From fb881eac628cfb5b3b1ae8a924ad1e55865986f3 Mon Sep 17 00:00:00 2001 From: Con Kolivas Date: Sat, 31 Mar 2012 14:34:06 +1100 Subject: [PATCH] Revert the crossover of variables from Vals to W in poclbm kernel now that Vals are the first declared variables so they're used more frequently. --- poclbm120327.cl | 1259 +++++++++++++++++++++++------------------------ 1 file changed, 621 insertions(+), 638 deletions(-) diff --git a/poclbm120327.cl b/poclbm120327.cl index 970f2333..60b385af 100644 --- a/poclbm120327.cl +++ b/poclbm120327.cl @@ -101,12 +101,10 @@ Vals[3]+=D1A; Vals[7]=Vals[3]; Vals[7]+=h1; - Vals[4]=PreVal4addT1; Vals[4]+=nonce; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); - Vals[2]=C1addK5; Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); Vals[2]+=ch(Vals[7],Vals[0],b1); @@ -117,7 +115,6 @@ Vals[3]+=Ma2(g1,Vals[4],f1); Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma2(f1,Vals[3],Vals[4]); - Vals[1]=B1addK6; Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); @@ -205,7 +202,6 @@ Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); - W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); W[2]+=fw2; Vals[5]+=W[2]; @@ -216,7 +212,6 @@ Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); - W[3]=nonce; W[3]+=fw3; Vals[4]+=W[3]; @@ -227,9 +222,8 @@ Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); - -W[4]=0x80000000U; -W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); +W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); +W[4]+=0x80000000U; Vals[3]+=W[4]; Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); @@ -238,7 +232,6 @@ Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); - W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); Vals[2]+=W[5]; Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); @@ -248,9 +241,8 @@ Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); - -W[6]=0x00000280U; -W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); +W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); +W[6]+=0x00000280U; Vals[1]+=W[6]; Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); @@ -259,9 +251,8 @@ Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); - -W[7]=fw0; -W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); +W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); +W[7]+=fw0; Vals[0]+=W[7]; Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -270,9 +261,8 @@ Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); - -W[8]=fw1; -W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); +W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); +W[8]+=fw1; Vals[7]+=W[8]; Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); @@ -281,7 +271,6 @@ Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); Vals[6]+=W[9]; @@ -292,7 +281,6 @@ Vals[2]+=Vals[6]; Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); - W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); Vals[5]+=W[10]; @@ -303,7 +291,6 @@ Vals[1]+=Vals[5]; Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); - W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); Vals[4]+=W[11]; @@ -314,7 +301,6 @@ Vals[0]+=Vals[4]; Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); - W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); Vals[3]+=W[12]; @@ -325,7 +311,6 @@ Vals[7]+=Vals[3]; Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); - W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); Vals[2]+=W[13]; @@ -336,7 +321,6 @@ Vals[6]+=Vals[2]; Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); - W[14]=0x00a00055U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); @@ -348,7 +332,6 @@ Vals[5]+=Vals[1]; Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); - W[15]=fw15; W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); @@ -360,7 +343,6 @@ Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); - W[0]=fw01r; W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); @@ -372,7 +354,6 @@ Vals[3]+=Vals[7]; Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - W[1]=fw1; W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; @@ -714,656 +695,658 @@ Vals[0]+=W[15]; Vals[4]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); -Vals[0]+=state0; - -W[7]=Vals[0]; -W[7]+=0xF377ED68U; - - -W[3]=0xa54ff53aU; -W[3]+=W[7]; -W[7]+=0x08909ae5U; - -Vals[1]+=state1; - -W[6]=Vals[1]; -W[6]+=0x90BB1E3CU; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=(0x9b05688cU^(W[3]&0xca0b3af3U)); - - -W[2]=0x3c6ef372U; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma2(0xbb67ae85U,W[7],0x6a09e667U); - -Vals[2]+=state2; - -W[5]=Vals[2]; -W[5]+=0x50C6645BU; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],0x510e527fU); - - -W[1]=0xbb67ae85U; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma2(0x6a09e667U,W[6],W[7]); - -Vals[3]+=state3; - -W[4]=Vals[3]; -W[4]+=0x3AC42E24U; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); - - -W[0]=0x6a09e667U; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); - -Vals[4]+=state4; -W[3]+=Vals[4]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[4]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); - -Vals[5]+=state5; -W[2]+=Vals[5]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[5]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); - -Vals[6]+=state6; -W[1]+=Vals[6]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[6]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -Vals[7]+=state7; -W[0]+=Vals[7]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[7]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); - -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=0x5807AA98U; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); - -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[9]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); - -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[10]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); - -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[11]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); - -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[12]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); - -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[13]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); - -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[14]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=0xC19BF274U; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); - -Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); -W[7]+=Vals[0]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[16]; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); - -Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); -Vals[1]+=0x00a00000U; -W[6]+=Vals[1]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[17]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); - -Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); -Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); -W[5]+=Vals[2]; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[18]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); - -Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); -Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); -W[4]+=Vals[3]; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[19]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); - -Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); -Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); -W[3]+=Vals[4]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[20]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); - -Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); -Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); -W[2]+=Vals[5]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[21]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