diff --git a/Makefile.am b/Makefile.am index d17414df..a784ef91 100644 --- a/Makefile.am +++ b/Makefile.am @@ -56,6 +56,10 @@ cgminer_SOURCES += \ # the CPU portion extracted from original main.c cgminer_SOURCES += driver-cpu.h driver-cpu.c +if HAS_SCRYPT +cgminer_SOURCES += scrypt.c +endif + if HAS_YASM AM_CFLAGS = -DHAS_YASM if HAVE_x86_64 diff --git a/cgminer.c b/cgminer.c index 64d04310..f5044e22 100644 --- a/cgminer.c +++ b/cgminer.c @@ -5198,6 +5198,11 @@ int main(int argc, char *argv[]) opt_log_output = true; #ifdef WANT_CPUMINE +#ifdef USE_SCRYPT + if (opt_scrypt) + set_scrypt_algo(&opt_algo); + else +#endif if (0 <= opt_bench_algo) { double rate = bench_algo_stage3(opt_bench_algo); diff --git a/driver-cpu.c b/driver-cpu.c index 09ca478f..bd502b35 100644 --- a/driver-cpu.c +++ b/driver-cpu.c @@ -131,6 +131,9 @@ extern bool scanhash_sse2_32(struct thr_info*, const unsigned char *pmidstate, u uint32_t max_nonce, uint32_t *last_nonce, uint32_t nonce); +extern bool scanhash_scrypt(struct thr_info *thr, int thr_id, unsigned char *pdata, unsigned char *scratchbuf, + const unsigned char *ptarget, + uint32_t max_nonce, unsigned long *hashes_done); @@ -161,6 +164,9 @@ const char *algo_names[] = { #ifdef WANT_ALTIVEC_4WAY [ALGO_ALTIVEC_4WAY] = "altivec_4way", #endif +#ifdef WANT_SCRYPT + [ALGO_SCRYPT] = "scrypt", +#endif }; static const sha256_func sha256_funcs[] = { @@ -185,7 +191,10 @@ static const sha256_func sha256_funcs[] = { [ALGO_SSE2_64] = (sha256_func)scanhash_sse2_64, #endif #ifdef WANT_X8664_SSE4 - [ALGO_SSE4_64] = (sha256_func)scanhash_sse4_64 + [ALGO_SSE4_64] = (sha256_func)scanhash_sse4_64, +#endif +#ifdef WANT_SCRYPT + [ALGO_SCRYPT] = (sha256_func)scanhash_scrypt #endif }; #endif @@ -662,6 +671,9 @@ char *set_algo(const char *arg, enum sha256_algos *algo) { enum sha256_algos i; + if (opt_scrypt) + return "Can only use scrypt algorithm"; + if (!strcmp(arg, "auto")) { *algo = pick_fastest_algo(); return NULL; @@ -676,6 +688,13 @@ char *set_algo(const char *arg, enum sha256_algos *algo) return "Unknown algorithm"; } +#ifdef WANT_SCRYPT +void set_scrypt_algo(enum sha256_algos *algo) +{ + *algo = ALGO_SCRYPT; +} +#endif + void show_algo(char buf[OPT_SHOW_LEN], const enum sha256_algos *algo) { strncpy(buf, algo_names[*algo], OPT_SHOW_LEN); diff --git a/driver-cpu.h b/driver-cpu.h index ced400a5..3cf268b2 100644 --- a/driver-cpu.h +++ b/driver-cpu.h @@ -34,6 +34,10 @@ #define WANT_X8664_SSE4 1 #endif +#ifdef USE_SCRYPT +#define WANT_SCRYPT +#endif + enum sha256_algos { ALGO_C, /* plain C */ ALGO_4WAY, /* parallel SSE2 */ @@ -44,6 +48,7 @@ enum sha256_algos { ALGO_SSE2_64, /* SSE2 for x86_64 */ ALGO_SSE4_64, /* SSE4 for x86_64 */ ALGO_ALTIVEC_4WAY, /* parallel Altivec */ + ALGO_SCRYPT, /* scrypt */ }; extern const char *algo_names[]; diff --git a/scrypt.c b/scrypt.c new file mode 100644 index 00000000..569eeb9e --- /dev/null +++ b/scrypt.c @@ -0,0 +1,452 @@ +/*- + * Copyright 2009 Colin Percival, 2011 ArtForz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * This file was originally written by Colin Percival as part of the Tarsnap + * online backup system. + */ + +#include "config.h" +#include "miner.h" + +#include +#include +#include + +#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) + +typedef struct SHA256Context { + uint32_t state[8]; + uint32_t buf[16]; +} SHA256_CTX; + +/* + * Encode a length len/4 vector of (uint32_t) into a length len vector of + * (unsigned char) in big-endian form. Assumes len is a