// NeoScrypt(128, 2, 1) with Salsa20/20 and ChaCha20/20 // By Wolf (Wolf0 aka Wolf9466) // Stupid AMD compiler ignores the unroll pragma in these two // Tahiti 3/2, // Hawaii 4/4 + notneededswap // Pitcairn 3/4 + notneededswap #if defined(__Tahiti__) #define SALSA_SMALL_UNROLL 4 #define CHACHA_SMALL_UNROLL 2 //#define SWAP 1 //#define SHITMAIN 1 //#define WIDE_STRIPE 1 #elif defined(__Pitcairn__) #define SALSA_SMALL_UNROLL 3 #define CHACHA_SMALL_UNROLL 2 //#define SWAP 1 //#define SHITMAIN 1 //#define WIDE_STRIPE 1 #else #define SALSA_SMALL_UNROLL 4 #define CHACHA_SMALL_UNROLL 4 //#define SWAP 1 //#define SHITMAIN 1 //#define WIDE_STRIPE 1 #endif // If SMALL_BLAKE2S is defined, BLAKE2S_UNROLL is interpreted // as the unroll factor; must divide cleanly into ten. // Usually a bad idea. //#define SMALL_BLAKE2S //#define BLAKE2S_UNROLL 5 #define BLOCK_SIZE 64U #define FASTKDF_BUFFER_SIZE 256U #ifndef PASSWORD_LEN #define PASSWORD_LEN 80U #endif #if !defined(cl_khr_byte_addressable_store) #error "Device does not support unaligned stores" #endif // Swaps 128 bytes at a time without using temp vars void SwapBytes128(void *restrict A, void *restrict B, uint len) { #pragma unroll 2 for(int i = 0; i < (len >> 7); ++i) { ((ulong16 *)A)[i] ^= ((ulong16 *)B)[i]; ((ulong16 *)B)[i] ^= ((ulong16 *)A)[i]; ((ulong16 *)A)[i] ^= ((ulong16 *)B)[i]; } } void CopyBytes128(void *restrict dst, const void *restrict src, uint len) { #pragma unroll 2 for(int i = 0; i < len; ++i) ((ulong16 *)dst)[i] = ((ulong16 *)src)[i]; } void CopyBytes(void *restrict dst, const void *restrict src, uint len) { for(int i = 0; i < len; ++i) ((uchar *)dst)[i] = ((uchar *)src)[i]; } void XORBytesInPlace(void *restrict dst, const void *restrict src, uint len) { for(int i = 0; i < len; ++i) ((uchar *)dst)[i] ^= ((uchar *)src)[i]; } void XORBytes(void *restrict dst, const void *restrict src1, const void *restrict src2, uint len) { #pragma unroll 1 for(int i = 0; i < len; ++i) ((uchar *)dst)[i] = ((uchar *)src1)[i] ^ ((uchar *)src2)[i]; } // Blake2S #define BLAKE2S_BLOCK_SIZE 64U #define BLAKE2S_OUT_SIZE 32U #define BLAKE2S_KEY_SIZE 32U static const __constant uint BLAKE2S_IV[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; static const __constant uchar BLAKE2S_SIGMA[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } , { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } , }; #define BLAKE_G(idx0, idx1, a, b, c, d, key) do { \ a += b + key[BLAKE2S_SIGMA[idx0][idx1]]; \ d = rotate(d ^ a, 16U); \ c += d; \ b = rotate(b ^ c, 20U); \ a += b + key[BLAKE2S_SIGMA[idx0][idx1 + 1]]; \ d = rotate(d ^ a, 24U); \ c += d; \ b = rotate(b ^ c, 25U); \ } while(0) #define BLAKE_PARALLEL_G1(idx0, a, b, c, d, key) do { \ a += b + (uint4)(key[BLAKE2S_SIGMA[idx0][0]], key[BLAKE2S_SIGMA[idx0][2]], key[BLAKE2S_SIGMA[idx0][4]], key[BLAKE2S_SIGMA[idx0][6]]); \ d = rotate(d ^ a, 16U); \ c += d; \ b = rotate(b ^ c, 20U); \ a += b + (uint4)(key[BLAKE2S_SIGMA[idx0][1]], key[BLAKE2S_SIGMA[idx0][3]], key[BLAKE2S_SIGMA[idx0][5]], key[BLAKE2S_SIGMA[idx0][7]]); \ d = rotate(d ^ a, 24U); \ c += d; \ b = rotate(b ^ c, 25U); \ } while(0) #define BLAKE_PARALLEL_G2(idx0, a, b, c, d, key) do { \ a += b + (uint4)(key[BLAKE2S_SIGMA[idx0][8]], key[BLAKE2S_SIGMA[idx0][10]], key[BLAKE2S_SIGMA[idx0][12]], key[BLAKE2S_SIGMA[idx0][14]]); \ d = rotate(d ^ a, 16U); \ c += d; \ b = rotate(b ^ c, 20U); \ a += b + (uint4)(key[BLAKE2S_SIGMA[idx0][9]], key[BLAKE2S_SIGMA[idx0][11]], key[BLAKE2S_SIGMA[idx0][13]], key[BLAKE2S_SIGMA[idx0][15]]); \ d = rotate(d ^ a, 24U); \ c += d; \ b = rotate(b ^ c, 25U); \ } while(0) void Blake2S(uint *restrict inout, const uint *restrict inkey) { uint16 V; uint8 tmpblock; // Load first block (IV into V.lo) and constants (IV into V.hi) V.lo = V.hi = vload8(0U, BLAKE2S_IV); // XOR with initial constant V.s0 ^= 0x01012020; // Copy input block for later tmpblock = V.lo; // XOR length of message so far (including this block) // There are two uints for this field, but high uint is zero V.sc ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #ifdef SMALL_BLAKE2S #pragma unroll BLAKE2S_UNROLL #else #pragma unroll #endif for(int x = 0; x < 10; ++x) { /*BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inkey); BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inkey); BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inkey); BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inkey); BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inkey); BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inkey); BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inkey); BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inkey);*/ BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inkey); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inkey); } // XOR low part of state with the high part, // then with the original input block. V.lo ^= V.hi ^ tmpblock; // Load constants (IV into V.hi) V.hi = vload8(0U, BLAKE2S_IV); // Copy input block for later tmpblock = V.lo; // XOR length of message into block again V.sc ^= BLAKE2S_BLOCK_SIZE << 1; // Last block compression - XOR final constant into state V.se ^= 0xFFFFFFFFU; // Compress block, using the input as the key #ifdef SMALL_BLAKE2S #pragma unroll BLAKE2S_UNROLL #else #pragma unroll #endif for(int x = 0; x < 10; ++x) { /*BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inout); BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inout); BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inout); BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inout); BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inout); BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inout); BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inout); BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inout);*/ BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inout); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inout); } // XOR low part of state with high part, then with input block V.lo ^= V.hi ^ tmpblock; // Store result in input/output buffer vstore8(V.lo, 0, inout); } /* FastKDF, a fast buffered key derivation function: * FASTKDF_BUFFER_SIZE must be a power of 2; * password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE; * prf_output_size must be <= prf_key_size; */ void fastkdf(const uchar *restrict password, const uchar *restrict salt, const uint salt_len, uchar *restrict output, uint output_len) { /* WARNING! * This algorithm uses byte-wise addressing for memory blocks. * Or in other words, trying to copy an unaligned memory region * will significantly slow down the algorithm, when copying uses * words or bigger entities. It even may corrupt the data, when * the device does not support it properly. * Therefore use byte copying, which will not the fastest but at * least get reliable results. */ // BLOCK_SIZE 64U // FASTKDF_BUFFER_SIZE 256U // BLAKE2S_BLOCK_SIZE 64U // BLAKE2S_KEY_SIZE 32U // BLAKE2S_OUT_SIZE 32U uchar bufidx = 0; uint8 Abuffer[9], Bbuffer[9] = { (uint8)(0) }; uchar *A = (uchar *)Abuffer, *B = (uchar *)Bbuffer; // Initialize the password buffer #pragma unroll 1 for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)A)[i] = ((ulong *)password)[i % 10]; ((uint16 *)(A + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)password)[0]; // Initialize the salt buffer if(salt_len == FASTKDF_BUFFER_SIZE) { ((ulong16 *)B)[0] = ((ulong16 *)B)[2] = ((ulong16 *)salt)[0]; ((ulong16 *)B)[1] = ((ulong16 *)B)[3] = ((ulong16 *)salt)[1]; } else { // salt_len is 80 bytes here #pragma unroll 1 for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)B)[i] = ((ulong *)salt)[i % 10]; // Initialized the rest to zero earlier #pragma unroll 1 for(int i = 0; i < 10; ++i) ((ulong *)(B + FASTKDF_BUFFER_SIZE))[i] = ((ulong *)salt)[i]; } // The primary iteration #pragma unroll 1 for(int i = 0; i < 32; ++i) { // Make the key buffer twice the size of the key so it fits a Blake2S block // This way, we don't need a temp buffer in the Blake2S function. uchar input[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)), key[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)) = { 0 }; // Copy input and key to their buffers CopyBytes(input, A + bufidx, BLAKE2S_BLOCK_SIZE); CopyBytes(key, B + bufidx, BLAKE2S_KEY_SIZE); // PRF //Blake2S((uint *)input, (uint *)key); uint *inkey = (uint *)key, *inout = (uint *)input; // PRF uint16 V; uint8 tmpblock; // Load first block (IV into V.lo) and constants (IV into V.hi) V.lo = V.hi = vload8(0U, BLAKE2S_IV); // XOR with initial constant V.s0 ^= 0x01012020; // Copy input block for later tmpblock = V.lo; // XOR length of message so far (including this block) // There are two uints for this field, but high uint is zero V.sc ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inkey); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inkey); } // XOR low part of state with the high part, // then with the original input block. V.lo ^= V.hi ^ tmpblock; // Load constants (IV into V.hi) V.hi = vload8(0U, BLAKE2S_IV); // Copy input block for later tmpblock = V.lo; // XOR length of message into block again V.sc ^= BLAKE2S_BLOCK_SIZE << 1; // Last block compression - XOR final constant into state V.se ^= 0xFFFFFFFFU; // Compress block, using the input as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inout); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inout); } // XOR low part of state with high part, then with input block V.lo ^= V.hi ^ tmpblock; // Store result in input/output buffer vstore8(V.lo, 0, inout); // Calculate the next buffer pointer bufidx = 0; for(int x = 0; x < BLAKE2S_OUT_SIZE; ++x) bufidx += input[x]; // bufidx a uchar now - always mod 255 //bufidx &= (FASTKDF_BUFFER_SIZE - 1); // Modify the salt buffer XORBytesInPlace(B + bufidx, input, BLAKE2S_OUT_SIZE); if(bufidx < BLAKE2S_KEY_SIZE) { // Head modified, tail updated // this