mirror of
https://github.com/GOSTSec/sgminer
synced 2025-03-13 06:01:03 +00:00
Implement ma macro for amd bytealign that gets patched into bfi_int as well.
This commit is contained in:
parent
91e5cef3a5
commit
fa4c10b1d9
232
oclminer.cl
232
oclminer.cl
@ -96,268 +96,268 @@ A = state0 + E;
|
||||
E = E + fcty_e2;
|
||||
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000;
|
||||
H = H1 + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G1, E, F1);
|
||||
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5];
|
||||
G = G1 + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F1, D, E);
|
||||
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6];
|
||||
F = F1 + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7];
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8];
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2;
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + fW3;
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000;
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280;
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0;
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1;
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
|
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
|
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
|
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
|
||||
W0 = A + state0;
|
||||
W1 = B + state1;
|
||||
@ -372,245 +372,245 @@ D = 0xa54ff53a + H;
|
||||
H = H + 0x08909ae5;
|
||||
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1;
|
||||
C = 0x3c6ef372 + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(0xbb67ae85, H, 0x6a09e667);
|
||||
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] + W2;
|
||||
B = 0xbb67ae85 + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(0x6a09e667, G, H);
|
||||
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3;
|
||||
A = 0x6a09e667 + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9];
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10];
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11];
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12];
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13];
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14];
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3));
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000;
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
|
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
|
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1;
|
||||
C = C + G;
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
|
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A);
|
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2;
|
||||
B = B + F;
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
|
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H);
|
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
|
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3;
|
||||
A = A + E;
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
|
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G);
|
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
|
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4;
|
||||
H = H + D;
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
|
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F);
|
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
|
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5;
|
||||
G = G + C;
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
|
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E);
|
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
|
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6;
|
||||
F = F + B;
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
|
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D);
|
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
|
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7;
|
||||
E = E + A;
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
|
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C);
|
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
|
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8;
|
||||
D = D + H;
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
|
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B);
|
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
|
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9;
|
||||
|
Loading…
x
Reference in New Issue
Block a user