mirror of https://github.com/GOSTSec/sgminer
elbandi
9 years ago
7 changed files with 6 additions and 778 deletions
@ -1,208 +0,0 @@
@@ -1,208 +0,0 @@
|
||||
/**
|
||||
* Implementation of the Lyra2 Password Hashing Scheme (PHS). |
||||
* |
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
* |
||||
* This software is hereby placed in the public domain. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
*/ |
||||
#include <stdio.h> |
||||
#include <stdlib.h> |
||||
#include <string.h> |
||||
#include <time.h> |
||||
#include "lyra2_old.h" |
||||
#include "sponge_old.h" |
||||
|
||||
/**
|
||||
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords |
||||
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, |
||||
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all |
||||
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value |
||||
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). |
||||
* |
||||
* @param K The derived key to be output by the algorithm |
||||
* @param kLen Desired key length |
||||
* @param pwd User password |
||||
* @param pwdlen Password length |
||||
* @param salt Salt |
||||
* @param saltlen Salt length |
||||
* @param timeCost Parameter to determine the processing time (T) |
||||
* @param nRows Number or rows of the memory matrix (R) |
||||
* @param nCols Number of columns of the memory matrix (C) |
||||
* |
||||
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) |
||||
*/ |
||||
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) { |
||||
|
||||
//============================= Basic variables ============================//
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
int64_t i; //auxiliary iteration counter
|
||||
//==========================================================================/
|
||||
|
||||
//========== Initializing the Memory Matrix and pointers to it =============//
|
||||
//Tries to allocate enough space for the whole memory matrix
|
||||
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES); |
||||
uint64_t *wholeMatrix = malloc(i); |
||||
if (wholeMatrix == NULL) { |
||||
return -1; |
||||
} |
||||
memset(wholeMatrix, 0, i); |
||||
|
||||
//Allocates pointers to each row of the matrix
|
||||
uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*)); |
||||
if (memMatrix == NULL) { |
||||
return -1; |
||||
} |
||||
//Places the pointers in the correct positions
|
||||
uint64_t *ptrWord = wholeMatrix; |
||||
for (i = 0; i < nRows; i++) { |
||||
memMatrix[i] = ptrWord; |
||||
ptrWord += ROW_LEN_INT64; |
||||
} |
||||
//==========================================================================/
|
||||
|
||||
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||
|
||||
//First, we clean enough blocks for the password, salt, basil and padding
|
||||
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1; |
||||
byte *ptrByte = (byte*) wholeMatrix; |
||||
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES); |
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen); |
||||
ptrByte += pwdlen; |
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen); |
||||
ptrByte += saltlen; |
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
memcpy(ptrByte, &pwdlen, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
memcpy(ptrByte, &saltlen, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
memcpy(ptrByte, &timeCost, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
memcpy(ptrByte, &nRows, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
memcpy(ptrByte, &nCols, sizeof (uint64_t)); |
||||
ptrByte += sizeof (uint64_t); |
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
//==========================================================================/
|
||||
|
||||
//======================= Initializing the Sponge State ====================//
|
||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||
uint64_t *state = malloc(16 * sizeof (uint64_t)); |
||||
if (state == NULL) { |
||||
return -1; |
||||
} |
||||
initStateO(state); |
||||
//==========================================================================/
|
||||
|
||||
//================================ Setup Phase =============================//
|
||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||
ptrWord = wholeMatrix; |
||||
for (i = 0; i < nBlocksInput; i++) { |
||||
absorbBlockBlake2SafeO(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
||||
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
|
||||
} |
||||
|
||||
//Initializes M[0] and M[1]
|
||||
reducedSqueezeRow0O(state, memMatrix[0]); //The locally copied password is most likely overwritten here
|
||||
reducedDuplexRow1O(state, memMatrix[0], memMatrix[1]); |
||||
|
||||
do { |
||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||
reducedDuplexRowSetupO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); |
||||
|
||||
|
||||
//updates the value of row* (deterministically picked during Setup))
|
||||
rowa = (rowa + step) & (window - 1); |
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row; |
||||
//updates row: goes to the next row to be computed
|
||||
row++; |
||||
|
||||
//Checks if all rows in the window where visited.