); - -Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); -Vals[6]+=0x00000100U; -Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); -W[1]+=Vals[6]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[22]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -Vals[7]+=0x11002000U; -Vals[7]+=Vals[0]; -Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); -W[0]+=Vals[7]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[23]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); +W[0]=Vals[0]; +W[0]+=state0; -W[8]=0x80000000U; -W[8]+=Vals[1]; -W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); -W[7]+=W[8]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[24]; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); - - -W[9]=Vals[2]; -W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); -W[6]+=W[9]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[25]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); - - -W[10]=Vals[3]; -W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -W[5]+=W[10]; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[26]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); +W[7]=state7; +W[7]+=Vals[7]; +Vals[7]=0xF377ED68U; +Vals[7]+=W[0]; -W[11]=Vals[4]; -W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -W[4]+=W[11]; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[27]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); +W[3]=state3; +W[3]+=Vals[3]; +Vals[3]=0xa54ff53aU; +Vals[3]+=Vals[7]; +Vals[7]+=0x08909ae5U; -W[12]=Vals[5]; -W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -W[3]+=W[12]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[28]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); +W[6]=state6; +W[6]+=Vals[6]; +Vals[6]=0x90BB1E3CU; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U)); -W[13]=Vals[6]; -W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -W[2]+=W[13]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[29]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); +W[1]=Vals[1]; +W[1]+=state1; +Vals[6]+=W[1]; +W[2]=state2; +W[2]+=Vals[2]; -W[14]=0x00400022U; -W[14]+=Vals[7]; -W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -W[1]+=W[14]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[30]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); +Vals[2]=0x3c6ef372U; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U); +W[5]=state5; +W[5]+=Vals[5]; -W[15]=0x00000100U; -W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U)); -W[15]+=W[8]; -W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -W[0]+=W[15]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[31]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); - -Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); -Vals[0]+=W[9]; -Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -W[7]+=Vals[0]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[32]; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); - -Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); -Vals[1]+=W[10]; -Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -W[6]+=Vals[1]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[33]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); - -Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); -Vals[2]+=W[11]; -Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); -W[5]+=Vals[2]; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[34]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); - -Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); -Vals[3]+=W[12]; -Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); -W[4]+=Vals[3]; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[35]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); - -Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); -Vals[4]+=W[13]; -Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); -W[3]+=Vals[4]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[36]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); - -Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); -Vals[5]+=W[14]; -Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); -W[2]+=Vals[5]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[37]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); - -Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); -Vals[6]+=W[15]; -Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); -W[1]+=Vals[6]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[38]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); -Vals[7]+=Vals[0]; -Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); -W[0]+=Vals[7]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[39]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); +Vals[5]=0x50C6645BU; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU); +Vals[5]+=W[2]; -W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); -W[8]+=Vals[1]; -W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); -W[7]+=W[8]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[40]; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); +Vals[1]=0xbb67ae85U; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]); -W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); -W[9]+=Vals[2]; -W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); -W[6]+=W[9]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[41]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); +W[4]=state4; +W[4]+=Vals[4]; -W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); -W[10]+=Vals[3]; -W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -W[5]+=W[10]; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[42]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); +Vals[4]=0x3AC42E24U; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=W[3]; -W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); -W[11]+=Vals[4]; -W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -W[4]+=W[11]; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[43]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); +Vals[0]=Vals[4]; +Vals[0]+=0x6a09e667U; -W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); -W[12]+=Vals[5]; -W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -W[3]+=W[12]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[44]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); -W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); -W[13]+=Vals[6]; -W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -W[2]+=W[13]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[45]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[4]; +Vals[3]+=W[4]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); -W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); -W[14]+=Vals[7]; -W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -W[1]+=W[14]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[46]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U)); -W[15]+=W[8]; -W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -W[0]+=W[15]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[47]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); - -Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U)); -Vals[0]+=W[9]; -Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -W[7]+=Vals[0]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[48]; -W[3]+=W[7]; -W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); -W[7]+=Ma(W[2],W[0],W[1]); - -Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U)); -Vals[1]+=W[10]; -Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -W[6]+=Vals[1]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[49]; -W[2]+=W[6]; -W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22)); -W[6]+=Ma(W[1],W[7],W[0]); - -Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