was made off the original code... wtf //CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, min(BLAKE2S_OUT_SIZE, BLAKE2S_KEY_SIZE - bufidx)); CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, BLAKE2S_KEY_SIZE - bufidx); } else if((FASTKDF_BUFFER_SIZE - bufidx) < BLAKE2S_OUT_SIZE) { // Tail modified, head updated CopyBytes(B, B + FASTKDF_BUFFER_SIZE, BLAKE2S_OUT_SIZE - (FASTKDF_BUFFER_SIZE - bufidx)); } } // Modify and copy into the output buffer // Damned compiler crashes // Fuck you, AMD //for(uint i = 0; i < output_len; ++i, ++bufidx) // output[i] = B[bufidx] ^ A[i]; uint left = FASTKDF_BUFFER_SIZE - bufidx; //uint left = (~bufidx) + 1 if(left < output_len) { XORBytes(output, B + bufidx, A, left); XORBytes(output + left, B, A + left, output_len - left); } else { XORBytes(output, B + bufidx, A, output_len); } } /* FastKDF, a fast buffered key derivation function: * FASTKDF_BUFFER_SIZE must be a power of 2; * password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE; * prf_output_size must be <= prf_key_size; */ void fastkdf1(const uchar password[80], uchar output[256]) { /* WARNING! * This algorithm uses byte-wise addressing for memory blocks. * Or in other words, trying to copy an unaligned memory region * will significantly slow down the algorithm, when copying uses * words or bigger entities. It even may corrupt the data, when * the device does not support it properly. * Therefore use byte copying, which will not the fastest but at * least get reliable results. */ // BLOCK_SIZE 64U // FASTKDF_BUFFER_SIZE 256U // BLAKE2S_BLOCK_SIZE 64U // BLAKE2S_KEY_SIZE 32U // BLAKE2S_OUT_SIZE 32U uchar bufidx = 0; uint8 Abuffer[9], Bbuffer[9] = { (uint8)(0) }; uchar *A = (uchar *)Abuffer, *B = (uchar *)Bbuffer; // Initialize the password buffer #pragma unroll 1 for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)B)[i] = ((ulong *)A)[i] = ((ulong *)password)[i % 10]; ((uint16 *)(B + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)(A + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)password)[0]; // The primary iteration #pragma unroll 1 for(int i = 0; i < 32; ++i) { // Make the key buffer twice the size of the key so it fits a Blake2S block // This way, we don't need a temp buffer in the Blake2S function. uchar input[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)), key[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)) = { 0 }; // Copy input and key to their buffers CopyBytes(input, A + bufidx, BLAKE2S_BLOCK_SIZE); CopyBytes(key, B + bufidx, BLAKE2S_KEY_SIZE); uint *inkey = (uint *)key, *inout = (uint *)input; #ifndef __Hawaii__ // PRF uint4 V[4]; uint8 tmpblock; tmpblock = vload8(0U, BLAKE2S_IV); V[0] = V[2] = tmpblock.lo; V[1] = V[3] = tmpblock.hi; V[0].s0 ^= 0x01012020U; tmpblock.lo = V[0]; V[3].s0 ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V[0], V[1], V[2], V[3], inkey); BLAKE_PARALLEL_G2(x, V[0], V[1].s1230, V[2].s2301, V[3].s3012, inkey); } V[0] ^= V[2] ^ tmpblock.lo; V[1] ^= V[3] ^ tmpblock.hi; V[2] = vload4(0U, BLAKE2S_IV); V[3] = vload4(1U, BLAKE2S_IV); tmpblock.lo = V[0]; tmpblock.hi = V[1]; V[3].s0 ^= BLAKE2S_BLOCK_SIZE << 1; V[3].s2 ^= 0xFFFFFFFFU; // Compress block, using the input as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V[0], V[1], V[2], V[3], inout); BLAKE_PARALLEL_G2(x, V[0], V[1].s1230, V[2].s2301, V[3].s3012, inout); } V[0] ^= V[2] ^ tmpblock.lo; V[1] ^= V[3] ^ tmpblock.hi; vstore4(V[0], 0, inout); vstore4(V[1], 1, inout); #else // PRF uint16 V; uint8 tmpblock; // Load first block (IV into V.lo) and constants (IV into V.hi) V.lo = V.hi = vload8(0U, BLAKE2S_IV); // XOR with initial constant V.s0 ^= 0x01012020; // Copy input block for later tmpblock = V.lo; // XOR length of message so far (including this block) // There are two uints for this field, but high uint is zero V.sc ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inkey); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inkey); } // XOR low part of state with the high part, // then with the original input block. V.lo ^= V.hi ^ tmpblock; // Load constants (IV into V.hi) V.hi = vload8(0U, BLAKE2S_IV); // Copy input block for later tmpblock = V.lo; // XOR length of message into block again V.sc ^= BLAKE2S_BLOCK_SIZE << 1; // Last block compression - XOR final constant into state V.se ^= 0xFFFFFFFFU; // Compress block, using the input as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inout); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inout); } // XOR low part of state with high part, then with input block V.lo ^= V.hi ^ tmpblock; // Store result in input/output buffer vstore8(V.lo, 0, inout); #endif // Calculate the next buffer pointer bufidx = 0; for(int x = 0; x < BLAKE2S_OUT_SIZE; ++x) bufidx += input[x]; // bufidx a uchar now - always mod 255 //bufidx &= (FASTKDF_BUFFER_SIZE - 1); // Modify the salt buffer XORBytesInPlace(B + bufidx, input, BLAKE2S_OUT_SIZE); if(bufidx < BLAKE2S_KEY_SIZE) { // Head