|
|
@ -88,31 +88,38 @@ __kernel void search(const uint state0, const uint state1, const uint state2, co |
|
|
|
|
|
|
|
|
|
|
|
W[20]=fcty_e; |
|
|
|
W[20]=fcty_e; |
|
|
|
W[20]+=nonce; |
|
|
|
W[20]+=nonce; |
|
|
|
W[16]=state0; |
|
|
|
|
|
|
|
W[16]+=W[20]; |
|
|
|
W[16]=W[20]; |
|
|
|
W[19]=d1; |
|
|
|
W[16]+=state0; |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
|
|
|
|
|
|
|
W[19]=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
|
|
|
W[19]+=d1; |
|
|
|
W[19]+=ch(W[16],b1,c1); |
|
|
|
W[19]+=ch(W[16],b1,c1); |
|
|
|
W[19]+=K[4]; |
|
|
|
W[19]+=K[4]; |
|
|
|
W[23]=h1; |
|
|
|
|
|
|
|
W[19]+=0x80000000; |
|
|
|
W[19]+=0x80000000; |
|
|
|
W[23]+=W[19]; |
|
|
|
|
|
|
|
|
|
|
|
W[23]=W[19]; |
|
|
|
|
|
|
|
W[23]+=h1; |
|
|
|
W[20]+=fcty_e2; |
|
|
|
W[20]+=fcty_e2; |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[18]=c1; |
|
|
|
W[18]=c1; |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=ch(W[23],W[16],b1); |
|
|
|
W[18]+=ch(W[23],W[16],b1); |
|
|
|
W[18]+=K[5]; |
|
|
|
W[18]+=K[5]; |
|
|
|
W[22]=g1; |
|
|
|
|
|
|
|
W[22]+=W[18]; |
|
|
|
W[22]=W[18]; |
|
|
|
|
|
|
|
W[22]+=g1; |
|
|
|
W[19]+=Ma2(g1,W[20],f1); |
|
|
|
W[19]+=Ma2(g1,W[20],f1); |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[17]=b1; |
|
|
|
W[17]=b1; |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
W[17]+=K[6]; |
|
|
|
W[17]+=K[6]; |
|
|
|
W[21]=f1; |
|
|
|
|
|
|
|
W[21]+=W[17]; |
|
|
|
W[21]=W[17]; |
|
|
|
|
|
|
|
W[21]+=f1; |
|
|
|
W[18]+=Ma2(f1,W[19],W[20]); |
|
|
|
W[18]+=Ma2(f1,W[19],W[20]); |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
@ -184,6 +191,7 @@ W[22]+=K[17]; |
|
|
|
W[22]+=fw1; |
|
|
|
W[22]+=fw1; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); |
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); |
|
|
|
W[2]+=fw2; |
|
|
|
W[2]+=fw2; |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
@ -194,6 +202,7 @@ W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
W[17]+=W[21]; |
|
|
|
W[17]+=W[21]; |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
|
|
W[3]=nonce; |
|
|
|
W[3]=nonce; |
|
|
|
W[3]+=fw3; |
|
|
|
W[3]+=fw3; |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
@ -202,6 +211,7 @@ W[20]+=K[19]; |
|
|
|
W[20]+=W[3]; |
|
|
|
W[20]+=W[3]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
W[4]+=0x80000000; |
|
|
|
W[4]+=0x80000000; |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
@ -215,10 +225,12 @@ W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
W[18]+=K[21]; |
|
|
|
W[18]+=K[21]; |
|
|
|
|
|
|
|
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
W[18]+=W[5]; |
|
|
|
W[18]+=W[5]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
W[6]+=0x00000280U; |
|
|
|
W[6]+=0x00000280U; |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
@ -229,6 +241,7 @@ W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
W[21]+=W[17]; |
|
|
|
W[21]+=W[17]; |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
|
|
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
W[7]+=fw0; |
|
|
|
W[7]+=fw0; |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
@ -237,6 +250,7 @@ W[16]+=K[23]; |
|
|
|
W[16]+=W[7]; |
|
|
|
W[16]+=W[7]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
W[8]+=fw1; |
|
|
|
W[8]+=fw1; |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
@ -247,6 +261,7 @@ W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
W[19]+=W[23]; |
|
|
|
W[19]+=W[23]; |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
|
|
W[9]=W[2]; |
|
|
|
W[9]=W[2]; |
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
