Browse Source

Add Sia algo support

pull/1/head
elbandi 9 years ago
parent
commit
91e1d324c5
  1. 1
      Makefile.am
  2. 21
      algorithm.c
  3. 1
      algorithm.h
  4. 232
      algorithm/sia.c
  5. 8
      algorithm/sia.h
  6. 120
      kernel/sia.cl
  7. 18
      sgminer.c

1
Makefile.am

@ -75,6 +75,7 @@ sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h @@ -75,6 +75,7 @@ sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h
sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h
sgminer_SOURCES += algorithm/lyra2rev2.c algorithm/lyra2rev2.h
sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h
sgminer_SOURCES += algorithm/sia.c algorithm/sia.h
sgminer_SOURCES += algorithm/credits.c algorithm/credits.h
sgminer_SOURCES += algorithm/yescrypt.h algorithm/yescrypt.c algorithm/yescrypt_core.h algorithm/yescrypt-opt.c algorithm/yescryptcommon.c algorithm/sysendian.h
sgminer_SOURCES += algorithm/blake256.c algorithm/blake256.h

21
algorithm.c

@ -39,6 +39,7 @@ @@ -39,6 +39,7 @@
#include "algorithm/credits.h"
#include "algorithm/blake256.h"
#include "algorithm/blakecoin.h"
#include "algorithm/sia.h"
#include "algorithm/decred.h"
#include "algorithm/lbry.h"
@ -72,6 +73,7 @@ const char *algorithm_type_str[] = { @@ -72,6 +73,7 @@ const char *algorithm_type_str[] = {
"Yescrypt-multi",
"Blakecoin",
"Blake",
"Sia",
"Decred",
"Vanilla",
"Lbry"
@ -976,6 +978,24 @@ static cl_int queue_blake_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_un @@ -976,6 +978,24 @@ static cl_int queue_blake_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_un
return status;
}
static cl_int queue_sia_kernel(struct __clState *clState, struct _dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_ulong le_target;
cl_int status = 0;
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(le_target);
return status;
}
static cl_int queue_decred_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
@ -1129,6 +1149,7 @@ static algorithm_settings_t algos[] = { @@ -1129,6 +1149,7 @@ static algorithm_settings_t algos[] = {
{ "blake256r8", ALGO_BLAKECOIN, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x000000ffUL, 0, 128, 0, blakecoin_regenhash, blakecoin_midstate, blakecoin_prepare_work, queue_blake_kernel, sha256, NULL },
{ "blake256r14", ALGO_BLAKE, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x00000000UL, 0, 128, 0, blake256_regenhash, blake256_midstate, blake256_prepare_work, queue_blake_kernel, gen_hash, NULL },
{ "sia", ALGO_SIA, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000FFFFUL, 0, 128, 0, sia_regenhash, NULL, NULL, queue_sia_kernel, NULL, NULL },
{ "vanilla", ALGO_VANILLA, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x000000ffUL, 0, 128, 0, blakecoin_regenhash, blakecoin_midstate, blakecoin_prepare_work, queue_blake_kernel, gen_hash, NULL },
{ "lbry", ALGO_LBRY, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 2, 4 * 8 * 4194304, 0, lbry_regenhash, NULL, NULL, queue_lbry_kernel, gen_hash, NULL },

1
algorithm.h

@ -36,6 +36,7 @@ typedef enum { @@ -36,6 +36,7 @@ typedef enum {
ALGO_YESCRYPT_MULTI,
ALGO_BLAKECOIN,
ALGO_BLAKE,
ALGO_SIA,
ALGO_DECRED,
ALGO_VANILLA,
ALGO_LBRY