modified, tail updated // this was made off the original code... wtf //CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, min(BLAKE2S_OUT_SIZE, BLAKE2S_KEY_SIZE - bufidx)); CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, BLAKE2S_KEY_SIZE - bufidx); } else if((FASTKDF_BUFFER_SIZE - bufidx) < BLAKE2S_OUT_SIZE) { // Tail modified, head updated CopyBytes(B, B + FASTKDF_BUFFER_SIZE, BLAKE2S_OUT_SIZE - (FASTKDF_BUFFER_SIZE - bufidx)); } } // Modify and copy into the output buffer // Damned compiler crashes // Fuck you, AMD //for(uint i = 0; i < output_len; ++i, ++bufidx) // output[i] = B[bufidx] ^ A[i]; uint left = FASTKDF_BUFFER_SIZE - bufidx; //uint left = (~bufidx) + 1 if(left < 256) { XORBytes(output, B + bufidx, A, left); XORBytes(output + left, B, A + left, 256 - left); } else { XORBytes(output, B + bufidx, A, 256); } } /* FastKDF, a fast buffered key derivation function: * FASTKDF_BUFFER_SIZE must be a power of 2; * password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE; * prf_output_size must be <= prf_key_size; */ void fastkdf2(const uchar password[80], const uchar salt[256], __global uint* restrict output, const uint target) { /* WARNING! * This algorithm uses byte-wise addressing for memory blocks. * Or in other words, trying to copy an unaligned memory region * will significantly slow down the algorithm, when copying uses * words or bigger entities. It even may corrupt the data, when * the device does not support it properly. * Therefore use byte copying, which will not the fastest but at * least get reliable results. */ // BLOCK_SIZE 64U // FASTKDF_BUFFER_SIZE 256U // BLAKE2S_BLOCK_SIZE 64U // BLAKE2S_KEY_SIZE 32U // BLAKE2S_OUT_SIZE 32U // salt_len == 256, output_len == 32 uchar bufidx = 0; uint8 Abuffer[9], Bbuffer[9] = { (uint8)(0) }; uchar *A = (uchar *)Abuffer, *B = (uchar *)Bbuffer; //uchar A[256], B[256]; // Initialize the password buffer #pragma unroll 1 for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)A)[i] = ((ulong *)password)[i % 10]; ((uint16 *)(A + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)password)[0]; // Initialize the salt buffer ((ulong16 *)B)[0] = ((ulong16 *)B)[2] = ((ulong16 *)salt)[0]; ((ulong16 *)B)[1] = ((ulong16 *)B)[3] = ((ulong16 *)salt)[1]; // The primary iteration #pragma unroll 1 for(int i = 0; i < 32; ++i) { // Make the key buffer twice the size of the key so it fits a Blake2S block // This way, we don't need a temp buffer in the Blake2S function. uchar input[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)), key[BLAKE2S_BLOCK_SIZE] __attribute__((aligned)) = { 0 }; // Copy input and key to their buffers CopyBytes(input, A + bufidx, BLAKE2S_BLOCK_SIZE); CopyBytes(key, B + bufidx, BLAKE2S_KEY_SIZE); uint *inkey = (uint *)key, *inout = (uint *)input; #ifndef __Hawaii__ // PRF uint4 V[4]; uint8 tmpblock; tmpblock = vload8(0U, BLAKE2S_IV); V[0] = V[2] = tmpblock.lo; V[1] = V[3] = tmpblock.hi; V[0].s0 ^= 0x01012020U; tmpblock.lo = V[0]; V[3].s0 ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V[0], V[1], V[2], V[3], inkey); BLAKE_PARALLEL_G2(x, V[0], V[1].s1230, V[2].s2301, V[3].s3012, inkey); } V[0] ^= V[2] ^ tmpblock.lo; V[1] ^= V[3] ^ tmpblock.hi; V[2] = vload4(0U, BLAKE2S_IV); V[3] = vload4(1U, BLAKE2S_IV); tmpblock.lo = V[0]; tmpblock.hi = V[1]; V[3].s0 ^= BLAKE2S_BLOCK_SIZE << 1; V[3].s2 ^= 0xFFFFFFFFU; // Compress block, using the input as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V[0], V[1], V[2], V[3], inout); BLAKE_PARALLEL_G2(x, V[0], V[1].s1230, V[2].s2301, V[3].s3012, inout); } V[0] ^= V[2] ^ tmpblock.lo; V[1] ^= V[3] ^ tmpblock.hi; vstore4(V[0], 0, inout); vstore4(V[1], 1, inout); #else // PRF uint16 V; uint8 tmpblock; // Load first block (IV into V.lo) and constants (IV into V.hi) V.lo = V.hi = vload8(0U, BLAKE2S_IV); // XOR with initial constant V.s0 ^= 0x01012020; // Copy input block for later tmpblock = V.lo; // XOR length of message so far (including this block) // There are two uints for this field, but high uint is zero V.sc ^= BLAKE2S_BLOCK_SIZE; // Compress state, using the key as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inkey); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inkey); } // XOR low part of state with the high part, // then with the original input block. V.lo ^= V.hi ^ tmpblock; // Load constants (IV into V.hi) V.hi = vload8(0U, BLAKE2S_IV); // Copy input block for later tmpblock = V.lo; // XOR length of message into block again V.sc ^= BLAKE2S_BLOCK_SIZE << 1; // Last block compression - XOR final constant into state V.se ^= 0xFFFFFFFFU; // Compress block, using the input as the key #pragma unroll for(int x = 0; x < 10; ++x) { BLAKE_PARALLEL_G1(x, V.s0123, V.s4567, V.s89ab, V.scdef, inout); BLAKE_PARALLEL_G2(x, V.s0123, V.s5674, V.sab89, V.sfcde, inout); } // XOR low part of state with high part, then with input block V.lo ^= V.hi ^ tmpblock; // Store result in input/output buffer vstore8(V.lo, 