|
||||
if (rowa == 0) { |
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
gap = -gap; //inverts the modifier to the step
|
||||
} |
||||
|
||||
} while (row < nRows); |
||||
//==========================================================================/
|
||||
|
||||
//============================ Wandering Phase =============================//
|
||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||
for (tau = 1; tau <= timeCost; tau++) { |
||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; |
||||
do { |
||||
//Selects a pseudorandom index row*
|
||||
//------------------------------------------------------------------------------------------
|
||||
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||
reducedDuplexRowO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); |
||||
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row; |
||||
|
||||
//updates row: goes to the next row to be computed
|
||||
//------------------------------------------------------------------------------------------
|
||||
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
} while (row != 0); |
||||
} |
||||
//==========================================================================/
|
||||
|
||||
//============================ Wrap-up Phase ===============================//
|
||||
//Absorbs the last block of the memory matrix
|
||||
absorbBlockO(state, memMatrix[rowa]); |
||||
|
||||
//Squeezes the key
|
||||
squeezeO(state, K, kLen); |
||||
//==========================================================================/
|
||||
|
||||
//========================= Freeing the memory =============================//
|
||||
free(memMatrix); |
||||
free(wholeMatrix); |
||||
|
||||
//Wiping out the sponge's internal state before freeing it
|
||||
memset(state, 0, 16 * sizeof (uint64_t)); |
||||
free(state); |
||||
//==========================================================================/
|
||||
|
||||
return 0; |
||||
} |
@ -1,50 +0,0 @@
@@ -1,50 +0,0 @@
|
||||
/**
|
||||
* Header file for the Lyra2 Password Hashing Scheme (PHS). |
||||
* |
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
* |
||||
* This software is hereby placed in the public domain. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
*/ |
||||
#ifndef LYRA2OLD_H_ |
||||
#define LYRA2OLD_H_ |
||||
|
||||
#include <stdint.h> |
||||
|
||||
typedef unsigned char byte; |
||||
|
||||
//Block length required so Blake2's Initialization Vector (IV) is not overwritten (THIS SHOULD NOT BE MODIFIED)
|
||||
#define BLOCK_LEN_BLAKE2_SAFE_INT64 8 //512 bits (=64 bytes, =8 uint64_t)
|
||||
#define BLOCK_LEN_BLAKE2_SAFE_BYTES (BLOCK_LEN_BLAKE2_SAFE_INT64 * 8) //same as above, in bytes
|
||||
|
||||
|
||||
#ifdef BLOCK_LEN_BITS |
||||
#define BLOCK_LEN_INT64 (BLOCK_LEN_BITS/64) //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_BITS/8) //Block length, in bytes
|
||||
#else //default block lenght: 768 bits
|
||||
#define BLOCK_LEN_INT64 12 //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
|
||||
#endif |
||||
|
||||
#ifndef N_COLS |
||||
#define N_COLS 8 //Number of columns in the memory matrix: fixed to 64 by default
|
||||
#endif |
||||
|
||||
#define ROW_LEN_INT64 (BLOCK_LEN_INT64 * N_COLS) //Total length of a row: N_COLS blocks
|
||||
#define ROW_LEN_BYTES (ROW_LEN_INT64 * 8) //Number of bytes per row
|
||||
|
||||
|
||||
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols); |
||||
|
||||
#endif /* LYRA2_H_ */ |
@ -1,405 +0,0 @@
@@ -1,405 +0,0 @@
|
||||
/**
|
||||
* A simple implementation of Blake2b's internal permutation |
||||
* in the form of a sponge. |
||||
* |
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
* |
||||
* This software is hereby placed in the public domain. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
*/ |
||||
#include <string.h> |
||||
#include <stdio.h> |
||||
#include <time.h> |
||||
#include "sponge_old.h" |
||||
#include "lyra2_old.h" |
||||
|
||||
|
||||
|
||||
/**
|
||||
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder |
||||
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges |
||||
* typically have their internal state initialized with zeros, Blake2b's G function |
||||
* has a fixed point: if the internal state and message are both filled with zeros. the |
||||
* resulting permutation will always be a block filled with zeros; this happens because |
||||
* Blake2b does not use the constants originally employed in Blake2 inside its G function, |
||||
* relying on the IV for avoiding possible fixed points. |
||||
* |
||||
* @param state The 1024-bit array to be initialized |
||||
*/ |
||||
void initStateO(uint64_t state[/*16*/]) { |
||||
//First 512 bis are zeros
|
||||
memset(state, 0, 64); |
||||
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
|
||||
state[8] = blake2b_IV[0]; |
||||
state[9] = blake2b_IV[1]; |
||||
state[10] = blake2b_IV[2]; |
||||
state[11] = blake2b_IV[3]; |
||||
state[12] = blake2b_IV[4]; |
||||
state[13] = blake2b_IV[5]; |
||||
state[14] = blake2b_IV[6]; |
||||
state[15] = blake2b_IV[7]; |
||||
} |
||||
|
||||
/**
|
||||
* Execute Blake2b's G function, with all 12 rounds. |
||||
* |
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function |
||||
*/ |
||||
static void blake2bLyra(uint64_t *v) { |
||||
ROUND_LYRA(0); |
||||
ROUND_LYRA(1); |
||||
ROUND_LYRA(2); |
||||
ROUND_LYRA(3); |
||||
ROUND_LYRA(4); |
||||
ROUND_LYRA(5); |
||||
ROUND_LYRA(6); |
||||
ROUND_LYRA(7); |
||||
ROUND_LYRA(8); |
||||
ROUND_LYRA(9); |
||||
ROUND_LYRA(10); |
||||
ROUND_LYRA(11); |
||||
} |
||||
|
||||
/**
|
||||
* Executes a reduced version of Blake2b's G function with only one round |
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function |
||||
*/ |
||||
static void reducedBlake2bLyra(uint64_t *v) { |
||||
ROUND_LYRA(0); |
||||
} |
||||
|
||||
/**
|
||||
* Performs a squeeze operation, using Blake2b's G function as the |
||||
* internal permutation |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param out Array that will receive the data squeezed |
||||
* @param len The number of bytes to be squeezed into the "out" array |
||||
*/ |
||||
void squeezeO(uint64_t *state, byte *out, unsigned int len) { |
||||
int fullBlocks = len / BLOCK_LEN_BYTES; |
||||
byte *ptr = out; |
||||
int i; |
||||
//Squeezes full blocks
|
||||
for (i = 0; i < fullBlocks; i++) { |
||||
memcpy(ptr, state, BLOCK_LEN_BYTES); |
||||
blake2bLyra(state); |
||||
ptr += BLOCK_LEN_BYTES; |
||||
} |
||||
|
||||
//Squeezes remaining bytes
|
||||
memcpy(ptr, state, (len % BLOCK_LEN_BYTES)); |
||||
} |
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words |
||||
* of type uint64_t), using Blake2b's G function as the internal permutation |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param in The block to be absorbed (BLOCK_LEN_INT64 words) |
||||
*/ |
||||
void absorbBlockO(uint64_t *state, const uint64_t *in) { |
||||
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
|
||||
state[0] ^= in[0]; |
||||
state[1] ^= in[1]; |
||||
state[2] ^= in[2]; |
||||
state[3] ^= in[3]; |
||||
state[4] ^= in[4]; |
||||
state[5] ^= in[5]; |
||||
state[6] ^= in[6]; |
||||
state[7] ^= in[7]; |
||||
state[8] ^= in[8]; |
||||
state[9] ^= in[9]; |
||||
state[10] ^= in[10]; |
||||
state[11] ^= in[11]; |
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state); |
||||
} |
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64 |
||||
* words of type uint64_t), using Blake2b's G function as the internal permutation |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words) |
||||
*/ |
||||
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in) { |
||||
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
|
||||
state[0] ^= in[0]; |
||||
state[1] ^= in[1]; |
||||
state[2] ^= in[2]; |
||||
state[3] ^= in[3]; |
||||
state[4] ^= in[4]; |
||||
state[5] ^= in[5]; |
||||
state[6] ^= in[6]; |
||||
state[7] ^= in[7]; |
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state); |
||||
} |
||||
|
||||
/**
|
||||
