct workio_cmd *wc; /* wait for workio_cmd sent to us, on our queue */ wc = tq_pop(mythr->q, NULL); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to tq_pop in workio_thread"); ok = false; break; } /* process workio_cmd */ switch (wc->cmd) { case WC_GET_WORK: ok = workio_get_work(wc); break; case WC_SUBMIT_WORK: ok = workio_submit_work(wc); break; case WC_DIE: default: ok = false; break; } } tq_freeze(mythr->q); return NULL; } static void hashmeter(int thr_id, struct timeval *diff, unsigned long hashes_done) { struct timeval temp_tv_end, total_diff; double khashes, secs; double local_secs; double utility, efficiency = 0.0; static double local_mhashes_done = 0; static double rolling_local = 0; double local_mhashes = (double)hashes_done / 1000000.0; /* Don't bother calculating anything if we're not displaying it */ if (opt_quiet || !opt_log_interval) return; khashes = hashes_done / 1000.0; secs = (double)diff->tv_sec + ((double)diff->tv_usec / 1000000.0); if (thr_id >= 0) { /* So we can call hashmeter from a non worker thread */ struct cgpu_info *cgpu = thr_info[thr_id].cgpu; if (opt_debug) applog(LOG_DEBUG, "[thread %d: %lu hashes, %.0f khash/sec]", thr_id, hashes_done, hashes_done / secs); cgpu->local_mhashes += local_mhashes; cgpu->total_mhashes += local_mhashes; } /* Totals are updated by all threads so can race without locking */ pthread_mutex_lock(&hash_lock); gettimeofday(&temp_tv_end, NULL); timeval_subtract(&total_diff, &temp_tv_end, &total_tv_end); local_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); total_mhashes_done += local_mhashes; local_mhashes_done += local_mhashes; if (total_diff.tv_sec < opt_log_interval) /* Only update the total every opt_log_interval seconds */ goto out_unlock; gettimeofday(&total_tv_end, NULL); /* Use a rolling average by faking an exponential decay over 5 * log */ rolling_local = ((rolling_local * 0.9) + local_mhashes_done) / 1.9; timeval_subtract(&total_diff, &total_tv_end, &total_tv_start); total_secs = (double)total_diff.tv_sec + ((double)total_diff.tv_usec / 1000000.0); utility = accepted / ( total_secs ? total_secs : 1 ) * 60; efficiency = getwork_requested ? accepted * 100.0 / getwork_requested : 0.0; printf("[(%ds):%.1f (avg):%.1f Mh/s] [Q:%d A:%d R:%d HW:%d E:%.0f%% U:%.2f/m]\r", opt_log_interval, rolling_local / local_secs, total_mhashes_done / total_secs, getwork_requested, accepted, rejected, hw_errors, efficiency, utility); fflush(stdout); applog(LOG_INFO, "[Rate (%ds):%.1f (avg):%.2f Mhash/s] [Requested:%d Accepted:%d Rejected:%d HW errors:%d Efficiency:%.0f%% Utility:%.2f/m]", opt_log_interval, rolling_local / local_secs, total_mhashes_done / total_secs, getwork_requested, accepted, rejected, hw_errors, efficiency, utility); local_mhashes_done = 0; out_unlock: pthread_mutex_unlock(&hash_lock); } /* This is overkill, but at least we'll know accurately how much work is * queued to prevent ever being left without work */ static void inc_queued(void) { pthread_mutex_lock(&qd_lock); total_queued++; pthread_mutex_unlock(&qd_lock); } static void dec_queued(void) { pthread_mutex_lock(&qd_lock); total_queued--; pthread_mutex_unlock(&qd_lock); } static int requests_queued(void) { int ret; pthread_mutex_lock(&qd_lock); ret = total_queued; pthread_mutex_unlock(&qd_lock); return ret; } /* All work is queued flagged as being for thread 0 and then the mining thread * flags it as its own */ static bool queue_request(void) { struct thr_info *thr = &thr_info[0]; struct workio_cmd *wc; /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to tq_pop in queue_request"); return false; } wc->cmd = WC_GET_WORK; wc->thr = thr; /* send work request to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push in queue_request"); workio_cmd_free(wc); return false; } inc_queued(); return