0, inout); #endif // Calculate the next buffer pointer bufidx = 0; for(int x = 0; x < BLAKE2S_OUT_SIZE; ++x) bufidx += input[x]; // bufidx a uchar now - always mod 255 //bufidx &= (FASTKDF_BUFFER_SIZE - 1); // Modify the salt buffer XORBytesInPlace(B + bufidx, input, BLAKE2S_OUT_SIZE); if(bufidx < BLAKE2S_KEY_SIZE) { // Head modified, tail updated // this was made off the original code... wtf //CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, min(BLAKE2S_OUT_SIZE, BLAKE2S_KEY_SIZE - bufidx)); CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, BLAKE2S_KEY_SIZE - bufidx); } else if((FASTKDF_BUFFER_SIZE - bufidx) < BLAKE2S_OUT_SIZE) { // Tail modified, head updated CopyBytes(B, B + FASTKDF_BUFFER_SIZE, BLAKE2S_OUT_SIZE - (FASTKDF_BUFFER_SIZE - bufidx)); } } // Modify and copy into the output buffer // Damned compiler crashes // Fuck you, AMD uchar outbuf[32]; for(uint i = 0; i < 32; ++i, ++bufidx) outbuf[i] = B[bufidx] ^ A[i]; /*uint left = FASTKDF_BUFFER_SIZE - bufidx; //uint left = (~bufidx) + 1 uchar outbuf[32]; if(left < 32) { XORBytes(outbuf, B + bufidx, A, left); XORBytes(outbuf + left, B, A + left, 32 - left); } else { XORBytes(outbuf, B + bufidx, A, 32); }*/ if(((uint *)outbuf)[7] <= target) output[atomic_add(output + 0xFF, 1)] = get_global_id(0); } /* s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se sf shittify: s0=s4 s1=s9 s2=se s3=s3 s4=s8 s5=sd s6=s2 s7=s7 s8=sc s9=s1 sa=s6 sb=sb sc=s0 sd=s5 se=sa sf=sf unshittify: s0=sc s1=s9 s2=s6 s3=s3 s4=s0 s5=sd s6=sa s7=s7 s8=s4 s9=s1 sa=se sb=sb sc=s8 sd=s5 se=s2 sf=sf */ #define SALSA_CORE(state) do { \ state[0] ^= rotate(state[3] + state[2], 7U); \ state[1] ^= rotate(state[0] + state[3], 9U); \ state[2] ^= rotate(state[1] + state[0], 13U); \ state[3] ^= rotate(state[2] + state[1], 18U); \ state[2] ^= rotate(state[3].wxyz + state[0].zwxy, 7U); \ state[1] ^= rotate(state[2].wxyz + state[3].zwxy, 9U); \ state[0] ^= rotate(state[1].wxyz + state[2].zwxy, 13U); \ state[3] ^= rotate(state[0].wxyz + state[1].zwxy, 18U); \ } while(0) #define SALSA_CORE_SCALAR(state) do { \ state.s4 ^= rotate(state.s0 + state.sc, 7U); state.s8 ^= rotate(state.s4 + state.s0, 9U); state.sc ^= rotate(state.s8 + state.s4, 13U); state.s0 ^= rotate(state.sc + state.s8, 18U); \ state.s9 ^= rotate(state.s5 + state.s1, 7U); state.sd ^= rotate(state.s9 + state.s5, 9U); state.s1 ^= rotate(state.sd + state.s9, 13U); state.s5 ^= rotate(state.s1 + state.sd, 18U); \ state.se ^= rotate(state.sa + state.s6, 7U); state.s2 ^= rotate(state.se + state.sa, 9U); state.s6 ^= rotate(state.s2 + state.se, 13U); state.sa ^= rotate(state.s6 + state.s2, 18U); \ state.s3 ^= rotate(state.sf + state.sb, 7U); state.s7 ^= rotate(state.s3 + state.sf, 9U); state.sb ^= rotate(state.s7 + state.s3, 13U); state.sf ^= rotate(state.sb + state.s7, 18U); \ state.s1 ^= rotate(state.s0 + state.s3, 7U); state.s2 ^= rotate(state.s1 + state.s0, 9U); state.s3 ^= rotate(state.s2 + state.s1, 13U); state.s0 ^= rotate(state.s3 + state.s2, 18U); \ state.s6 ^= rotate(state.s5 + state.s4, 7U); state.s7 ^= rotate(state.s6 + state.s5, 9U); state.s4 ^= rotate(state.s7 + state.s6, 13U); state.s5 ^= rotate(state.s4 + state.s7, 18U); \ state.sb ^= rotate(state.sa + state.s9, 7U); state.s8 ^= rotate(state.sb + state.sa, 9U); state.s9 ^= rotate(state.s8 + state.sb, 13U); state.sa ^= rotate(state.s9 + state.s8, 18U); \ state.sc ^= rotate(state.sf + state.se, 7U); state.sd ^= rotate(state.sc + state.sf, 9U); state.se ^= rotate(state.sd + state.sc, 13U); state.sf ^= rotate(state.se + state.sd, 18U); \ } while(0) uint16 salsa_small_parallel_rnd(uint16 X) { #ifndef SHITMAIN uint4 st[4] = { (uint4)(X.s4, X.s9, X.se, X.s3), (uint4)(X.s8, X.sd, X.s2, X.s7), (uint4)(X.sc, X.s1, X.s6, X.sb), (uint4)(X.s0, X.s5, X.sa, X.sf) }; #else uint4 st[4]; ((uint16 *)st)[0] = X; #endif #if SALSA_SMALL_UNROLL == 1 for(int i = 0; i < 10; ++i) { SALSA_CORE(st); } #elif SALSA_SMALL_UNROLL == 2 for(int i = 0; i < 5; ++i) { SALSA_CORE(st); SALSA_CORE(st); } #elif SALSA_SMALL_UNROLL == 3 for(int i = 0; i < 4; ++i) { SALSA_CORE(st); if(i == 3) break; SALSA_CORE(st); SALSA_CORE(st); } #elif SALSA_SMALL_UNROLL == 4 for(int i = 0; i < 3; ++i) { SALSA_CORE(st); SALSA_CORE(st); if(i == 2) break; SALSA_CORE(st); SALSA_CORE(st); } #elif SALSA_SMALL_UNROLL == 5 for(int i = 0; i < 2; ++i) { SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); } #else SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); SALSA_CORE(st); #endif #ifndef SHITMAIN return(X + (uint16)( st[3].x, st[2].y, st[1].z, st[0].w, st[0].x, st[3].y, st[2].z, st[1].w, st[1].x, st[0].y, st[3].z, st[2].w, st[2].x, st[1].y, st[0].z, st[3].w)); #else return(X + ((uint16 *)st)[0]); #endif } uint16 salsa_small_scalar_rnd(uint16 X) { uint16 st = X; #if SALSA_SMALL_UNROLL == 1 for(int i = 0; i < 10; ++i) { SALSA_CORE_SCALAR(st); } #elif SALSA_SMALL_UNROLL == 2 for(int i = 0; i < 5; ++i) { SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); } #elif