Browse Source

Tidy up first half of poclbm.

nfactor-troky
Con Kolivas 13 years ago
parent
commit
e1d580be70
  1. 156
      poclbm120222.cl

156
poclbm120222.cl

@ -106,6 +106,7 @@ Vals[6]=Vals[2]; @@ -106,6 +106,7 @@ Vals[6]=Vals[2];
Vals[6]+=g1;
Vals[3]+=Ma2(g1,Vals[4],f1);
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
Vals[1]=B1addK6;
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
@ -113,74 +114,86 @@ Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); @@ -113,74 +114,86 @@ Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[5]=Vals[1];
Vals[5]+=f1;
Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[7];
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[8];
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[9];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[10];
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[11];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[12];
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[13];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[14];
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=0xC19BF3F4U;
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=W16addK16;
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=W17addK17;
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
W[2]+=fw2;
@ -188,7 +201,6 @@ Vals[5]+=W[2]; @@ -188,7 +201,6 @@ Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[18];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -201,6 +213,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -201,6 +213,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[19];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[4]+=0x80000000U;
@ -208,7 +221,6 @@ Vals[3]+=W[4]; @@ -208,7 +221,6 @@ Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[20];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -220,6 +232,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -220,6 +232,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[21];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[6]+=0x00000280U;
@ -227,7 +240,6 @@ Vals[1]+=W[6]; @@ -227,7 +240,6 @@ Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[22];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -238,9 +250,9 @@ Vals[0]+=W[7]; @@ -238,9 +250,9 @@ Vals[0]+=W[7];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[23];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[8]+=fw1;
@ -248,7 +260,6 @@ Vals[7]+=W[8]; @@ -248,7 +260,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[24];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -259,9 +270,9 @@ Vals[6]+=W[9]; @@ -259,9 +270,9 @@ Vals[6]+=W[9];
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[25];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
@ -269,7 +280,6 @@ Vals[5]+=W[10]; @@ -269,7 +280,6 @@ Vals[5]+=W[10];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[26];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -282,6 +292,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -282,6 +292,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[27];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
@ -289,7 +300,6 @@ Vals[3]+=W[12]; @@ -289,7 +300,6 @@ Vals[3]+=W[12];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[28];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -302,6 +312,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -302,6 +312,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[29];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]=0x00a00055U;
W[14]+=W[7];
@ -310,7 +321,6 @@ Vals[1]+=W[14]; @@ -310,7 +321,6 @@ Vals[1]+=W[14];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[30];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -324,6 +334,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -324,6 +334,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[31];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]=fw01r;
W[0]+=W[9];
@ -332,7 +343,6 @@ Vals[7]+=W[0]; @@ -332,7 +343,6 @@ Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[32];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -347,303 +357,333 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); @@ -347,303 +357,333 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[33];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[5]+=K[34];
Vals[5]+=W[2];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[35];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[4]+=W[3];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[3]+=K[36];
Vals[3]+=W[4];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[37];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[2]+=W[5];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=K[38];
Vals[1]+=W[6];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[39];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=W[7];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[7]+=K[40];
Vals[7]+=W[8];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[41];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[6]+=W[9];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[5]+=K[42];
Vals[5]+=W[10];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[43];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[4]+=W[11];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[3]+=K[44];
Vals[3]+=W[12];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[45];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[2]+=W[13];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[1]+=K[46];
Vals[1]+=W[14];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[47];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[0]+=W[15];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
Vals[7]+=K[48];
Vals[7]+=W[0];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[49];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
Vals[6]+=W[1];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[5]+=K[50];
Vals[5]+=W[2];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[51];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[4]+=W[3];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[3]+=K[52];
Vals[3]+=W[4];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[53];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[2]+=W[5];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=K[54];
Vals[1]+=W[6];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[55];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=W[7];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[7]+=K[56];
Vals[7]+=W[8];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[57];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[6]+=W[9];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[5]+=K[58];
Vals[5]+=W[10];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[59];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[4]+=W[11];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[3]+=K[60];
Vals[3]+=W[12];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[61];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[2]+=W[13];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[1]+=K[62];
Vals[1]+=W[14];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[63];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[0]+=W[15];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));

Loading…
Cancel
Save