232
algorithm/sia.c

@ -0,0 +1,232 @@ @@ -0,0 +1,232 @@
/*-
* Copyright 2009 Colin Percival, 2014 savale
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "config.h"
#include "miner.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
// Cyclic right rotation.
#ifndef ROTR64
#define ROTR64(x, y) (((x) >> (y)) ^ ((x) << (64 - (y))))
#endif
// Little-endian byte access.
#define B2B_GET64(p) \
(((uint64_t) ((uint8_t *) (p))[0]) ^ \
(((uint64_t) ((uint8_t *) (p))[1]) << 8) ^ \
(((uint64_t) ((uint8_t *) (p))[2]) << 16) ^ \
(((uint64_t) ((uint8_t *) (p))[3]) << 24) ^ \
(((uint64_t) ((uint8_t *) (p))[4]) << 32) ^ \
(((uint64_t) ((uint8_t *) (p))[5]) << 40) ^ \
(((uint64_t) ((uint8_t *) (p))[6]) << 48) ^ \
(((uint64_t) ((uint8_t *) (p))[7]) << 56))
// G Mixing function.
#define B2B_G(a, b, c, d, x, y) { \
v[a] = v[a] + v[b] + x; \
v[d] = ROTR64(v[d] ^ v[a], 32); \
v[c] = v[c] + v[d]; \
v[b] = ROTR64(v[b] ^ v[c], 24); \
v[a] = v[a] + v[b] + y; \
v[d] = ROTR64(v[d] ^ v[a], 16); \
v[c] = v[c] + v[d]; \
v[b] = ROTR64(v[b] ^ v[c], 63); }
// Initialization Vector.
static const uint64_t blake2b_iv[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
// state context
typedef struct {
uint8_t b[128]; // input buffer
uint64_t h[8]; // chained state
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_ctx;
void blake2b_update(blake2b_ctx *ctx, // context
const void *in, size_t inlen); // data to be hashed
// Compression function. "last" flag indicates last block.
static void blake2b_compress(blake2b_ctx *ctx, int last)
{
const uint8_t sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
int i;
uint64_t v[16], m[16];
for (i = 0; i < 8; i++) { // init work variables
v[i] = ctx->h[i];
v[i + 8] = blake2b_iv[i];
}
v[12] ^= ctx->t[0]; // low 64 bits of offset
v[13] ^= ctx->t[1]; // high 64 bits
if (last) // last block flag set ?
v[14] = ~v[14];
for (i = 0; i < 16; i++) // get little-endian words
m[i] = B2B_GET64(&ctx->b[8 * i]);
for (i = 0; i < 12; i++) { // twelve rounds
B2B_G( 0, 4, 8, 12, m[sigma[i][ 0]], m[sigma[i][ 1]]);
B2B_G( 1, 5, 9, 13, m[sigma[i][ 2]], m[sigma[i][ 3]]);
B2B_G( 2, 6, 10, 14, m[sigma[i][ 4]], m[sigma[i][ 5]]);
B2B_G( 3, 7, 11, 15, m[sigma[i][ 6]], m[sigma[i][ 7]]);
B2B_G( 0, 5, 10, 15, m[sigma[i][ 8]], m[sigma[i][ 9]]);
B2B_G( 1, 6, 11, 12, m[sigma[i][10]], m[sigma[i][11]]);
B2B_G( 2, 7, 8, 13, m[sigma[i][12]], m[sigma[i][13]]);
B2B_G( 3, 4, 9, 14, m[sigma[i][14]], m[sigma[i][15]]);
}
for( i = 0; i < 8; ++i )
ctx->h[i] ^= v[i] ^ v[i + 8];
}
// Initialize the hashing context "ctx" with optional key "key".
// 1 <= outlen <= 64 gives the digest size in bytes.
// Secret key (also <= 64 bytes) is optional (keylen = 0).
int blake2b_init(blake2b_ctx *ctx, size_t outlen,
const void *key, size_t keylen) // (keylen=0: no key)
{
size_t i;
if (outlen == 0 || outlen > 64 || keylen > 64)
return -1; // illegal parameters
for (i = 0; i < 8; i++) // state, "param block"
ctx->h[i] = blake2b_iv[i];
ctx->h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen;
ctx->t[0] = 0; // input count low word
ctx->t[1] = 0; // input count high word
ctx->c = 0; // pointer within buffer
ctx->outlen = outlen;
for (i = keylen; i < 128; i++) // zero input block
ctx->b[i] = 0;
if (keylen > 0) {
blake2b_update(ctx, key, keylen);
ctx->c = 128; // at the end
}
return 0;
}
// Add "inlen" bytes from "in" into the hash.
void blake2b_update(blake2b_ctx *ctx,
const void *in, size_t inlen) // data bytes
{
size_t i;
for (i = 0; i < inlen; i++) {
if (ctx->c == 128) { // buffer full ?
ctx->t[0] += ctx->c; // add counters
if (ctx->t[0] < ctx->c) // carry overflow ?
ctx->t[1]++; // high word
blake2b_compress(ctx, 0); // compress (not last)
ctx->c = 0; // counter to zero
}
ctx->b[ctx->c++] = ((const uint8_t *) in)[i];
}
}
// Generate the message digest (size given in init).
// Result placed in "out".
void blake2b_final(blake2b_ctx *ctx, void *out)
{
size_t i;
ctx->t[0] += ctx->c; // mark last block offset
if (ctx->t[0] < ctx->c) // carry overflow
ctx->t[1]++; // high word
while (ctx->c < 128) // fill up with zeros
ctx->b[ctx->c++] = 0;
blake2b_compress(ctx, 1); // final block flag = 1
// little endian convert and store
for (i = 0; i < ctx->outlen; i++) {
((uint8_t *) out)[i] =
(ctx->h[i >> 3] >> (8 * (i & 7))) & 0xFF;
}
}
#ifdef __APPLE_CC__
static
#endif
void siaHash(void *state, const void *input)
{
blake2b_ctx ctx;
blake2b_init(&ctx, 32, NULL, 0);
blake2b_update(&ctx, input, 80);
blake2b_final(&ctx, state);
}
void sia_regenhash(struct work *work)
{
uint32_t data[20];
uint32_t hash[16];
char *scratchbuf;
uint32_t *nonce = (uint32_t *)(work->data + 32);
uint32_t *ohash = (uint32_t *)(work->hash);
be32enc_vect(data, (const uint32_t *)work->data, 20);
data[8] = htobe32(*nonce);
siaHash(hash, data);
swab256(ohash, hash);
}