SALSA_SMALL_UNROLL == 3 for(int i = 0; i < 4; ++i) { SALSA_CORE_SCALAR(st); if(i == 3) break; SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); } #elif SALSA_SMALL_UNROLL == 4 for(int i = 0; i < 3; ++i) { SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); if(i == 2) break; SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); } #else for(int i = 0; i < 2; ++i) { SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); SALSA_CORE_SCALAR(st); } #endif return(X + st); } #define CHACHA_CORE_PARALLEL(state) do { \ state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], 16U); \ state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], 12U); \ state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], 8U); \ state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], 7U); \ \ state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], 16); \ state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, 12U); \ state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], 8U); \ state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, 7U); \ } while(0) #define CHACHA_CORE(state) do { \ state.s0 += state.s4; state.sc = as_uint(as_ushort2(state.sc ^ state.s0).s10); state.s8 += state.sc; state.s4 = rotate(state.s4 ^ state.s8, 12U); state.s0 += state.s4; state.sc = rotate(state.sc ^ state.s0, 8U); state.s8 += state.sc; state.s4 = rotate(state.s4 ^ state.s8, 7U); \ state.s1 += state.s5; state.sd = as_uint(as_ushort2(state.sd ^ state.s1).s10); state.s9 += state.sd; state.s5 = rotate(state.s5 ^ state.s9, 12U); state.s1 += state.s5; state.sd = rotate(state.sd ^ state.s1, 8U); state.s9 += state.sd; state.s5 = rotate(state.s5 ^ state.s9, 7U); \ state.s2 += state.s6; state.se = as_uint(as_ushort2(state.se ^ state.s2).s10); state.sa += state.se; state.s6 = rotate(state.s6 ^ state.sa, 12U); state.s2 += state.s6; state.se = rotate(state.se ^ state.s2, 8U); state.sa += state.se; state.s6 = rotate(state.s6 ^ state.sa, 7U); \ state.s3 += state.s7; state.sf = as_uint(as_ushort2(state.sf ^ state.s3).s10); state.sb += state.sf; state.s7 = rotate(state.s7 ^ state.sb, 12U); state.s3 += state.s7; state.sf = rotate(state.sf ^ state.s3, 8U); state.sb += state.sf; state.s7 = rotate(state.s7 ^ state.sb, 7U); \ state.s0 += state.s5; state.sf = as_uint(as_ushort2(state.sf ^ state.s0).s10); state.sa += state.sf; state.s5 = rotate(state.s5 ^ state.sa, 12U); state.s0 += state.s5; state.sf = rotate(state.sf ^ state.s0, 8U); state.sa += state.sf; state.s5 = rotate(state.s5 ^ state.sa, 7U); \ state.s1 += state.s6; state.sc = as_uint(as_ushort2(state.sc ^ state.s1).s10); state.sb += state.sc; state.s6 = rotate(state.s6 ^ state.sb, 12U); state.s1 += state.s6; state.sc = rotate(state.sc ^ state.s1, 8U); state.sb += state.sc; state.s6 = rotate(state.s6 ^ state.sb, 7U); \ state.s2 += state.s7; state.sd = as_uint(as_ushort2(state.sd ^ state.s2).s10); state.s8 += state.sd; state.s7 = rotate(state.s7 ^ state.s8, 12U); state.s2 += state.s7; state.sd = rotate(state.sd ^ state.s2, 8U); state.s8 += state.sd; state.s7 = rotate(state.s7 ^ state.s8, 7U); \ state.s3 += state.s4; state.se = as_uint(as_ushort2(state.se ^ state.s3).s10); state.s9 += state.se; state.s4 = rotate(state.s4 ^ state.s9, 12U); state.s3 += state.s4; state.se = rotate(state.se ^ state.s3, 8U); state.s9 += state.se; state.s4 = rotate(state.s4 ^ state.s9, 7U); \ } while(0) uint16 chacha_small_parallel_rnd(uint16 X) { uint4 st[4]; ((uint16 *)st)[0] = X; #if CHACHA_SMALL_UNROLL == 1 for(int i = 0; i < 10; ++i) { CHACHA_CORE_PARALLEL(st); } #elif CHACHA_SMALL_UNROLL == 2 for(int i = 0; i < 5; ++i) { CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); } #elif CHACHA_SMALL_UNROLL == 3 for(int i = 0; i < 4; ++i) { CHACHA_CORE_PARALLEL(st); if(i == 3) break; CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); } #elif CHACHA_SMALL_UNROLL == 4 for(int i = 0; i < 3; ++i) { CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); if(i == 2) break; CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); } #elif CHACHA_SMALL_UNROLL == 5 for(int i = 0; i < 2; ++i) { CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); } #else CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); CHACHA_CORE_PARALLEL(st); #endif return(X + ((uint16 *)st)[0]); } uint16 chacha_small_scalar_rnd(uint16 X) { uint16 st = X; #if CHACHA_SMALL_UNROLL == 1 for(int i = 0; i < 10; ++i) { CHACHA_CORE(st); } #elif CHACHA_SMALL_UNROLL == 2 for(int i = 0; i < 5; ++i) { CHACHA_CORE(st); CHACHA_CORE(st); } #elif CHACHA_SMALL_UNROLL == 3 for(int i = 0; i < 4; ++i) { CHACHA_CORE(st); if(i == 3) break; CHACHA_CORE(st); CHACHA_CORE(st); } #elif CHACHA_SMALL_UNROLL == 4 for(int i = 0; i < 3; ++i) { CHACHA_CORE(st); CHACHA_CORE(st); if(i == 2) break; CHACHA_CORE(st); CHACHA_CORE(st); } #elif CHACHA_SMALL_UNROLL == 5 for(int i = 0; i < 2; ++i) { CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); } #else CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); CHACHA_CORE(st); #endif return(X + st); } void neoscrypt_blkmix_salsa(uint16 XV[4]) { /* NeoScrypt flow: Scrypt flow: Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa"; Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb"; Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya; Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb; Xa" = Ya; Xb" = Yc; Xc" = Yb; Xd" = Yd; */ #if 0 for(int i = 0; i < 4; ++i) XV[i] = (uint16)( XV[i].s4, XV[i].s9, XV[i].se, XV[i].s3, XV[i].s8, XV[i].sd, XV[i].s2, XV[i].s7, XV[i].sc, XV[i].s1, XV[i].s6, XV[i].sb, XV[i].s0, XV[i].s5, XV[i].sa, XV[i].sf); #endif XV[0] ^= XV[3]; XV[0] = salsa_small_parallel_rnd(XV[0]); XV[1] ^= XV[0]; XV[1] = salsa_small_parallel_rnd(XV[1]); XV[2] ^= XV[1]; XV[2] = salsa_small_parallel_rnd(XV[2]); XV[3] ^= XV[2]; XV[3] = salsa_small_parallel_rnd(XV[3]); //XV[0] = salsa_small_scalar_rnd(XV[0]); XV[1] ^= XV[0]; //XV[1] = salsa_small_scalar_rnd(XV[1]); XV[2] ^= XV[1]; //XV[2] = salsa_small_scalar_rnd(XV[2]); XV[3] ^= XV[2]; //XV[3] = salsa_small_scalar_rnd(XV[3]); XV[1] ^= XV[2]; XV[2] ^= XV[1]; XV[1] ^= XV[2]; #if 0 XV[0] = (uint16)(XV[0].sc, XV[0].s9, XV[0].s6, XV[0].s3, XV[0].s0, XV[0].sd, XV[0].sa, XV[0].s7, XV[0].s4, XV[0].s1, XV[0].se, XV[0].sb, XV[0].s8, XV[0].s5, XV[0].s2, XV[0].sf); XV[1] = (uint16)(XV[1].sc, XV[1].s9, XV[1].s6, XV[1].s3, XV[1].s0, XV[1].sd, XV[1].sa, XV[1].s7, XV[1].s4, XV[1].s1, XV[1].se, XV[1].sb, XV[1].s8, XV[1].s5, XV[1].s2, XV[1].sf); XV[2] = (uint16)(XV[2].sc, XV[2].s9, XV[2].s6, XV[2].s3, XV[2].s0, XV[2].sd, XV[2].sa, XV[2].s7, XV[2].s4, XV[2].s1, XV[2].se, XV[2].sb, XV[2].s8, XV[2].s5, XV[2].s2, XV[2].sf); XV[3] = (uint16)(XV[3].sc, XV[3].s9, XV[3].s6, XV[3].s3, XV[3].s0, XV[3].sd, XV[3].sa, XV[3].s7, XV[3].s4, XV[3].s1, XV[3].se, XV[3].sb, XV[3].s8, XV[3].s5, XV[3].s2, XV[3].sf); #endif } void neoscrypt_blkmix_chacha(uint16 XV[4]) { /* NeoScrypt flow: Scrypt flow: Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa"; Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb"; Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya; Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb; Xa" = Ya; Xb" = Yc; Xc" = Yb; Xd" = Yd; */ XV[0] ^= XV[3]; #if 1 XV[0] = chacha_small_parallel_rnd(XV[0]); XV[1] ^= XV[0]; XV[1] = chacha_small_parallel_rnd(XV[1]); XV[2] ^= XV[1]; XV[2] = chacha_small_parallel_rnd(XV[2]); XV[3] ^= XV[2]; XV[3] = chacha_small_parallel_rnd(XV[3]); #else XV[0] = chacha_small_scalar_rnd(XV[0]); XV[1] ^= XV[0]; XV[1] = chacha_small_scalar_rnd(XV[1]); XV[2] ^= XV[1]; XV[2] = chacha_small_scalar_rnd(XV[2]); XV[3] ^= XV[2]; XV[3] = chacha_small_scalar_rnd(XV[3]); #endif XV[1] ^= XV[2]; XV[2] ^= XV[1]; XV[1] ^= XV[2]; } #ifdef WIDE_STRIPE void ScratchpadStore(__global void *V, void *X, uchar idx) { ((__global ulong16 *)V)[mul24(idx << 1, (int)get_global_size(0))] = ((ulong16 *)X)[0]; ((__global ulong16 *)V)[mul24((idx << 1), (int)get_global_size(0)) + 1] = ((ulong16 *)X)[1]; //const uint idx2 = mul24(idx << 2, (int)get_global_size(0)); //#pragma unroll //for(int i = 0; i < 4; ++i) ((__global uint16 *)V)[idx2 + i] = ((uint16 *)X)[i]; } void ScratchpadMix(void *X, const __global void *V, uchar idx) { ((ulong16 *)X)[0] ^= ((__global ulong16 *)V)[mul24(idx << 1, (int)get_global_size(0))]; ((ulong16 *)X)[1] ^= ((__global ulong16 *)V)[mul24((idx << 1), (int)get_global_size(0)) + 1]; } #else void ScratchpadStore(__global void *V, void *X, uchar idx) { ((__global ulong16 *)V)[mul24(idx << 1, (int)get_global_size(0))] = ((ulong16 *)X)[0]; ((__global ulong16 *)V)[mul24((idx << 1) + 1, (int)get_global_size(0))] = ((ulong16 *)X)[1]; } void ScratchpadMix(void *X, const __global void *V, uchar idx) { ((ulong16 *)X)[0] ^= ((__global ulong16 *)V)[mul24(idx << 1, (int)get_global_size(0))]; ((ulong16 *)X)[1] ^= ((__global ulong16 *)V)[mul24((idx << 1) + 1, (int)get_global_size(0))]; } #endif #define SALSA_PERM (uint16)(4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11, 0, 5, 10, 15) #define SALSA_INV_PERM (uint16)(12, 9, 6, 3, 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15) void SMix_Salsa(uint16 X[4], __global uint16 *V) { #pragma unroll 1 for(int i = 0; i < 128; ++i) { ScratchpadStore(V, X, i); neoscrypt_blkmix_salsa(X); } #pragma unroll 1 for(int i = 0; i < 128; ++i) { #ifdef SHITMAIN const uint idx = convert_uchar(((uint *)X)[60] & 0x7F); #else const uint idx = convert_uchar(((uint *)X)[48] & 0x7F); #endif ScratchpadMix(X, V, idx); neoscrypt_blkmix_salsa(X); } } void SMix_Chacha(uint16 X[4], __global uint16 *V) { #pragma unroll 1 for(int i = 0; i < 128; ++i) { ScratchpadStore(V, X, i); neoscrypt_blkmix_chacha(X); } #pragma unroll 1 for(int i = 0; i < 128; ++i) { const uint idx = convert_uchar(((uint *)X)[48] & 0x7F); ScratchpadMix(X, V, idx); neoscrypt_blkmix_chacha(X); } } #define SALSA_PERM (uint16)(4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11, 0, 5, 10, 15) #define SALSA_INV_PERM (uint16)(12, 