|
|
|
@ -106,6 +106,7 @@ Vals[6]=Vals[2];
@@ -106,6 +106,7 @@ Vals[6]=Vals[2];
|
|
|
|
|
Vals[6]+=g1; |
|
|
|
|
Vals[3]+=Ma2(g1,Vals[4],f1); |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma2(f1,Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
Vals[1]=B1addK6; |
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
@ -113,74 +114,86 @@ Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
@@ -113,74 +114,86 @@ Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
|
|
|
|
|
|
|
Vals[5]=Vals[1]; |
|
|
|
|
Vals[5]+=f1; |
|
|
|
|
Vals[2]+=Ma2(f1,Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[7]; |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=K[8]; |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=K[9]; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=K[10]; |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=K[11]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=K[12]; |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
|
Vals[2]+=K[13]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=K[14]; |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=0xC19BF3F4U; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=W16addK16; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=W17addK17; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); |
|
|
|
|
W[2]+=fw2; |
|
|
|
@ -188,7 +201,6 @@ Vals[5]+=W[2];
@@ -188,7 +201,6 @@ Vals[5]+=W[2];
|
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=K[18]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
@ -201,6 +213,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
@@ -201,6 +213,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
|
|
Vals[4]+=K[19]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[4]+=0x80000000U; |
|
|
|
@ -208,7 +221,6 @@ Vals[3]+=W[4];
@@ -208,7 +221,6 @@ Vals[3]+=W[4];
|
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=K[20]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
@ -220,6 +232,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
@@ -220,6 +232,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
|
|
Vals[2]+=K[21]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[6]+=0x00000280U; |
|
|
|
@ -227,7 +240,6 @@ Vals[1]+=W[6];
@@ -227,7 +240,6 @@ Vals[1]+=W[6];
|
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=K[22]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
@ -238,9 +250,9 @@ Vals[0]+=W[7];
@@ -238,9 +250,9 @@ Vals[0]+=W[7];
|
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[23]; |
|
|
|
|
|
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[8]+=fw1; |
|
|
|
@ -248,7 +260,6 @@ Vals[7]+=W[8];
@@ -248,7 +260,6 @@ Vals[7]+=W[8];
|
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=K[24]; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
@ -259,9 +270,9 @@ Vals[6]+=W[9];
@@ -259,9 +270,9 @@ Vals[6]+=W[9];
|
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=K[25]; |
|
|
|
|
|
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
@ -269,7 +280,6 @@ Vals[5]+=W[10];
@@ -269,7 +280,6 @@ Vals[5]+=W[10];
|
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=K[26]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
@ -282,6 +292,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
@@ -282,6 +292,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
|
|
Vals[4]+=K[27]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
@ -289,7 +300,6 @@ Vals[3]+=W[12];
@@ -289,7 +300,6 @@ Vals[3]+=W[12];
|
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=K[28]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
@ -302,6 +312,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
@@ -302,6 +312,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
|
|
Vals[2]+=K[29]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[14]=0x00a00055U; |
|
|
|
|
W[14]+=W[7]; |
|
|
|
@ -310,7 +321,6 @@ Vals[1]+=W[14];
@@ -310,7 +321,6 @@ Vals[1]+=W[14];
|
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=K[30]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
@ -324,6 +334,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
@@ -324,6 +334,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
|
|
Vals[0]+=K[31]; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
W[0]=fw01r; |
|
|
|
|
W[0]+=W[9]; |
|
|
|
@ -332,7 +343,6 @@ Vals[7]+=W[0];
@@ -332,7 +343,6 @@ Vals[7]+=W[0];
|
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=K[32]; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
@ -347,303 +357,333 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
@@ -347,303 +357,333 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
|
|
Vals[6]+=K[33]; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
Vals[5]+=K[34]; |
|
|
|
|
Vals[5]+=W[2]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
Vals[4]+=W[3]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
Vals[3]+=K[36]; |
|
|
|
|
Vals[3]+=W[4]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
|
Vals[2]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
Vals[2]+=W[5]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
Vals[1]+=K[38]; |
|
|
|
|
Vals[1]+=W[6]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
Vals[0]+=W[7]; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
Vals[7]+=K[40]; |
|
|
|
|
Vals[7]+=W[8]; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
Vals[6]+=W[9]; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
Vals[5]+=K[42]; |
|
|
|
|
Vals[5]+=W[10]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
Vals[4]+=W[11]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
Vals[3]+=K[44]; |
|
|
|
|
Vals[3]+=W[12]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
|
Vals[2]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
Vals[2]+=W[13]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
Vals[1]+=K[46]; |
|
|
|
|
Vals[1]+=W[14]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
Vals[0]+=W[15]; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
Vals[7]+=K[48]; |
|
|
|
|
Vals[7]+=W[0]; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
Vals[6]+=W[1]; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
Vals[5]+=K[50]; |
|
|
|
|
Vals[5]+=W[2]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
Vals[4]+=W[3]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
Vals[3]+=K[52]; |
|
|
|
|
Vals[3]+=W[4]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
|
Vals[2]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
Vals[2]+=W[5]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
Vals[1]+=K[54]; |
|
|
|
|
Vals[1]+=W[6]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
Vals[0]+=W[7]; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
Vals[7]+=K[56]; |
|
|
|
|
Vals[7]+=W[8]; |
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
|
Vals[6]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
Vals[6]+=W[9]; |
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
Vals[5]+=K[58]; |
|
|
|
|
Vals[5]+=W[10]; |
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
|
Vals[4]+=K[59]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
Vals[4]+=W[11]; |
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
Vals[3]+=K[60]; |
|
|
|
|
Vals[3]+=W[12]; |
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
|
Vals[2]+=K[61]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
Vals[2]+=W[13]; |
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
Vals[1]+=K[62]; |
|
|
|
|
Vals[1]+=W[14]; |
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
|
Vals[0]+=K[63]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
Vals[0]+=W[15]; |
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|