U)); -Vals[2]+=W[11]; -Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U)); -W[5]+=Vals[2]; -W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25)); -W[5]+=ch(W[2],W[3],W[4]); -W[5]+=K[50]; -W[1]+=W[5]; -W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22)); -W[5]+=Ma(W[0],W[6],W[7]); - -Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U)); -Vals[3]+=W[12]; -Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U)); -W[4]+=Vals[3]; -W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25)); -W[4]+=ch(W[1],W[2],W[3]); -W[4]+=K[51]; -W[0]+=W[4]; -W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22)); -W[4]+=Ma(W[7],W[5],W[6]); - -Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U)); -Vals[4]+=W[13]; -Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U)); -W[3]+=Vals[4]; -W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25)); -W[3]+=ch(W[0],W[1],W[2]); -W[3]+=K[52]; -W[7]+=W[3]; -W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22)); -W[3]+=Ma(W[6],W[4],W[5]); - -Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U)); -Vals[5]+=W[14]; -Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U)); -W[2]+=Vals[5]; -W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25)); -W[2]+=ch(W[7],W[0],W[1]); -W[2]+=K[53]; -W[6]+=W[2]; -W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22)); -W[2]+=Ma(W[5],W[3],W[4]); - -Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U)); -Vals[6]+=W[15]; -Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U)); -W[1]+=Vals[6]; -W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[1]+=ch(W[6],W[7],W[0]); -W[1]+=K[54]; -W[5]+=W[1]; -W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22)); -W[1]+=Ma(W[4],W[2],W[3]); - -Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); -Vals[7]+=Vals[0]; -Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U)); -W[0]+=Vals[7]; -W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[0]+=ch(W[5],W[6],W[7]); -W[0]+=K[55]; -W[4]+=W[0]; -W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22)); -W[0]+=Ma(W[3],W[1],W[2]); +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[5]; +Vals[2]+=W[5]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); -W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); -W[8]+=Vals[1]; -W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U)); -W[7]+=W[8]; -W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); -W[7]+=ch(W[4],W[5],W[6]); -W[7]+=K[56]; -W[3]+=W[7]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[6]; +Vals[1]+=W[6]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); -W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); -W[9]+=Vals[2]; -W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U)); -W[6]+=W[9]; -W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25)); -W[6]+=ch(W[3],W[4],W[5]); -W[6]+=K[57]; -W[6]+=W[2]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[7]; +Vals[0]+=W[7]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); -W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); -W[10]+=Vals[3]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=0x5807AA98U; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[9]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[10]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[11]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[12]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[13]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[14]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=0xC19BF274U; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); +Vals[7]+=W[0]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[16]; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); +W[1]+=0x00a00000U; +Vals[6]+=W[1]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[17]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); +W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); +Vals[5]+=W[2]; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[18]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); +W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); +Vals[4]+=W[3]; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[19]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); +W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); +Vals[3]+=W[4]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[20]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); +W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); +Vals[2]+=W[5]; +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[21]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); +W[6]+=0x00000100U; +W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); +Vals[1]+=W[6]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[22]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +W[7]+=0x11002000U; +W[7]+=W[0]; +W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); +Vals[0]+=W[7]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[23]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[8]=0x80000000U; +W[8]+=W[1]; +W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); +Vals[7]+=W[8]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[24]; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +W[9]=W[2]; +W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); +Vals[6]+=W[9]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[25]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -W[5]+=W[10]; -W[5]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25)); -W[5]+=ch(W[6],W[3],W[4]); -W[5]+=K[58]; -W[5]+=W[1]; -W[4]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25)); -W[4]+=ch(W[5],W[6],W[3]); -W[4]+=W[11]; -W[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); -W[4]+=Vals[4]; -W[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -W[4]+=K[59]; -W[4]+=W[0]; +Vals[5]+=W[10]; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[26]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +W[11]=W[4]; +W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); +Vals[4]+=W[11]; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[27]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +W[12]=W[5]; +W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); +Vals[3]+=W[12]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[28]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +W[13]=W[6]; +W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); +Vals[2]+=W[13]; +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[29]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +W[14]=0x00400022U; +W[14]+=W[7]; +W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); +Vals[1]+=W[14]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[30]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +W[15]=0x00000100U; +W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); +W[15]+=W[8]; +W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); +Vals[0]+=W[15]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[31]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); +W[0]+=W[9]; +W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); +Vals[7]+=W[0]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[32]; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); +W[1]+=W[10]; +W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); +Vals[6]+=W[1]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[33]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); +W[2]+=W[11]; +W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); +Vals[5]+=W[2]; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[34]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); +W[3]+=W[12]; +W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); +Vals[4]+=W[3]; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