9, 6, 3, 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15) __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, const uint target) { #define CONSTANT_N 128 #define CONSTANT_r 2 // X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha uint16 X[4], Z[4]; #ifdef WIDE_STRIPE __global ulong16 *V = ((__global ulong16 *)padcache) + ((get_global_id(0) % get_global_size(0)) << 1); #else __global ulong16 *V = ((__global ulong16 *)(padcache) + (get_global_id(0) % get_global_size(0))); #endif //uchar outbuf[32]; uchar data[PASSWORD_LEN]; ((ulong8 *)data)[0] = ((__global const ulong8 *)input)[0]; ((ulong *)data)[8] = ((__global const ulong *)input)[8]; ((uint *)data)[18] = ((__global const uint *)input)[18]; ((uint *)data)[19] = get_global_id(0); // X = KDF(password, salt) //fastkdf(data, data, PASSWORD_LEN, (uchar *)X, 256); fastkdf1(data, (uchar *)X); #ifndef SHITMAIN // Process ChaCha 1st, Salsa 2nd and XOR them - run that through PBKDF2 CopyBytes128(Z, X, 2); #else #pragma unroll for(int i = 0; i < 4; ++i) ((uint16 *)Z)[i] = shuffle(((uint16 *)X)[i], SALSA_PERM); #endif // X = SMix(X); X & Z are swapped, repeat. for(int i = 0;; ++i) { #ifdef SWAP if (i) SMix_Salsa(X,V); else SMix_Chacha(X,V); if(i) break; SwapBytes128(X, Z, 256); #else if (i) SMix_Chacha(X,V); else SMix_Salsa(Z,V); if(i) break; #endif } #if defined(SWAP) && defined(SHITMAIN) #pragma unroll for(int i = 0; i < 4; ++i) ((uint16 *)Z)[i] ^= shuffle(((uint16 *)X)[i], SALSA_INV_PERM); fastkdf2(data, (uchar *)Z, output, target); #elif defined(SHITMAIN) #pragma unroll for(int i = 0; i < 4; ++i) ((uint16 *)X)[i] ^= shuffle(((uint16 *)Z)[i], SALSA_INV_PERM); fastkdf2(data, (uchar *)X, output, target); #else // blkxor(X, Z) ((ulong16 *)X)[0] ^= ((ulong16 *)Z)[0]; ((ulong16 *)X)[1] ^= ((ulong16 *)Z)[1]; // output = KDF(password, X) //fastkdf(data, (uchar *)X, FASTKDF_BUFFER_SIZE, outbuf, 32); fastkdf2(data, (uchar *)X, output, target); #endif } /* __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void search(__global const uchar* restrict input, __global uint16 *XZOutput) { #define CONSTANT_N 128 #define CONSTANT_r 2 // X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha uint16 X[4]; XZOutput += (4 * 2 * get_global_id(0)); //uchar outbuf[32]; uchar data[PASSWORD_LEN]; ((ulong8 *)data)[0] = ((__global const ulong8 *)input)[0]; ((ulong *)data)[8] = ((__global const ulong *)input)[8]; ((uint *)data)[18] = ((__global const uint *)input)[18]; ((uint *)data)[19] = get_global_id(0); // X = KDF(password, salt) //fastkdf(data, data, PASSWORD_LEN, (uchar *)X, 256); fastkdf1(data, (uchar *)X); for(int i = 0; i < 4; ++i) XZOutput[i] = X[i]; for(int i = 0; i < 4; ++i) XZOutput[i + 4] = X[i]; mem_fence(CLK_GLOBAL_MEM_FENCE); } __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void search1(__global uint16 *XZOutput, __global uchar *padcache) { #define CONSTANT_N 128 #define CONSTANT_r 2 // X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha uint16 X[4], Z[4]; #ifdef WIDE_STRIPE __global ulong16 *V = ((__global ulong16 *)padcache) + ((get_global_id(0) % get_global_size(0)) << 1); #else __global ulong16 *V = ((__global ulong16 *)(padcache) + (get_global_id(0) % get_global_size(0))); #endif //uchar outbuf[32]; XZOutput += (4 * 2 * get_global_id(0)); for(int i = 0; i < 4; ++i) X[i] = XZOutput[i]; SMix_Salsa(X,V); for(int i = 0; i < 4; ++i) XZOutput[i] = X[i]; mem_fence(CLK_GLOBAL_MEM_FENCE); } __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void search2(__global uint16 *XZOutput, __global uchar *padcache) { #define CONSTANT_N 128 #define CONSTANT_r 2 // X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha uint16 X[4], Z[4]; #ifdef WIDE_STRIPE __global ulong16 *V = ((__global ulong16 *)padcache) + ((get_global_id(0) % get_global_size(0)) << 1); #else __global ulong16 *V = ((__global ulong16 *)(padcache) + (get_global_id(0) % get_global_size(0))); #endif //uchar outbuf[32]; XZOutput += (4 * 2 * get_global_id(0)); for(int i = 0; i < 4; ++i) X[i] = XZOutput[i + 4]; SMix_Chacha(X,V); for(int i = 0; i < 4; ++i) XZOutput[i + 4] = X[i]; mem_fence(CLK_GLOBAL_MEM_FENCE); } __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __kernel void search3(__global const uchar* restrict input, __global uint16 *XZOutput, __global uint* restrict output, const uint target) { uint16 X[4], Z[4]; uchar data[PASSWORD_LEN]; ((ulong8 *)data)[0] = ((__global const ulong8 *)input)[0]; ((ulong *)data)[8] = ((__global const ulong *)input)[8]; ((uint *)data)[18] = ((__global const uint *)input)[18]; ((uint *)data)[19] = get_global_id(0); XZOutput += (4 * 2 * get_global_id(0)); for(int i = 0; i < 4; ++i) X[i] = XZOutput[i]; for(int i = 0; i < 4; ++i) Z[i] = XZOutput[i + 4]; // blkxor(X, Z) ((ulong16 *)X)[0] ^= ((ulong16 *)Z)[0]; ((ulong16 *)X)[1] ^= ((ulong16 *)Z)[1]; // output = KDF(password, X) //fastkdf(data, (uchar *)X, FASTKDF_BUFFER_SIZE, outbuf, 32); fastkdf2(data, (uchar *)X, output, target); } */