@ -255,6 +270,7 @@ W[22]+=K[25]; |
|
|
|
W[22]+=W[9]; |
|
|
|
W[22]+=W[9]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
W[10]=W[3]; |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
@ -265,6 +281,7 @@ W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
W[17]+=W[21]; |
|
|
|
W[17]+=W[21]; |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
|
|
W[11]=W[4]; |
|
|
|
W[11]=W[4]; |
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
@ -273,6 +290,7 @@ W[20]+=K[27]; |
|
|
|
W[20]+=W[11]; |
|
|
|
W[20]+=W[11]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
W[12]=W[5]; |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
@ -283,6 +301,7 @@ W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
W[23]+=W[19]; |
|
|
|
W[23]+=W[19]; |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
|
|
|
|
|
|
|
W[13]=W[6]; |
|
|
|
W[13]=W[6]; |
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
@ -291,6 +310,7 @@ W[18]+=K[29]; |
|
|
|
W[18]+=W[13]; |
|
|
|
W[18]+=W[13]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[14]=0x00a00055U; |
|
|
|
W[14]=0x00a00055U; |
|
|
|
W[14]+=W[7]; |
|
|
|
W[14]+=W[7]; |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
@ -302,6 +322,7 @@ W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
W[21]+=W[17]; |
|
|
|
W[21]+=W[17]; |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
|
|
W[15]=fw15; |
|
|
|
W[15]=fw15; |
|
|
|
W[15]+=W[8]; |
|
|
|
W[15]+=W[8]; |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
@ -311,6 +332,7 @@ W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
W[16]+=W[15]; |
|
|
|
W[16]+=W[15]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[0]=fw01r; |
|
|
|
W[0]=fw01r; |
|
|
|
W[0]+=W[9]; |
|
|
|
W[0]+=W[9]; |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
@ -322,6 +344,7 @@ W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
W[19]+=W[23]; |
|
|
|
W[19]+=W[23]; |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
|
|
W[1]=fw1; |
|
|
|
W[1]=fw1; |
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
W[1]+=W[10]; |
|
|
|
W[1]+=W[10]; |
|
|
@ -633,52 +656,68 @@ W[16]+=W[15]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
|
|
|
|
|
|
|
W[0]=W[16]; |
|
|
|
W[0]=W[16]; |
|
|
|
W[7]=W[23]; |
|
|
|
|
|
|
|
W[7]+=state7; |
|
|
|
W[7]=state7; |
|
|
|
|
|
|
|
W[7]+=W[23]; |
|
|
|
|
|
|
|
|
|
|
|
W[23]=0xb0edbdd0; |
|
|
|
W[23]=0xb0edbdd0; |
|
|
|
W[23]+=K[0]; |
|
|
|
W[23]+=K[0]; |
|
|
|
W[0]+=state0; |
|
|
|
W[0]+=state0; |
|
|
|
W[23]+=W[0]; |
|
|
|
W[23]+=W[0]; |
|
|
|
W[3]=W[19]; |
|
|
|
|
|
|
|
W[3]+=state3; |
|
|
|
W[3]=state3; |
|
|
|
|
|
|
|
W[3]+=W[19]; |
|
|
|
|
|
|
|
|
|
|
|
W[19]=0xa54ff53a; |
|
|
|
W[19]=0xa54ff53a; |
|
|
|
W[19]+=W[23]; |
|
|
|
W[19]+=W[23]; |
|
|
|
|
|
|
|
|
|
|
|
W[1]=W[17]; |
|
|
|
W[1]=W[17]; |
|
|
|
W[1]+=state1; |
|
|
|
W[1]+=state1; |
|
|
|
W[6]=W[22]; |
|
|
|
|
|
|
|
W[6]+=state6; |
|
|
|
W[6]=state6; |
|
|
|
|
|
|
|
W[6]+=W[22]; |
|
|
|
|
|
|
|
|
|
|
|
W[22]=0x1f83d9abU; |
|
|
|
W[22]=0x1f83d9abU; |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U)); |
|
|
|
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U)); |
|
|
|
W[22]+=K[1]; |
|
|
|
W[22]+=K[1]; |
|
|
|
W[2]=W[18]; |
|
|
|
|
|
|
|
W[2]+=state2; |
|
|
|
W[2]=state2; |
|
|
|
W[22]+=W[1]; |
|
|
|
W[2]+=W[18]; |
|
|
|
|
|
|
|
|
|
|
|
W[18]=0x3c6ef372U; |
|
|
|
W[18]=0x3c6ef372U; |
|
|
|
|
|
|
|
W[22]+=W[1]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[23]+=0x08909ae5U; |
|
|
|
W[23]+=0x08909ae5U; |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[5]=W[21]; |
