/* * SHA-256 driver for ASM routine for x86_64 on Linux * Copyright (c) Mark Crichton * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include "config.h" #include "miner.h" #ifdef WANT_X8632_SSE2 #include #include #include #include #include extern void CalcSha256_x86 (__m128i *res, __m128i *data, const uint32_t init[8])__attribute__((fastcall)); static uint32_t g_sha256_k[]__attribute__((aligned(0x100))) = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, /* 0 */ 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, /* 8 */ 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, /* 16 */ 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, /* 24 */ 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, /* 32 */ 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, /* 40 */ 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, /* 48 */ 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, /* 56 */ 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; const uint32_t sha256_32init[8]__attribute__((aligned(0x100))) = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; __m128i g_4sha256_k[64]; __m128i sha256_consts_m128i[64]__attribute__((aligned(0x1000))); int scanhash_sse2_32(int thr_id, const unsigned char *pmidstate, unsigned char *pdata, unsigned char *phash1, unsigned char *phash, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *nHashesDone, uint32_t nonce) { uint32_t *nNonce_p = (uint32_t *)(pdata + 12); uint32_t m_midstate[8], m_w[16], m_w1[16]; __m128i m_4w[64] __attribute__ ((aligned (0x100))); __m128i m_4hash[64] __attribute__ ((aligned (0x100))); __m128i m_4hash1[64] __attribute__ ((aligned (0x100))); __m128i offset; int i; work_restart[thr_id].restart = 0; /* Message expansion */ memcpy(m_midstate, pmidstate, sizeof(m_midstate)); memcpy(m_w, pdata, sizeof(m_w)); /* The 2nd half of the data */ memcpy(m_w1, phash1, sizeof(m_w1)); memset(m_4hash, 0, sizeof(m_4hash)); /* Transmongrify */ for (i = 0; i < 16; i++) m_4w[i] = _mm_set1_epi32(m_w[i]); for (i = 0; i < 16; i++) m_4hash1[i] = _mm_set1_epi32(m_w1[i]); for (i = 0; i < 64; i++) sha256_consts_m128i[i] = _mm_set1_epi32(g_sha256_k[i]); offset = _mm_set_epi32(0x3, 0x2, 0x1, 0x0); for (;;) { int j; m_4w[3] = _mm_add_epi32(offset, _mm_set1_epi32(nonce)); /* Some optimization can be done here W.R.T. precalculating some hash */ CalcSha256_x86 (m_4hash1, m_4w, m_midstate); CalcSha256_x86 (m_4hash, m_4hash1, sha256_32init); for (j = 0; j < 4; j++) { if (unlikely(((uint32_t *)&(m_4hash[7]))[j] == 0)) { /* We found a hit...so check it */ /* Use the C version for a check... */ for (i = 0; i < 8; i++) { *(uint32_t *)&(phash)[i<<2] = ((uint32_t *)&(m_4hash[i]))[j]; } if (fulltest(phash, ptarget)) { *nHashesDone = nonce; *nNonce_p = nonce + j; return nonce + j; } } } nonce += 4; if (unlikely((nonce >= max_nonce) || work_restart[thr_id].restart)) { *nHashesDone = nonce; return -1; } } } #endif /* WANT_X8632_SSE2 */