* Performs a reduced squeeze operation for a single row, from the highest to |
||||
* the lowest index, using the reduced-round Blake2b's G function as the |
||||
* internal permutation |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param rowOut Row to receive the data squeezed |
||||
*/ |
||||
void reducedSqueezeRow0O(uint64_t* state, uint64_t* rowOut) { |
||||
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
|
||||
int i; |
||||
//M[row][C-1-col] = H.reduced_squeeze()
|
||||
for (i = 0; i < N_COLS; i++) { |
||||
ptrWord[0] = state[0]; |
||||
ptrWord[1] = state[1]; |
||||
ptrWord[2] = state[2]; |
||||
ptrWord[3] = state[3]; |
||||
ptrWord[4] = state[4]; |
||||
ptrWord[5] = state[5]; |
||||
ptrWord[6] = state[6]; |
||||
ptrWord[7] = state[7]; |
||||
ptrWord[8] = state[8]; |
||||
ptrWord[9] = state[9]; |
||||
ptrWord[10] = state[10]; |
||||
ptrWord[11] = state[11]; |
||||
|
||||
//Goes to next block (column) that will receive the squeezed data
|
||||
ptrWord -= BLOCK_LEN_INT64; |
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state); |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* Performs a reduced duplex operation for a single row, from the highest to |
||||
* the lowest index, using the reduced-round Blake2b's G function as the |
||||
* internal permutation |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param rowIn Row to feed the sponge |
||||
* @param rowOut Row to receive the sponge's output |
||||
*/ |
||||
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) { |
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
int i; |
||||
|
||||
for (i = 0; i < N_COLS; i++) { |
||||
|
||||
//Absorbing "M[prev][col]"
|
||||
state[0] ^= (ptrWordIn[0]); |
||||
state[1] ^= (ptrWordIn[1]); |
||||
state[2] ^= (ptrWordIn[2]); |
||||
state[3] ^= (ptrWordIn[3]); |
||||
state[4] ^= (ptrWordIn[4]); |
||||
state[5] ^= (ptrWordIn[5]); |
||||
state[6] ^= (ptrWordIn[6]); |
||||
state[7] ^= (ptrWordIn[7]); |
||||
state[8] ^= (ptrWordIn[8]); |
||||
state[9] ^= (ptrWordIn[9]); |
||||
state[10] ^= (ptrWordIn[10]); |
||||
state[11] ^= (ptrWordIn[11]); |
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state); |
||||
|
||||
//M[row][C-1-col] = M[prev][col] XOR rand
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0]; |
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1]; |
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2]; |
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3]; |
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4]; |
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5]; |
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6]; |
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7]; |
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8]; |
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9]; |
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10]; |
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11]; |
||||
|
||||
|
||||
//Input: next column (i.e., next block in sequence)
|
||||
ptrWordIn += BLOCK_LEN_INT64; |
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e., |
||||
* the wordwise addition of two columns, ignoring carries between words). The |
||||
* output of this operation, "rand", is then used to make |
||||
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and |
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit |
||||
* rotation to the left and N_COLS is a system parameter. |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param rowIn Row used only as input |
||||
* @param rowInOut Row used as input and to receive output after rotation |
||||
* @param rowOut Row receiving the output |
||||
* |
||||
*/ |
||||
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) { |
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
int i; |
||||
|
||||
for (i = 0; i < N_COLS; i++) { |
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]); |
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]); |
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]); |
