mirror of https://github.com/GOSTSec/sgminer
ckolivas
14 years ago
committed by
Con Kolivas
4 changed files with 425 additions and 1254 deletions
@ -1,563 +0,0 @@
@@ -1,563 +0,0 @@
|
||||
/* |
||||
* DiabloMiner - OpenCL miner for BitCoin |
||||
* Copyright (C) 2010, 2011 Patrick McFarland <diablod3@gmail.com> |
||||
* |
||||
* This program is free software: you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation, either version 3 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>. |
||||
*/ |
||||
|
||||
typedef uint z; |
||||
|
||||
#if BITALIGN |
||||
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
||||
#define Zrotr(a, b) amd_bitalign((z)a, (z)a, (z)b) |
||||
#define Ch(a, b, c) amd_bytealign(a, b, c) |
||||
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a)) |
||||
#else |
||||
#define Zrotr(a, b) rotate((z)a, (z)(32 - b)) |
||||
#define Ch(a, b, c) (c ^ (a & (b ^ c))) |
||||
#define Ma(a, b, c) ((b & c) | (a & (b | c))) |
||||
#endif |
||||
|
||||
#define WORKSIZE 128 |
||||
|
||||
#define Ma2(a, b, c) ((b & c) | (a & (b | c))) |
||||
|
||||
__constant uint K[64] = { |
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
||||
}; |
||||
|
||||
typedef struct { |
||||
uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d; |
||||
uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h; |
||||
uint cty_a; uint cty_b; uint cty_c; uint cty_d; |
||||
uint cty_e; uint cty_f; uint cty_g; uint cty_h; |
||||
uint merkle; uint ntime; uint nbits; uint nonce; |
||||
uint fW0; uint fW1; uint fW2; uint fW3; uint fW15; |
||||
uint fW01r; uint fcty_e; uint fcty_e2; |
||||
} dev_blk_ctx; |
||||
|
||||
__kernel __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) void search( |
||||
__constant dev_blk_ctx *ctx, |
||||
__global uint * output) |
||||
{ |
||||
const uint fW0 = ctx->fW0; |
||||
const uint fW1 = ctx->fW1; |
||||
const uint fW2 = ctx->fW2; |
||||
const uint fW3 = ctx->fW3; |
||||
const uint fW15 = ctx->fW15; |
||||
const uint fW01r = ctx->fW01r; |
||||
const uint fcty_e = ctx->fcty_e; |
||||
const uint fcty_e2 = ctx->fcty_e2; |
||||
const uint fcty_e_plus_e2 = fcty_e + fcty_e2; |
||||
const uint state0 = ctx->ctx_a; |
||||
const uint fcty_e_plus_state0 = fcty_e + state0; |
||||
const uint state1 = ctx->ctx_b; |
||||
const uint state2 = ctx->ctx_c; |
||||
const uint state3 = ctx->ctx_d; |
||||
const uint state4 = ctx->ctx_e; |
||||
const uint state5 = ctx->ctx_f; |
||||
const uint state6 = ctx->ctx_g; |
||||
const uint state7 = ctx->ctx_h; |
||||
const uint b1 = ctx->cty_b; |
||||
const uint c1 = ctx->cty_c; |
||||
const uint d1 = ctx->cty_d; |
||||
const uint f1 = ctx->cty_f; |
||||
const uint g1 = ctx->cty_g; |
||||
const uint h1 = ctx->cty_h; |
||||
const uint base = ctx->nonce; |
||||
|
||||
z ZA, ZB, ZC, ZD, ZE, ZF, ZG, ZH; |
||||
z ZW0, ZW1, ZW2, ZW3, ZW4, ZW5, ZW6, ZW7, ZW8, ZW9, ZW10, ZW11, ZW12, ZW13, ZW14, ZW15; |
||||
z Znonce = base + get_global_id(0); |
||||
|
||||
#ifdef DOLOOPS |
||||
Znonce *= (z)loops; |
||||
|
||||
uint it; |
||||
const z Zloopnonce = Znonce; |
||||
for(it = loops; it != 0; it--) { |
||||
Znonce = (loops - it) ^ Zloopnonce; |
||||
#endif |
||||
|
||||
ZW3 = Znonce + fW3; |
||||
|
||||
ZE = Znonce + fcty_e_plus_e2 ; |
||||
ZA = Znonce + fcty_e_plus_state0; |
||||
ZD = d1 + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, b1, c1); |
||||
ZH = h1 + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma2(g1, ZE, f1); |
||||
ZC = c1 + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, b1) + K[ 5]; |
||||
ZG = g1 + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma2(f1, ZD, ZE); |
||||
ZB = b1 + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6]; |
||||
ZF = f1 + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7]; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8]; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9]; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10]; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11]; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12]; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13]; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14]; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000280U; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + fW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + fW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = (Zrotr(Znonce, 7) ^ Zrotr(Znonce, 18) ^ (Znonce >> 3U)) + fW2; |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)) + 0x80000000U; |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)) + 0x00000280U; |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)) + fW0; |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)) + fW1; |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = 0x00a00055U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = fW15 + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = fW01r + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = fW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[60] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[61] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[62] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[63] + ZW15; |