multiple of 4. + */ +static inline void +be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len) +{ + uint32_t i; + + for (i = 0; i < len; i++) + dst[i] = byteswap(src[i]); +} + +/* Elementary functions used by SHA256 */ +#define Ch(x, y, z) ((x & (y ^ z)) ^ z) +#define Maj(x, y, z) ((x & (y | z)) | (y & z)) +#define SHR(x, n) (x >> n) +#define ROTR(x, n) ((x >> n) | (x << (32 - n))) +#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) +#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) +#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) +#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) + +/* SHA256 round function */ +#define RND(a, b, c, d, e, f, g, h, k) \ + t0 = h + S1(e) + Ch(e, f, g) + k; \ + t1 = S0(a) + Maj(a, b, c); \ + d += t0; \ + h = t0 + t1; + +/* Adjusted round function for rotating state */ +#define RNDr(S, W, i, k) \ + RND(S[(64 - i) % 8], S[(65 - i) % 8], \ + S[(66 - i) % 8], S[(67 - i) % 8], \ + S[(68 - i) % 8], S[(69 - i) % 8], \ + S[(70 - i) % 8], S[(71 - i) % 8], \ + W[i] + k) + +/* + * SHA256 block compression function. The 256-bit state is transformed via + * the 512-bit input block to produce a new state. + */ +static void +SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) +{ + uint32_t W[64]; + uint32_t S[8]; + uint32_t t0, t1; + int i; + + /* 1. Prepare message schedule W. */ + if(swap) + for (i = 0; i < 16; i++) + W[i] = byteswap(block[i]); + else + memcpy(W, block, 64); + for (i = 16; i < 64; i += 2) { + W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; + W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; + } + + /* 2. Initialize working variables. */ + memcpy(S, state, 32); + + /* 3. Mix. */ + RNDr(S, W, 0, 0x428a2f98); + RNDr(S, W, 1, 0x71374491); + RNDr(S, W, 2, 0xb5c0fbcf); + RNDr(S, W, 3, 0xe9b5dba5); + RNDr(S, W, 4, 0x3956c25b); + RNDr(S, W, 5, 0x59f111f1); + RNDr(S, W, 6, 0x923f82a4); + RNDr(S, W, 7, 0xab1c5ed5); + RNDr(S, W, 8, 0xd807aa98); + RNDr(S, W, 9, 0x12835b01); + RNDr(S, W, 10, 0x243185be); + RNDr(S, W, 11, 0x550c7dc3); + RNDr(S, W, 12, 0x72be5d74); + RNDr(S, W, 13, 0x80deb1fe); + RNDr(S, W, 14, 0x9bdc06a7); + RNDr(S, W, 15, 0xc19bf174); + RNDr(S, W, 16, 0xe49b69c1); + RNDr(S, W, 17, 0xefbe4786); + RNDr(S, W, 18, 0x0fc19dc6); + RNDr(S, W, 19, 0x240ca1cc); + RNDr(S, W, 20, 0x2de92c6f); + RNDr(S, W, 21, 0x4a7484aa); + RNDr(S, W, 22, 0x5cb0a9dc); + RNDr(S, W, 23, 0x76f988da); + RNDr(S, W, 24, 0x983e5152); + RNDr(S, W, 25, 0xa831c66d); + RNDr(S, W, 26, 0xb00327c8); + RNDr(S, W, 27, 0xbf597fc7); + RNDr(S, W, 28, 0xc6e00bf3); + RNDr(S, W, 29, 0xd5a79147); + RNDr(S, W, 30, 0x06ca6351); + RNDr(S, W, 31, 0x14292967); + RNDr(S, W, 32, 0x27b70a85); + RNDr(S, W, 33, 0x2e1b2138); + RNDr(S, W, 34, 0x4d2c6dfc); + RNDr(S, W, 35, 0x53380d13); + RNDr(S, W, 36, 0x650a7354); + RNDr(S, W, 37, 0x766a0abb); + RNDr(S, W, 38, 0x81c2c92e); + RNDr(S, W, 39, 0x92722c85); + RNDr(S, W, 40, 0xa2bfe8a1); + RNDr(S, W, 41, 0xa81a664b); + RNDr(S, W, 42, 0xc24b8b70); + RNDr(S, W, 43, 0xc76c51a3); + RNDr(S, W, 44, 0xd192e819); + RNDr(S, W, 45, 0xd6990624); + RNDr(S, W, 46, 0xf40e3585); + RNDr(S, W, 47, 0x106aa070); + RNDr(S, W, 48, 0x19a4c116); + RNDr(S, W, 49, 0x1e376c08); + RNDr(S, W, 50, 0x2748774c); + RNDr(S, W, 51, 0x34b0bcb5); + RNDr(S, W, 52, 0x391c0cb3); + RNDr(S, W, 53, 0x4ed8aa4a); + RNDr(S, W, 54, 0x5b9cca4f); + RNDr(S, W, 55, 0x682e6ff3); + RNDr(S, W, 56, 0x748f82ee); + RNDr(S, W, 57, 0x78a5636f); + RNDr(S, W, 58, 0x84c87814); + RNDr(S, W, 59, 0x8cc70208); + RNDr(S, W, 