|
|
|
|
|
|
|
W[5]+=state5; |
|
|
|
W[5]=state5; |
|
|
|
|
|
|
|
W[5]+=W[21]; |
|
|
|
|
|
|
|
|
|
|
|
W[21]=0x9b05688cU; |
|
|
|
W[21]=0x9b05688cU; |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
W[21]+=ch(W[18],W[19],0x510e527fU); |
|
|
|
W[21]+=ch(W[18],W[19],0x510e527fU); |
|
|
|
W[21]+=K[2]; |
|
|
|
W[21]+=K[2]; |
|
|
|
W[21]+=W[2]; |
|
|
|
W[21]+=W[2]; |
|
|
|
|
|
|
|
|
|
|
|
W[17]=0xbb67ae85U; |
|
|
|
W[17]=0xbb67ae85U; |
|
|
|
W[17]+=W[21]; |
|
|
|
W[17]+=W[21]; |
|
|
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); |
|
|
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[4]=W[20]; |
|
|
|
|
|
|
|
W[4]+=state4; |
|
|
|
W[4]=state4; |
|
|
|
|
|
|
|
W[4]+=W[20]; |
|
|
|
|
|
|
|
|
|
|
|
W[20]=0x510e527fU; |
|
|
|
W[20]=0x510e527fU; |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
W[20]+=K[3]; |
|
|
|
W[20]+=K[3]; |
|
|
|
W[20]+=W[3]; |
|
|
|
W[20]+=W[3]; |
|
|
|
W[16]=0x6a09e667U; |
|
|
|
|
|
|
|
W[16]+=W[20]; |
|
|
|
W[16]=W[20]; |
|
|
|
|
|
|
|
W[16]+=0x6a09e667U; |
|
|
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]); |
|
|
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]); |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
@ -832,6 +871,7 @@ W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
W[16]+=W[7]; |
|
|
|
W[16]+=W[7]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[20]+=W[16]; |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[8]=0x80000000; |
|
|
|
W[8]=0x80000000; |
|
|
|
W[8]+=W[1]; |
|
|
|
W[8]+=W[1]; |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
@ -843,6 +883,7 @@ W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
W[19]+=W[23]; |
|
|
|
W[19]+=W[23]; |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
|
|
W[9]=W[2]; |
|
|
|
W[9]=W[2]; |
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
@ -851,6 +892,7 @@ W[22]+=K[25]; |
|
|
|
W[22]+=W[9]; |
|
|
|
W[22]+=W[9]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[18]+=W[22]; |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
W[10]=W[3]; |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
@ -861,6 +903,7 @@ W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
W[17]+=W[21]; |
|
|
|
W[17]+=W[21]; |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
|
|
W[11]=W[4]; |
|
|
|
W[11]=W[4]; |
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
@ -869,6 +912,7 @@ W[20]+=K[27]; |
|
|
|
W[20]+=W[11]; |
|
|
|
W[20]+=W[11]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[16]+=W[20]; |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
W[12]=W[5]; |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
@ -879,6 +923,7 @@ W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
W[23]+=W[19]; |
|
|
|
W[23]+=W[19]; |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
|
|
|
|
|
|
|
W[13]=W[6]; |
|
|
|
W[13]=W[6]; |
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
@ -887,6 +932,7 @@ W[18]+=K[29]; |
|
|
|
W[18]+=W[13]; |
|
|
|
W[18]+=W[13]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[22]+=W[18]; |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
|
|
W[14]=0x00400022U; |
|
|
|
W[14]=0x00400022U; |
|
|
|
W[14]+=W[7]; |
|
|
|
W[14]+=W[7]; |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
@ -898,6 +944,7 @@ W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
W[21]+=W[17]; |
|
|
|
W[21]+=W[17]; |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
|
|
W[15]=0x00000100U; |
|
|
|
W[15]=0x00000100U; |
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
W[15]+=W[8]; |
|
|
|
W[15]+=W[8]; |
|
|
|