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]); |
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]); |
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]); |
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]); |
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]); |
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]); |
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]); |
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]); |
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]); |
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state); |
||||
|
||||
//M[row][col] = M[prev][col] XOR rand
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0]; |
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1]; |
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2]; |
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3]; |
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4]; |
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5]; |
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6]; |
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7]; |
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8]; |
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9]; |
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10]; |
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11]; |
||||
|
||||
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11]; |
||||
ptrWordInOut[1] ^= state[0]; |
||||
ptrWordInOut[2] ^= state[1]; |
||||
ptrWordInOut[3] ^= state[2]; |
||||
ptrWordInOut[4] ^= state[3]; |
||||
ptrWordInOut[5] ^= state[4]; |
||||
ptrWordInOut[6] ^= state[5]; |
||||
ptrWordInOut[7] ^= state[6]; |
||||
ptrWordInOut[8] ^= state[7]; |
||||
ptrWordInOut[9] ^= state[8]; |
||||
ptrWordInOut[10] ^= state[9]; |
||||
ptrWordInOut[11] ^= state[10]; |
||||
|
||||
//Inputs: next column (i.e., next block in sequence)
|
||||
ptrWordInOut += BLOCK_LEN_INT64; |
||||
ptrWordIn += BLOCK_LEN_INT64; |
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64; |
||||
} |
||||
} |
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e., |
||||
* the wordwise addition of two columns, ignoring carries between words). The |
||||
* output of this operation, "rand", is then used to make |
||||
* "M[rowOut][col] = M[rowOut][col] XOR rand" and |
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit |
||||
* rotation to the left. |
||||
* |
||||
* @param state The current state of the sponge |
||||
* @param rowIn Row used only as input |
||||
* @param rowInOut Row used as input and to receive output after rotation |
||||
* @param rowOut Row receiving the output |
||||
* |
||||
*/ |
||||
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) { |
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||
int i; |
||||
|
||||
for (i = 0; i < N_COLS; i++) { |
||||
|
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]); |
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]); |
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]); |
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]); |
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]); |
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]); |
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]); |
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]); |
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]); |
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]); |
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]); |
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]); |
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state); |
||||
|
||||
//M[rowOut][col] = M[rowOut][col] XOR rand
|
||||
ptrWordOut[0] ^= state[0]; |
||||
ptrWordOut[1] ^= state[1]; |
||||
ptrWordOut[2] ^= state[2]; |
||||
ptrWordOut[3] ^= state[3]; |
||||
ptrWordOut[4] ^= state[4]; |
||||
ptrWordOut[5] ^= state[5]; |
||||
ptrWordOut[6] ^= state[6]; |
||||
ptrWordOut[7] ^= state[7]; |
||||
ptrWordOut[8] ^= state[8]; |
||||
ptrWordOut[9] ^= state[9]; |
||||