true; } static bool discard_request(void) { struct thr_info *thr = &thr_info[0]; struct work *work_heap; /* Just in case we fell in a hole and missed a queue filling */ if (unlikely(!requests_queued())) { applog(LOG_WARNING, "Tried to discard_request with nil queued"); return true; } work_heap = tq_pop(thr->q, NULL); if (unlikely(!work_heap)) { applog(LOG_ERR, "Failed to tq_pop in discard_request"); return false; } free(work_heap); dec_queued(); return true; } static void flush_requests(bool longpoll) { int i, extra; extra = requests_queued(); /* When flushing from longpoll, we don't know the new work yet. When * not flushing from longpoll, the first work item is valid so do not * discard it */ if (longpoll) memcpy(current_block, blank, 36); else extra--; for (i = 0; i < extra; i++) { /* Queue a whole batch of new requests */ if (unlikely(!queue_request())) { applog(LOG_ERR, "Failed to queue requests in flush_requests"); kill_work(); break; } /* Pop off the old requests. Cancelling the requests would be better * but is tricky */ if (unlikely(!discard_request())) { applog(LOG_ERR, "Failed to discard requests in flush_requests"); kill_work(); break; } } } static bool get_work(struct work *work, bool queued) { struct thr_info *thr = &thr_info[0]; struct work *work_heap; bool ret = false; int failures = 0; retry: if (unlikely(!queued && !queue_request())) { applog(LOG_WARNING, "Failed to queue_request in get_work"); goto out; } /* wait for 1st response, or get cached response */ work_heap = tq_pop(thr->q, NULL); if (unlikely(!work_heap)) { applog(LOG_WARNING, "Failed to tq_pop in get_work"); goto out; } dec_queued(); memcpy(work, work_heap, sizeof(*work)); ret = true; free(work_heap); out: if (unlikely(ret == false)) { if ((opt_retries >= 0) && (++failures > opt_retries)) { applog(LOG_ERR, "Failed %d times to get_work"); return ret; } applog(LOG_WARNING, "Retrying after %d seconds", opt_fail_pause); sleep(opt_fail_pause); goto retry; } return ret; } static bool submit_work_sync(struct thr_info *thr, const struct work *work_in) { struct workio_cmd *wc; /* fill out work request message */ wc = calloc(1, sizeof(*wc)); if (unlikely(!wc)) { applog(LOG_ERR, "Failed to calloc wc in submit_work_sync"); return false; } wc->u.work = malloc(sizeof(*work_in)); if (unlikely(!wc->u.work)) { applog(LOG_ERR, "Failed to calloc work in submit_work_sync"); goto err_out; } wc->cmd = WC_SUBMIT_WORK; wc->thr = thr; memcpy(wc->u.work, work_in, sizeof(*work_in)); /* send solution to workio thread */ if (unlikely(!tq_push(thr_info[work_thr_id].q, wc))) { applog(LOG_ERR, "Failed to tq_push work in submit_work_sync"); goto err_out; } return true; err_out: workio_cmd_free(wc); return false; } bool submit_nonce(struct thr_info *thr, struct work *work, uint32_t nonce) { work->data[64+12+0] = (nonce>>0) & 0xff; work->data[64+12+1] = (nonce>>8) & 0xff; work->data[64+12+2] = (nonce>>16) & 0xff; work->data[64+12+3] = (nonce>>24) & 0xff; return submit_work_sync(thr, work); } static inline int cpu_from_thr_id(int thr_id) { return (thr_id - gpu_threads) % num_processors; } static void *miner_thread(void *userdata) { struct thr_info *mythr = userdata; const int thr_id = mythr->id; uint32_t max_nonce = 0xffffff; bool needs_work = true; /* Try to cycle approximately 5 times before each log update */ const unsigned long cycle = opt_log_interval / 5 ? : 1; /* Request the next work item at 2/3 of the scantime */ unsigned const int request_interval = opt_scantime * 2 / 3 ? : 1; unsigned const long request_nonce = MAXTHREADS / 3 * 2; bool requested = true; /* Set worker threads to nice 19 and then preferentially to SCHED_IDLE * and if that fails, then SCHED_BATCH. No need for this to be an * error if it fails */ setpriority(PRIO_PROCESS, 0, 19); drop_policy(); /* Cpu affinity only makes sense if the number of threads is a multiple * of the number of CPUs */ if (!