[35]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); +W[4]+=W[13]; +W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); +Vals[3]+=W[4]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[36]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); +W[5]+=W[14]; +W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); +Vals[2]+=W[5]; +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[37]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); +W[6]+=W[15]; +W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); +Vals[1]+=W[6]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[38]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); +W[7]+=W[0]; +W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); +Vals[0]+=W[7]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[39]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); +W[8]+=W[1]; +W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); +Vals[7]+=W[8]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[40]; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); +W[9]+=W[2]; +W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); +Vals[6]+=W[9]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[41]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); +W[10]+=W[3]; +W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); +Vals[5]+=W[10]; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[42]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); +W[11]+=W[4]; +W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); +Vals[4]+=W[11]; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[43]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); +W[12]+=W[5]; +W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); +Vals[3]+=W[12]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[44]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); +W[13]+=W[6]; +W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); +Vals[2]+=W[13]; +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[45]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); +W[14]+=W[7]; +W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); +Vals[1]+=W[14]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[46]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); +W[15]+=W[8]; +W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); +Vals[0]+=W[15]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[47]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); +W[0]+=W[9]; +W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); +Vals[7]+=W[0]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[48]; +Vals[3]+=Vals[7]; +Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + +W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); +W[1]+=W[10]; +W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); +Vals[6]+=W[1]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[49]; +Vals[2]+=Vals[6]; +Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); + +W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); +W[2]+=W[11]; +W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); +Vals[5]+=W[2]; +Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); +Vals[5]+=K[50]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); + +W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); +W[3]+=W[12]; +W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); +Vals[4]+=W[3]; +Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); +Vals[4]+=K[51]; +Vals[0]+=Vals[4]; +Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); + +W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); +W[4]+=W[13]; +W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); +Vals[3]+=W[4]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); +Vals[3]+=K[52]; +Vals[7]+=Vals[3]; +Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); + +W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); +W[5]+=W[14]; +W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); +Vals[2]+=W[5]; +Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); +Vals[2]+=K[53]; +Vals[6]+=Vals[2]; +Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); + +W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); +W[6]+=W[15]; +W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); +Vals[1]+=W[6]; +Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[1]+=K[54]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); + +W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); +W[7]+=W[0]; +W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); +Vals[0]+=W[7]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); +Vals[0]+=K[55]; +Vals[4]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); + +W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); +W[8]+=W[1]; +W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); +Vals[7]+=W[8]; +Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); +Vals[7]+=K[56]; +Vals[3]+=Vals[7]; + +W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); +W[9]+=W[2]; +W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); +Vals[6]+=W[9]; +Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); +Vals[6]+=K[57]; +Vals[6]+=Vals[2]; + +W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); +W[10]+=W[3]; +W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); +Vals[5]+=W[10]; +Vals[5]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[5]+=ch(Vals[6],Vals[3],Vals[4]); +Vals[5]+=K[58]; +Vals[5]+=Vals[1]; +Vals[4]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[4]+=ch(Vals[5],Vals[6],Vals[3]); +Vals[4]+=W[11]; +Vals[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); +Vals[4]+=W[4]; +Vals[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); +Vals[4]+=K[59]; +Vals[4]+=Vals[0]; #define FOUND (0x80) #define NFLAG (0x7F) #if defined(VECTORS2) || defined(VECTORS4) - W[7]+=Ma(W[2],W[0],W[1]); - W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22)); - W[7]+=W[12]; - W[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); - W[7]+=Vals[5]; - W[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); - W[7]+=W[3]; - W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25)); - W[7]+=ch(W[4],W[5],W[6]); - - if (any(W[7] == 0x136032edU)) { - if (W[7].x == 0x136032edU) + Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); + Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); + Vals[7]+=W[12]; + Vals[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); + Vals[7]+=W[5]; + Vals[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); + Vals[7]+=Vals[3]; + Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); + Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); + + if (any(Vals[7] == 0x136032edU)) { + if (Vals[7].x == 0x136032edU) output[FOUND] = output[NFLAG & nonce.x] = nonce.x; - if (W[7].y == 0x136032edU) + if (Vals[7].y == 0x136032edU) output[FOUND] = output[NFLAG & nonce.y] = nonce.y; #if defined(VECTORS4) - if (W[7].z == 0x136032edU) + if (Vals[7].z == 0x136032edU) output[FOUND] = output[NFLAG & nonce.z] = nonce.z; - if (W[7].w == 0x136032edU) + if (Vals[7].w == 0x136032edU) output[FOUND] = output[NFLAG & nonce.w] = nonce.w; #endif } #else - if ((W[7]+ - Ma(W[2],W[0],W[1])+ - (rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22))+ + if ((Vals[7]+ + Ma(Vals[2],Vals[0],Vals[1])+ + (rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22))+ W[12]+ (rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+ - Vals[5]+ + W[5]+ (rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+ - W[3]+ - (rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25))+ - ch(W[4],W[5],W[6])) == 0x136032edU) + Vals[3]+ + (rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25))+ + ch(Vals[4],Vals[5],Vals[6])) == 0x136032edU) output[FOUND] = output[NFLAG & nonce] = nonce; #endif }