1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-10 23:08:07 +00:00

Minor variable alignment in poclbm kernel.

This commit is contained in:
Con Kolivas 2012-04-14 01:54:12 +10:00
parent dceaa71a7b
commit baadafa298

View File

@ -369,10 +369,10 @@ Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[4]+=W[2];
Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
Vals[4]+=K[34];
Vals[4]+=W[2];
Vals[7]+=Vals[4];
Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
@ -380,10 +380,10 @@ Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[1]+=W[3];
Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
Vals[1]+=K[35];
Vals[1]+=W[3];
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
@ -391,10 +391,10 @@ Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[0]+=W[4];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
Vals[0]+=K[36];
Vals[0]+=W[4];
Vals[2]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
@ -402,10 +402,10 @@ Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[6]+=W[5];
Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
Vals[6]+=K[37];
Vals[6]+=W[5];
Vals[3]+=Vals[6];
Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
@ -413,10 +413,10 @@ Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[7]+=W[6];
Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
Vals[7]+=K[38];
Vals[7]+=W[6];
Vals[4]+=Vals[7];
Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
@ -424,10 +424,10 @@ Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[5]+=W[7];
Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
Vals[5]+=K[39];
Vals[5]+=W[7];
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
@ -435,10 +435,10 @@ Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[2]+=W[8];
Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
Vals[2]+=K[40];
Vals[2]+=W[8];
Vals[0]+=Vals[2];
Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
@ -446,10 +446,10 @@ Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[3]+=W[9];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
Vals[3]+=K[41];
Vals[3]+=W[9];
Vals[6]+=Vals[3];
Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
@ -457,10 +457,10 @@ Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[4]+=W[10];
Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
Vals[4]+=K[42];
Vals[4]+=W[10];
Vals[7]+=Vals[4];
Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
@ -468,10 +468,10 @@ Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[1]+=W[11];
Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
Vals[1]+=K[43];
Vals[1]+=W[11];
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
@ -479,10 +479,10 @@ Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[0]+=W[12];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
Vals[0]+=K[44];
Vals[0]+=W[12];
Vals[2]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
@ -490,10 +490,10 @@ Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[6]+=W[13];
Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
Vals[6]+=K[45];
Vals[6]+=W[13];
Vals[3]+=Vals[6];
Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
@ -501,10 +501,10 @@ Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[7]+=W[14];
Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
Vals[7]+=K[46];
Vals[7]+=W[14];
Vals[4]+=Vals[7];
Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
@ -512,10 +512,10 @@ Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[5]+=W[15];
Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
Vals[5]+=K[47];
Vals[5]+=W[15];
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
@ -523,10 +523,10 @@ Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
Vals[2]+=W[0];
Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
Vals[2]+=K[48];
Vals[2]+=W[0];
Vals[0]+=Vals[2];
Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
@ -534,10 +534,10 @@ Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
Vals[3]+=W[1];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
Vals[3]+=K[49];
Vals[3]+=W[1];
Vals[6]+=Vals[3];
Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
@ -545,10 +545,10 @@ Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[4]+=W[2];
Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
Vals[4]+=K[50];
Vals[4]+=W[2];
Vals[7]+=Vals[4];
Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
@ -556,10 +556,10 @@ Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[1]+=W[3];
Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
Vals[1]+=K[51];
Vals[1]+=W[3];
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
@ -567,10 +567,10 @@ Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[0]+=W[4];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
Vals[0]+=K[52];
Vals[0]+=W[4];
Vals[2]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
@ -578,10 +578,10 @@ Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[6]+=W[5];
Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
Vals[6]+=K[53];
Vals[6]+=W[5];
Vals[3]+=Vals[6];
Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
@ -589,10 +589,10 @@ Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[7]+=W[6];
Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
Vals[7]+=K[54];
Vals[7]+=W[6];
Vals[4]+=Vals[7];
Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
@ -600,10 +600,10 @@ Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[5]+=W[7];
Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
Vals[5]+=K[55];
Vals[5]+=W[7];
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
@ -611,10 +611,10 @@ Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
Vals[2]+=W[8];
Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
Vals[2]+=K[56];
Vals[2]+=W[8];
Vals[0]+=Vals[2];
Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
@ -622,10 +622,10 @@ Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
Vals[3]+=W[9];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
Vals[3]+=K[57];
Vals[3]+=W[9];
Vals[6]+=Vals[3];
Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
@ -633,10 +633,10 @@ Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
Vals[4]+=W[10];
Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
Vals[4]+=K[58];
Vals[4]+=W[10];
Vals[7]+=Vals[4];
Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
@ -644,10 +644,10 @@ Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
Vals[1]+=W[11];
Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
Vals[1]+=K[59];
Vals[1]+=W[11];
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
@ -655,10 +655,10 @@ Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
Vals[0]+=W[12];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
Vals[0]+=K[60];
Vals[0]+=W[12];
Vals[2]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
@ -666,10 +666,10 @@ Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
Vals[6]+=W[13];
Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
Vals[6]+=K[61];
Vals[6]+=W[13];
Vals[3]+=Vals[6];
Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
@ -677,10 +677,10 @@ Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
Vals[7]+=W[14];
Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
Vals[7]+=K[62];
Vals[7]+=W[14];
Vals[4]+=Vals[7];
Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
@ -688,10 +688,10 @@ Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
Vals[5]+=W[15];
Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
Vals[5]+=K[63];
Vals[5]+=W[15];
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);