||||
|
||||
ZW0 = ZA + state0 + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW1 = ZB + state1; |
||||
ZW2 = ZC + state2; |
||||
ZW3 = ZD + state3; |
||||
ZW4 = ZE + ZA + state4; |
||||
ZW5 = ZF + state5; |
||||
ZW6 = ZG + state6; |
||||
ZW7 = ZH + state7; |
||||
|
||||
ZD = 0x98C7E2A2U + ZW0; |
||||
ZH = 0xFC08884DU + ZW0; |
||||
|
||||
ZC = 0xCD2A11AEU + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, 0x510e527fU, 0x9b05688cU) + ZW1; |
||||
ZG = 0xC3910C8EU + ZC + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma2(0xbb67ae85U, ZH, 0x6a09e667U); |
||||
|
||||
ZB = 0x0C2E12E0U + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, 0x510e527fU) + ZW2; |
||||
ZF = 0x4498517BU + ZB + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma2(ZG, ZH, 0x6a09e667U); |
||||
|
||||
ZA = 0xA4CE148BU + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + ZW3; |
||||
ZE = 0x95F61999U + ZA + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma2(ZH, ZF, ZG); |
||||
|
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[ 4] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[ 5] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8] + 0x80000000U; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9]; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10]; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11]; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12]; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13]; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14]; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000100U; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + 0x00a00000U; |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + 0x00000100U + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + 0x11002000U + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = 0x80000000U + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = 0x00400022U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = 0x00000100U + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZC = ZC + ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9; |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
|
||||
ZB = ZB + ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10; |
||||
|
||||
ZA = ZA + ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
|
||||
ZH = ZH + ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
|
||||
if(ZH == 0x136032ED) { output[Znonce & 0xFF] = Znonce;} |
||||
#ifdef DOLOOPS |
||||
} |
||||
#endif |
||||
} |
@ -1,623 +0,0 @@
@@ -1,623 +0,0 @@
|
||||
typedef uint z; |
||||
|
||||
#define BITALIGN |
||||
|
||||
#ifdef BITALIGN |
||||
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
||||
#define rotr(a, b) amd_bitalign((z)a, (z)a, (z)b) |
||||
#define Ch(a, b, c) amd_bytealign(a, b, c) |
||||
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a)) |
||||
#else |
||||
#define rotr(a, b) rotate((z)a, (z)(32 - b)) |
||||
#define Ch(a, b, c) (c ^ (a & (b ^ c))) |
||||
#define Ma(a, b, c) ((b & c) | (a & (b | c))) |
||||
#endif |
||||
|
||||
#define WGS __attribute__((reqd_work_group_size(128, 1, 1))) |
||||
|
||||
__constant uint K[64] = { |
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
||||
}; |
||||
|
||||
typedef struct { |
||||
uint ctx_a; |
||||
uint ctx_b; |
||||
uint ctx_c; |
||||
uint ctx_d; |
||||
uint ctx_e; |
||||
uint ctx_f; |
||||
uint ctx_g; |
||||
uint ctx_h; |
||||
uint cty_a; |
||||
uint cty_b; |
||||
uint cty_c; |
||||
uint cty_d; |
||||
uint cty_e; |
||||
uint cty_f; |
||||
uint cty_g; |
||||
uint cty_h; |
||||
uint merkle; |
||||
uint ntime; |
||||
uint nbits; |
||||
uint nonce; |
||||
uint fW0; |
||||
uint fW1; |
||||
uint fW2; |
||||
uint fW3; |
||||
uint fW15; |
||||
uint fW01r; |
||||
uint fcty_e; |
||||
uint fcty_e2; |
||||
} dev_blk_ctx; |
||||
|
||||
__kernel __attribute__((vec_type_hint(uint))) WGS void search( |
||||
const uint state0, const uint state1, const uint state2, const uint state3, |
||||