60, 0x90befffa); + RNDr(S, W, 61, 0xa4506ceb); + RNDr(S, W, 62, 0xbef9a3f7); + RNDr(S, W, 63, 0xc67178f2); + + /* 4. Mix local working variables into global state */ + for (i = 0; i < 8; i++) + state[i] += S[i]; +} + +static inline void +SHA256_InitState(uint32_t * state) +{ + /* Magic initialization constants */ + state[0] = 0x6A09E667; + state[1] = 0xBB67AE85; + state[2] = 0x3C6EF372; + state[3] = 0xA54FF53A; + state[4] = 0x510E527F; + state[5] = 0x9B05688C; + state[6] = 0x1F83D9AB; + state[7] = 0x5BE0CD19; +} + +static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; +static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; + +/** + * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): + * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and + * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). + */ +static inline void +PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf) +{ + SHA256_CTX PShictx, PShoctx; + uint32_t tstate[8]; + uint32_t ihash[8]; + uint32_t i; + uint32_t pad[16]; + + static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; + + /* If Klen > 64, the key is really SHA256(K). */ + SHA256_InitState(tstate); + SHA256_Transform(tstate, passwd, 1); + memcpy(pad, passwd+16, 16); + memcpy(pad+4, passwdpad, 48); + SHA256_Transform(tstate, pad, 1); + memcpy(ihash, tstate, 32); + + SHA256_InitState(PShictx.state); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x36363636; + for (; i < 16; i++) + pad[i] = 0x36363636; + SHA256_Transform(PShictx.state, pad, 0); + SHA256_Transform(PShictx.state, passwd, 1); + be32enc_vect(PShictx.buf, passwd+16, 4); + be32enc_vect(PShictx.buf+5, innerpad, 11); + + SHA256_InitState(PShoctx.state); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x5c5c5c5c; + for (; i < 16; i++) + pad[i] = 0x5c5c5c5c; + SHA256_Transform(PShoctx.state, pad, 0); + memcpy(PShoctx.buf+8, outerpad, 32); + + /* Iterate through the blocks. */ + for (i = 0; i < 4; i++) { + uint32_t istate[8]; + uint32_t ostate[8]; + + memcpy(istate, PShictx.state, 32); + PShictx.buf[4] = i + 1; + SHA256_Transform(istate, PShictx.buf, 0); + memcpy(PShoctx.buf, istate, 32); + + memcpy(ostate, PShoctx.state, 32); + SHA256_Transform(ostate, PShoctx.buf, 0); + be32enc_vect(buf+i*8, ostate, 8); + } +} + + +static inline uint32_t +PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt) +{ + uint32_t tstate[8]; + uint32_t ostate[8]; + uint32_t ihash[8]; + uint32_t i; + + /* Compute HMAC state after processing P and S. */ + uint32_t pad[16]; + + static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; + + /* If Klen > 64, the key is really SHA256(K). */ + SHA256_InitState(tstate); + SHA256_Transform(tstate, passwd, 1); + memcpy(pad, passwd+16, 16); + memcpy(pad+4, passwdpad, 48); + SHA256_Transform(tstate, pad, 1); + memcpy(ihash, tstate, 32); + + SHA256_InitState(ostate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x5c5c5c5c; + for (; i < 16; i++) + pad[i] = 0x5c5c5c5c; + SHA256_Transform(ostate, pad, 0); + + SHA256_InitState(tstate); + for (i = 0; i < 8; i++) + pad[i] = ihash[i] ^ 0x36363636; + for (; i < 16; i++) + pad[i] = 0x36363636; + SHA256_Transform(tstate, pad, 0); + SHA256_Transform(tstate, salt, 1); + SHA256_Transform(tstate, salt+16, 1); + SHA256_Transform(tstate, ihash_finalblk, 0); + memcpy(pad, tstate, 32); + memcpy(pad+8, outerpad, 32); + + /* Feed the inner hash to the outer SHA256 operation. */ + SHA256_Transform(ostate, pad, 0); + /* Finish the outer SHA256 operation. */ + return