(opt_n_threads % num_processors)) affine_to_cpu(thr_id - gpu_threads, cpu_from_thr_id(thr_id)); while (1) { struct work work __attribute__((aligned(128))); unsigned long hashes_done; struct timeval tv_workstart, tv_start, tv_end, diff; uint64_t max64; bool rc; if (needs_work) { gettimeofday(&tv_workstart, NULL); /* obtain new work from internal workio thread */ if (unlikely(!get_work(&work, requested))) { applog(LOG_ERR, "work retrieval failed, exiting " "mining thread %d", mythr->id); goto out; } work.thr_id = thr_id; needs_work = requested = false; work.blk.nonce = 0; } hashes_done = 0; gettimeofday(&tv_start, NULL); /* scan nonces for a proof-of-work hash */ switch (opt_algo) { case ALGO_C: rc = scanhash_c(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce); break; #ifdef WANT_X8664_SSE2 case ALGO_SSE2_64: { unsigned int rc5 = scanhash_sse2_64(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce); rc = (rc5 == -1) ? false : true; } break; #endif #ifdef WANT_SSE2_4WAY case ALGO_4WAY: { unsigned int rc4 = ScanHash_4WaySSE2(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce); rc = (rc4 == -1) ? false : true; } break; #endif #ifdef WANT_VIA_PADLOCK case ALGO_VIA: rc = scanhash_via(thr_id, work.data, work.target, max_nonce, &hashes_done, work.blk.nonce); break; #endif case ALGO_CRYPTOPP: rc = scanhash_cryptopp(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce); break; #ifdef WANT_CRYPTOPP_ASM32 case ALGO_CRYPTOPP_ASM32: rc = scanhash_asm32(thr_id, work.midstate, work.data + 64, work.hash1, work.hash, work.target, max_nonce, &hashes_done, work.blk.nonce); break; #endif default: /* should never happen */ goto out; } /* record scanhash elapsed time */ gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashes_done -= work.blk.nonce; hashmeter(thr_id, &diff, hashes_done); work.blk.nonce += hashes_done; /* adjust max_nonce to meet target cycle time */ if (diff.tv_usec > 500000) diff.tv_sec++; if (diff.tv_sec && diff.tv_sec != cycle) { max64 = work.blk.nonce + ((uint64_t)hashes_done * cycle) / diff.tv_sec; } else max64 = work.blk.nonce + hashes_done; if (max64 > 0xfffffffaULL) max64 = 0xfffffffaULL; max_nonce = max64; /* if nonce found, submit work */ if (unlikely(rc)) { if (opt_debug) applog(LOG_DEBUG, "CPU %d found something?", cpu_from_thr_id(thr_id)); if (unlikely(!submit_work_sync(mythr, &work))) { applog(LOG_ERR, "Failed to submit_work_sync in miner_thread %d", thr_id); break; } work.blk.nonce += 4; } timeval_subtract(&diff, &tv_end, &tv_workstart); if (!requested && (diff.tv_sec > request_interval || work.blk.nonce > request_nonce)) { if (unlikely(!queue_request())) { applog(LOG_ERR, "Failed to queue_request in miner_thread %d", thr_id); goto out; } requested = true; } if (diff.tv_sec > opt_scantime || work_restart[thr_id].restart || work.blk.nonce >= MAXTHREADS - hashes_done) needs_work = true; } out: tq_freeze(mythr->q); return NULL; } enum { STAT_SLEEP_INTERVAL = 1, STAT_CTR_INTERVAL = 10000000, FAILURE_INTERVAL = 30, }; #ifdef HAVE_OPENCL static _clState *clStates[16]; static inline cl_int queue_kernel_parameters(_clState *clState, dev_blk_ctx *blk) { cl_kernel *kernel = &clState->kernel; cl_int status = 0; int num = 0; status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_a); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->ctx_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_b); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_c); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_d); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_f); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce); if (clState->hasBitAlign == true) { /* Parameters for phatk kernel */ status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->T1); } else { /* Parameters for poclbm kernel */ status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e); status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2); } status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer), (void *)&clState->outputBuffer); return status; } static inline int gpu_from_thr_id(int thr_id) { return thr_id % nDevs; } static void *gpuminer_thread(void *userdata) { const unsigned long cycle = opt_log_interval / 5 ? : 1; struct timeval tv_start, tv_end, diff; struct thr_info *mythr = userdata; const int thr_id = mythr->id; uint32_t *res, *blank_res; size_t globalThreads[1]; size_t localThreads[1]; cl_int status; _clState *clState = clStates[thr_id]; const cl_kernel *kernel = &clState->kernel; struct work *work = malloc(sizeof(struct work)); unsigned const int threads = 1 << (15 + scan_intensity); unsigned const int vectors = clState->preferred_vwidth; unsigned const int hashes = threads * vectors; unsigned int hashes_done = 0; /* Request the next work item at 2/3 of the scantime */ unsigned const int request_interval = opt_scantime * 2 / 3 ? : 1; unsigned const long request_nonce = MAXTHREADS / 3 * 2; bool requested = true; res = calloc(BUFFERSIZE, 1); blank_res = calloc(BUFFERSIZE, 1); if (!res || !blank_res) { applog(LOG_ERR, "Failed to calloc in gpuminer_thread"); goto out; } gettimeofday(&tv_start, NULL); globalThreads[0] = threads; localThreads[0] = clState->work_size; diff.tv_sec = ~0UL; gettimeofday(&tv_end, NULL); while (1) { struct timeval tv_workstart; /* This finish flushes the readbuffer set with CL_FALSE later */ clFinish(clState->commandQueue); if (diff.tv_sec > opt_scantime || work->blk.nonce >= MAXTHREADS - hashes || work_restart[thr_id].restart) { /* Ignore any reads since we're getting new work and queue a clean buffer */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } memset(res, 0, BUFFERSIZE); gettimeofday(&tv_workstart, NULL); /* obtain new work from internal workio thread */ if (unlikely(!get_work(work, requested))) { applog(LOG_ERR, "work retrieval failed, exiting " "gpu mining thread %d", mythr->id); goto out; } work->thr_id = thr_id; requested = false; getwork_requested++; precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64)); work->blk.nonce = 0; work_restart[thr_id].restart = 0; if (opt_debug) applog(LOG_DEBUG, "getwork thread %d", thr_id); /* Flushes the writebuffer set with CL_FALSE above */ clFinish(clState->commandQueue); } status = queue_kernel_parameters(clState, &work->blk); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; } /* MAXBUFFERS entry is used as a flag to say nonces exist */ if (res[MAXBUFFERS]) { /* Clear the buffer again */ status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, blank_res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; } if (opt_debug) applog(LOG_DEBUG, "GPU %d found something?", gpu_from_thr_id(thr_id)); postcalc_hash_async(mythr, work, res); memset(res, 0, BUFFERSIZE); clFinish(clState->commandQueue); } status = clEnqueueNDRangeKernel(clState->commandQueue, *kernel, 1, NULL, globalThreads, localThreads, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)"); goto out; } status = clEnqueueReadBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0, BUFFERSIZE, res, 0, NULL, NULL); if (unlikely(status != CL_SUCCESS)) { applog(LOG_ERR, "Error: clEnqueueReadBuffer failed. (clEnqueueReadBuffer)"); goto out;} gettimeofday(&tv_end, NULL); timeval_subtract(&diff, &tv_end, &tv_start); hashes_done += hashes; work->blk.nonce += hashes; if (diff.tv_usec > 500000) diff.tv_sec++; if (diff.tv_sec >= cycle) { hashmeter(thr_id, &diff, hashes_done); gettimeofday(&tv_start, NULL); hashes_done = 0; } timeval_subtract(&diff, &tv_end, &tv_workstart); if (!requested && (diff.tv_sec > request_interval || work->blk.nonce > request_nonce)) { if (unlikely(!queue_request())) { applog(LOG_ERR, "Failed to queue_request in gpuminer_thread %d", thr_id); goto out; } requested = true; } } out: tq_freeze(mythr->q); return NULL; } #endif /* HAVE_OPENCL */ static void restart_threads(bool longpoll) { int i; /* Discard old queued requests and get new ones */ flush_requests(longpoll); for (i = 0; i < opt_n_threads + gpu_threads; i++) work_restart[i].restart = 1; } static void *longpoll_thread(void *userdata) { struct thr_info *mythr = userdata; CURL *curl = NULL; char *copy_start, *hdr_path, *lp_url = NULL; bool need_slash = false; int failures = 0; hdr_path = tq_pop(mythr->q, NULL); if (!hdr_path) goto out; /* full URL */ if (strstr(hdr_path, "://")) { lp_url = hdr_path; hdr_path = NULL; } /* absolute path, on current server */ else { copy_start = (*hdr_path == '/') ? (hdr_path + 1) : hdr_path; if (rpc_url[strlen(rpc_url) - 1] != '/') need_slash = true; lp_url = malloc(strlen(rpc_url) + strlen(copy_start) + 2); if (!lp_url) goto out; sprintf(lp_url, "%s%s%s", rpc_url, need_slash ? "/" : "", copy_start); } applog(LOG_INFO, "Long-polling activated for %s", lp_url); curl = curl_easy_init(); if (unlikely(!curl)) { applog(LOG_ERR, "CURL initialisation failed"); goto out; } while (1) { json_t *val; val = json_rpc_call(curl, lp_url, rpc_userpass, rpc_req, false, true); if (likely(val)) { failures = 0; json_decref(val); applog(LOG_WARNING, "LONGPOLL detected new block "); restart_threads(true); } else { if (failures++ < 10) { sleep(30); applog(LOG_ERR, "longpoll failed, sleeping for 30s"); } else { applog(LOG_ERR, "longpoll failed, ending thread"); goto out; } } } out: free(hdr_path); free(lp_url); tq_freeze(mythr->q); if (curl) curl_easy_cleanup(curl); return NULL; } /* Makes sure the hashmeter keeps going even if mining threads stall */ static void *wakeup_thread(void *userdata) { const unsigned int interval = opt_log_interval / 2 ? : 1; struct timeval zero_tv; memset(&zero_tv, 0, sizeof(struct timeval)); while (1) { sleep(interval); hashmeter(-1, &zero_tv, 0); if (unlikely(work_restart[stage_thr_id].restart)) { restart_threads(false); work_restart[stage_thr_id].restart = 0; } } return NULL; } int main (int argc, char *argv[]) { struct thr_info *thr; unsigned int i; char name[32]; struct cgpu_info *gpus = NULL, *cpus = NULL; #ifdef WIN32 opt_n_threads = num_processors = 1; #else num_processors = sysconf(_SC_NPROCESSORS_ONLN); opt_n_threads = num_processors; #endif /* !WIN32 */ #ifdef HAVE_OPENCL nDevs = clDevicesNum(); if (nDevs < 0) return 1; #endif if (nDevs) opt_n_threads = 0; rpc_url = strdup(DEF_RPC_URL); /* parse command line */ opt_register_table(opt_config_table, "Options for both config file and command line"); opt_register_table(opt_cmdline_table, "Options for command line only"); opt_parse(&argc, argv, applog_and_exit); if (argc != 1) { applog(LOG_ERR, "Unexpected extra commandline arguments"); return 1; } gpu_threads = nDevs * opt_g_threads; if (!gpu_threads && !forced_n_threads) { /* Maybe they turned GPU off; restore default CPU threads. */ opt_n_threads = num_processors; } if (!rpc_userpass) { if (!rpc_user || !rpc_pass) { applog(LOG_ERR, "No login credentials supplied"); return 1; } rpc_userpass = malloc(strlen(rpc_user) + strlen(rpc_pass) + 2); if (!rpc_userpass) return 1; sprintf(rpc_userpass, "%s:%s", rpc_user, rpc_pass); } if (unlikely(pthread_mutex_init(&time_lock, NULL))) return 1; if (unlikely(pthread_mutex_init(&hash_lock, NULL))) return 1; if (unlikely(pthread_mutex_init(&qd_lock, NULL))) return 1; if (unlikely(curl_global_init(CURL_GLOBAL_ALL))) return 1; #ifdef HAVE_SYSLOG_H if (use_syslog) openlog("cpuminer", LOG_PID, LOG_USER); #endif work_restart = calloc(opt_n_threads + 4 + gpu_threads, sizeof(*work_restart)); if (!work_restart) return 1; thr_info = calloc(opt_n_threads + 4 + gpu_threads, sizeof(*thr)); if (!thr_info) return 1; /* init workio thread info */ work_thr_id = opt_n_threads + gpu_threads; thr = &thr_info[work_thr_id]; thr->id = work_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start work I/O thread */ if (pthread_create(&thr->pth, NULL, workio_thread, thr)) { applog(LOG_ERR, "workio thread create failed"); return 1; } /* init longpoll thread info */ if (want_longpoll) { longpoll_thr_id = opt_n_threads + gpu_threads + 1; thr = &thr_info[longpoll_thr_id]; thr->id = longpoll_thr_id; thr->q = tq_new(); if (!thr->q) return 1; /* start longpoll thread */ if (unlikely(pthread_create(&thr->pth, NULL, longpoll_thread, thr))) { applog(LOG_ERR, "longpoll thread create failed"); return 1; } pthread_detach(thr->pth); } else longpoll_thr_id = -1; gettimeofday(&total_tv_start, NULL); gettimeofday(&total_tv_end, NULL); if (opt_n_threads ) { cpus = calloc(num_processors, sizeof(struct cgpu_info)); if (unlikely(!cpus)) { applog(LOG_ERR, "Failed to calloc cpus"); return 1; } } if (gpu_threads) { gpus = calloc(nDevs, sizeof(struct cgpu_info)); if (unlikely(!gpus)) { applog(LOG_ERR, "Failed to calloc gpus"); return 1; } } stage_thr_id = opt_n_threads + gpu_threads + 3; thr = &thr_info[stage_thr_id]; thr->q = tq_new(); if (!thr->q) return 1; /* start stage thread */ if (pthread_create(&thr->pth, NULL, stage_thread, thr)) { applog(LOG_ERR, "stage thread create failed"); return 1; } /* Put enough work in the queue */ for (i = 0; i < opt_queue + opt_n_threads + gpu_threads; i++) { if (unlikely(!queue_request())) { applog(LOG_ERR, "Failed to queue_request in main"); return 1; } } #ifdef HAVE_OPENCL /* start GPU mining threads */ for (i = 0; i < gpu_threads; i++) { int gpu = gpu_from_thr_id(i); thr = &thr_info[i]; thr->id = i; gpus[gpu].is_gpu = 1; gpus[gpu].cpu_gpu = gpu; thr->cgpu = &gpus[gpu]; thr->q = tq_new(); if (!thr->q) { applog(LOG_ERR, "tq_new failed in starting gpu mining threads"); return 1; } applog(LOG_INFO, "Init GPU thread %i", i); clStates[i] = initCl(gpu, name, sizeof(name)); if (!clStates[i]) { applog(LOG_ERR, "Failed to init GPU thread %d", i); continue; } applog(LOG_INFO, "initCl() finished. Found %s", name); if (unlikely(pthread_create(&thr->pth, NULL, gpuminer_thread, thr))) { applog(LOG_ERR, "thread %d create failed", i); return 1; } pthread_detach(thr->pth); } applog(LOG_INFO, "%d gpu miner threads started", i); #endif /* start CPU mining threads */ for (i = gpu_threads; i < gpu_threads + opt_n_threads; i++) { int cpu = cpu_from_thr_id(i); thr = &thr_info[i]; thr->id = i; cpus[cpu].cpu_gpu = cpu; thr->cgpu = &cpus[cpu]; thr->q = tq_new(); if (!thr->q) { applog(LOG_ERR, "tq_new failed in starting cpu mining threads"); return 1; } if (unlikely(pthread_create(&thr->pth, NULL, miner_thread, thr))) { applog(LOG_ERR, "thread %d create failed", i); return 1; } pthread_detach(thr->pth); } applog(LOG_INFO, "%d cpu miner threads started, " "using SHA256 '%s' algorithm.", opt_n_threads, algo_names[opt_algo]); thr = &thr_info[opt_n_threads + gpu_threads + 2]; /* start wakeup thread */ if (pthread_create(&thr->pth, NULL, wakeup_thread, NULL)) { applog(LOG_ERR, "wakeup thread create failed"); return 1; } /* Restart count as it will be wrong till all threads are started */ pthread_mutex_lock(&hash_lock); gettimeofday(&total_tv_start, NULL); gettimeofday(&total_tv_end, NULL); total_mhashes_done = 0; pthread_mutex_unlock(&hash_lock); /* main loop - simply wait for workio thread to exit */ pthread_join(thr_info[work_thr_id].pth, NULL); curl_global_cleanup(); if (gpu_threads) free(gpus); if (opt_n_threads) free(cpus); applog(LOG_INFO, "workio thread dead, exiting."); return 0; }