const uint state4, const uint state5, const uint state6, const uint state7, |
||||
const uint B1, const uint C1, const uint D1, |
||||
const uint F1, const uint G1, const uint H1, |
||||
const uint base, |
||||
const uint fW0, const uint fW1, const uint fW2, const uint fW3, const uint fW15, const uint fW01r, const uint fcty_e, const uint fcty_e2, |
||||
__global uint *output) |
||||
{ |
||||
uint A, B, C, D, E, F, G, H; |
||||
uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; |
||||
uint it; |
||||
const uint myid = get_global_id(0); |
||||
|
||||
const uint tnonce = base + myid; |
||||
|
||||
W3 = 0 ^ tnonce; |
||||
E = fcty_e + W3; |
||||
A = state0 + E; |
||||
E = E + fcty_e2; |
||||
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000; |
||||
H = H1 + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G1, E, F1); |
||||
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5]; |
||||
G = G1 + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F1, D, E); |
||||
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; |
||||
F = F1 + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2; |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + fW3; |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000; |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280; |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0; |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1; |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
|
||||
W0 = A + state0; |
||||
W1 = B + state1; |
||||
W2 = C + state2; |
||||
W3 = D + state3; |
||||
W4 = E + state4; |
||||
W5 = F + state5; |
||||
W6 = G + state6; |
||||
W7 = H + state7; |
||||
H = 0xb0edbdd0 + K[ 0] + W0; |
||||
D = 0xa54ff53a + H; |
||||
H = H + 0x08909ae5; |
||||
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; |
||||
C = 0x3c6ef372 + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(0xbb67ae85, H, 0x6a09e667); |
||||
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] + W2; |
||||
B = 0xbb67ae85 + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(0x6a09e667, G, H); |
||||
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3; |
||||
A = 0x6a09e667 + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000; |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
||||
C = C + G; |
||||
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
||||
B = B + F; |
||||
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
||||
A = A + E; |
||||
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
||||
H = H + D; |
||||
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
||||
|
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
||||
G = G + C; |
||||
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
||||
|
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
||||
F = F + B; |
||||
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
||||
|
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
||||
E = E + A; |
||||
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
||||
|
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
||||
D = D + H; |
||||
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
||||
|
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
||||
C = C + G; |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
||||
|
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
||||
B = B + F; |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
||||
|
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
||||
A = A + E; |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
||||
|
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
||||
H = H + D; |
||||
|
||||
if (H==0xa41f32e7) { |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = tnonce; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,322 @@
@@ -0,0 +1,322 @@
|
||||
// This file is taken and modified from the public-domain poclbm project, and |
||||
// we have therefore decided to keep it public-domain in Phoenix. |
||||
|
||||
#define VECTORS |
||||
|
||||
#ifdef VECTORS |
||||
typedef uint4 u; |
||||
#else |
||||
typedef uint u; |
||||
#endif |
||||
|
||||
__constant uint K[64] = { |
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
||||
}; |
||||
|
||||
#define rotr(x, y) rotate((u)x, (u)(32-y)) |
||||
#define Ch(x, y, z) (z ^ (x & (y ^ z))) |
||||
#define Ma(x, y, z) ((x & z) | (y & (x | z))) |
||||
#define Ma2(x, y, z) ((y & z) | (x & (y | z))) |
||||
|
||||
__kernel void search( const uint state0, const uint state1, const uint state2, const uint state3, |
||||
const uint state4, const uint state5, const uint state6, const uint state7, |
||||
const uint B1, const uint C1, const uint D1, |