byteswap(ostate[7]); +} + + +/** + * salsa20_8(B): + * Apply the salsa20/8 core to the provided block. + */ +static inline void +salsa20_8(uint32_t B[16], const uint32_t Bx[16]) +{ + uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; + size_t i; + + x00 = (B[ 0] ^= Bx[ 0]); + x01 = (B[ 1] ^= Bx[ 1]); + x02 = (B[ 2] ^= Bx[ 2]); + x03 = (B[ 3] ^= Bx[ 3]); + x04 = (B[ 4] ^= Bx[ 4]); + x05 = (B[ 5] ^= Bx[ 5]); + x06 = (B[ 6] ^= Bx[ 6]); + x07 = (B[ 7] ^= Bx[ 7]); + x08 = (B[ 8] ^= Bx[ 8]); + x09 = (B[ 9] ^= Bx[ 9]); + x10 = (B[10] ^= Bx[10]); + x11 = (B[11] ^= Bx[11]); + x12 = (B[12] ^= Bx[12]); + x13 = (B[13] ^= Bx[13]); + x14 = (B[14] ^= Bx[14]); + x15 = (B[15] ^= Bx[15]); + for (i = 0; i < 8; i += 2) { +#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) + /* Operate on columns. */ + x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); + x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); + x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); + x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); + + /* Operate on rows. */ + x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); + x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); + x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); + x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); +#undef R + } + B[ 0] += x00; + B[ 1] += x01; + B[ 2] += x02; + B[ 3] += x03; + B[ 4] += x04; + B[ 5] += x05; + B[ 6] += x06; + B[ 7] += x07; + B[ 8] += x08; + B[ 9] += x09; + B[10] += x10; + B[11] += x11; + B[12] += x12; + B[13] += x13; + B[14] += x14; + B[15] += x15; +} + +/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output + scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes + */ +static uint32_t scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad) +{ + uint32_t * V; + uint32_t X[32]; + uint32_t i; + uint32_t j; + uint32_t k; + uint64_t *p1, *p2; + + p1 = (uint64_t *)X; + V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); + + PBKDF2_SHA256_80_128(input, X); + + for (i = 0; i < 1024; i += 2) { + memcpy(&V[i * 32], X, 128); + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + + memcpy(&V[(i + 1) * 32], X, 128); + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + } + for (i = 0; i < 1024; i += 2) { + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + + j = X[16] & 1023; + p2 = (uint64_t *)(&V[j * 32]); + for(k = 0; k < 16; k++) + p1[k] ^= p2[k]; + + salsa20_8(&X[0], &X[16]); + salsa20_8(&X[16], &X[0]); + } + + return PBKDF2_SHA256_80_128_32(input, X); +} + +bool scanhash_scrypt(struct thr_info *thr, const unsigned char *pmidstate, unsigned char *pdata, + unsigned char *phash1, unsigned char *phash, + const unsigned char *ptarget, + uint32_t max_nonce, uint32_t *last_nonce, + uint32_t n) +{ + uint32_t *nonce = (uint32_t *)(pdata + 76); + unsigned char *scratchbuf; + uint32_t data[20]; + uint32_t tmp_hash7; + uint32_t Htarg = ((const uint32_t *)ptarget)[7]; + bool ret = false; + int i; + + be32enc_vect(data, (const uint32_t *)pdata, 19); + + scratchbuf = malloc(131583); + if (unlikely(!scratchbuf)) { + applog(LOG_ERR, "Failed to malloc scratchbuf in scanhash_scrypt"); + return ret; + } + + while(1) { + *nonce = ++n; + data[19] = n; + tmp_hash7 = scrypt_1024_1_1_256_sp(data, scratchbuf); + + if (tmp_hash7 <= Htarg) { + ((uint32_t *)pdata)[19] = byteswap(n); + *last_nonce = n; + ret = true; + break; + } + + if ((n >= max_nonce) || thr->work_restart) { + *last_nonce = n; + break; + } + } +out_ret: + return ret; +} +