ptrWordOut[10] ^= state[10]; |
||||
ptrWordOut[11] ^= state[11]; |
||||
|
||||
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11]; |
||||
ptrWordInOut[1] ^= state[0]; |
||||
ptrWordInOut[2] ^= state[1]; |
||||
ptrWordInOut[3] ^= state[2]; |
||||
ptrWordInOut[4] ^= state[3]; |
||||
ptrWordInOut[5] ^= state[4]; |
||||
ptrWordInOut[6] ^= state[5]; |
||||
ptrWordInOut[7] ^= state[6]; |
||||
ptrWordInOut[8] ^= state[7]; |
||||
ptrWordInOut[9] ^= state[8]; |
||||
ptrWordInOut[10] ^= state[9]; |
||||
ptrWordInOut[11] ^= state[10]; |
||||
|
||||
//Goes to next block
|
||||
ptrWordOut += BLOCK_LEN_INT64; |
||||
ptrWordInOut += BLOCK_LEN_INT64; |
||||
ptrWordIn += BLOCK_LEN_INT64; |
||||
} |
||||
} |
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
Prints an array of unsigned chars |
||||
*/ |
||||
void printArrayO(unsigned char *array, unsigned int size, char *name) { |
||||
int i; |
||||
printf("%s: ", name); |
||||
for (i = 0; i < size; i++) { |
||||
printf("%2x|", array[i]); |
||||
} |
||||
printf("\n"); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
@ -1,98 +0,0 @@
@@ -1,98 +0,0 @@
|
||||
/**
|
||||
* Header file for Blake2b's internal permutation in the form of a sponge. |
||||
* This code is based on the original Blake2b's implementation provided by |
||||
* Samuel Neves (https://blake2.net/)
|
||||
* |
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
* |
||||
* This software is hereby placed in the public domain. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||||
*/ |
||||
#ifndef SPONGEOLD_H_ |
||||
#define SPONGEOLD_H_ |
||||
|
||||
#include <stdint.h> |
||||
|
||||
#if defined(__GNUC__) |
||||
#define ALIGN __attribute__ ((aligned(32))) |
||||
#elif defined(_MSC_VER) |
||||
#define ALIGN __declspec(align(32)) |
||||
#else |
||||
#define ALIGN |
||||
#endif |
||||
|
||||
|
||||
/*Blake2b IV Array*/ |
||||
static const uint64_t blake2b_IV[8] = |
||||
{ |
||||
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, |
||||
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, |
||||
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, |
||||
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL |
||||
}; |
||||
|
||||
/*Blake2b's rotation*/ |
||||
static inline uint64_t rotr64( const uint64_t w, const unsigned c ){ |
||||
return ( w >> c ) | ( w << ( 64 - c ) ); |
||||
} |
||||
|
||||
/*Blake2b's G function*/ |
||||
#define G(r,i,a,b,c,d) \ |
||||
do { \ |
||||
a = a + b; \ |
||||
d = rotr64(d ^ a, 32); \ |
||||
c = c + d; \ |
||||
b = rotr64(b ^ c, 24); \ |
||||
a = a + b; \ |
||||
d = rotr64(d ^ a, 16); \ |
||||
c = c + d; \ |
||||
b = rotr64(b ^ c, 63); \ |
||||
} while(0) |
||||
|
||||
|
||||
/*One Round of the Blake2b's compression function*/ |
||||
#define ROUND_LYRA(r) \ |
||||
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ |
||||
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ |
||||
G(r,2,v[ 2],v[ 6],v[10],v[14]); \ |
||||
G(r,3,v[ 3],v[ 7],v[11],v[15]); \ |
||||
G(r,4,v[ 0],v[ 5],v[10],v[15]); \ |
||||
G(r,5,v[ 1],v[ 6],v[11],v[12]); \ |
||||
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ |
||||
G(r,7,v[ 3],v[ 4],v[ 9],v[14]); |
||||
|
||||
|
||||
//---- Housekeeping
|
||||
void initStateO(uint64_t state[/*16*/]); |
||||
|
||||
//---- Squeezes
|
||||
void squeezeO(uint64_t *state, unsigned char *out, unsigned int len); |
||||
void reducedSqueezeRow0O(uint64_t* state, uint64_t* row); |
||||
|
||||
//---- Absorbs
|
||||
void absorbBlockO(uint64_t *state, const uint64_t *in); |
||||
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in); |
||||
|
||||
//---- Duplexes
|
||||
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut); |
||||
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut); |
||||
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut); |
||||
|
||||
//---- Misc
|
||||
void printArrayO(unsigned char *array, unsigned int size, char *name); |
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#endif /* SPONGE_H_ */ |
Loading…
Reference in new issue