||||
const uint F1, const uint G1, const uint H1, |
||||
const uint base, |
||||
const uint fW0, const uint fW1, const uint fW2, const uint fW3, const uint fW15, const uint fW01r, const uint fcty_e, const uint fcty_e2, |
||||
__global uint * output) |
||||
{ |
||||
u W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; |
||||
u A,B,C,D,E,F,G,H; |
||||
u nonce; |
||||
uint it; |
||||
|
||||
#ifdef VECTORS |
||||
nonce = ((base >> 2) + (get_global_id(0))<<2) + (uint4)(0, 1, 2, 3); |
||||
#else |
||||
nonce = base + get_global_id(0); |
||||
#endif |
||||
|
||||
W3 = nonce + fW3; |
||||
E = fcty_e + nonce; A = state0 + E; E = E + fcty_e2; |
||||
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma2(G1, E, F1); |
||||
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5]; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma2(F1, D, E); |
||||
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fW2; |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)) + 0x80000000; |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)) + 0x00000280U; |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)) + fW0; |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)) + fW1; |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = 0x00a00055U + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
|
||||
W0 = A + state0; W1 = B + state1; |
||||
W2 = C + state2; W3 = D + state3; |
||||
W4 = E + state4; W5 = F + state5; |
||||
W6 = G + state6; W7 = H + state7; |
||||
|
||||
H = 0xb0edbdd0 + K[ 0] + W0; D = 0xa54ff53a + H; H = H + 0x08909ae5U; |
||||
G = 0x1f83d9abU + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688cU ^ (D & 0xca0b3af3U)) + K[ 1] + W1; C = 0x3c6ef372U + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma2(0xbb67ae85U, H, 0x6a09e667U); |
||||
F = 0x9b05688cU + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527fU) + K[ 2] + W2; B = 0xbb67ae85U + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma2(0x6a09e667U, G, H); |
||||
E = 0x510e527fU + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3; A = 0x6a09e667U + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + 0x00a00000U; |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + 0x00000100U + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + 0x11002000U + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = 0x00400022U + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = 0x00000100U + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
||||
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
||||
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
||||
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
||||
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
||||
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
||||
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
||||
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
||||
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
||||
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
||||
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
||||
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
||||
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
||||
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
||||
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; C = C + G; |
||||
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
||||
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; B = B + F; |
||||
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
||||
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; A = A + E; |
||||
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
||||
H = H + D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
||||
|
||||
H+=0x5be0cd19U; |
||||
|
||||
#ifdef VECTORS |
||||
if (H.x == 0) |
||||
{ |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = nonce.x; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
if (H.y == 0) |
||||
{ |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = nonce.y; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
if (H.z == 0) |
||||
{ |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = nonce.z; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
if (H.w == 0) |
||||
{ |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = nonce.w; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
#else |
||||
if (H == 0) |
||||
{ |
||||
for (it = 0; it != 127; it++) { |
||||
if (!output[it]) { |
||||
output[it] = nonce; |
||||
output[127] = 1; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
#endif |
||||
} |
Loading…
Reference in new issue