8
algorithm/sia.h

@ -0,0 +1,8 @@ @@ -0,0 +1,8 @@
#ifndef SIAH_H
#define SIAH_H
#include "miner.h"
extern void sia_regenhash(struct work *work);
#endif /* FRESHH_H */

120
kernel/sia.cl

@ -0,0 +1,120 @@ @@ -0,0 +1,120 @@
#if __ENDIAN_LITTLE__
#define SPH_LITTLE_ENDIAN 1
#else
#define SPH_BIG_ENDIAN 1
#endif
#define SPH_UPTR sph_u64
typedef unsigned int sph_u32;
typedef int sph_s32;
#ifndef __OPENCL_VERSION__
typedef unsigned long long sph_u64;
typedef long long sph_s64;
#else
typedef unsigned long sph_u64;
typedef long sph_s64;
#endif
#define SPH_64 1
#define SPH_64_TRUE 1
#define SWAP4(x) as_uint(as_uchar4(x).wzyx)
#define SWAP8(x) as_ulong(as_uchar8(x).s76543210)
#if SPH_BIG_ENDIAN
#define DEC64E(x) (x)
#define DEC64BE(x) (*(const __global sph_u64 *) (x));
#define DEC32LE(x) SWAP4(*(const __global sph_u32 *) (x));
#else
#define DEC64E(x) SWAP8(x)
#define DEC64BE(x) SWAP8(*(const __global sph_u64 *) (x));
#define DEC64LE(x) (*(const __global sph_u64 *) (x));
#define DEC32LE(x) (*(const __global sph_u32 *) (x));
#endif
inline static uint2 ror64(const uint2 x, const uint y)
{
return (uint2)(((x).x>>y)^((x).y<<(32-y)),((x).y>>y)^((x).x<<(32-y)));
}
inline static uint2 ror64_2(const uint2 x, const uint y)
{
return (uint2)(((x).y>>(y-32))^((x).x<<(64-y)),((x).x>>(y-32))^((x).y<<(64-y)));
}
__constant static const uchar blake2b_sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } };
__kernel void search(__global unsigned char* block, volatile __global uint* output, const ulong target) {
sph_u32 gid = get_global_id(0);
ulong m[16];
m[0] = DEC64LE(block + 0);
m[1] = DEC64LE(block + 8);
m[2] = DEC64LE(block + 16);
m[3] = DEC64LE(block + 24);
m[4] = DEC64LE(block + 32);
m[4] &= 0xFFFFFFFF00000000;
m[4] ^= (gid);
m[5] = DEC64LE(block + 40);
m[6] = DEC64LE(block + 48);
m[7] = DEC64LE(block + 56);
m[8] = DEC64LE(block + 64);
m[9] = DEC64LE(block + 72);
m[10] = m[11] = m[12] = m[13] = m[14] = m[15] = 0;
ulong v[16] = { 0x6a09e667f2bdc928, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade68281, 0x9b05688c2b3e6c1f, 0xe07c265404be4294, 0x5be0cd19137e2179 };
#define G(r,i,a,b,c,d) \
a = a + b + m[ blake2b_sigma[r][2*i] ]; \
((uint2*)&d)[0] = ((uint2*)&d)[0].yx ^ ((uint2*)&a)[0].yx; \
c = c + d; \
((uint2*)&b)[0] = ror64( ((uint2*)&b)[0] ^ ((uint2*)&c)[0], 24U); \
a = a + b + m[ blake2b_sigma[r][2*i+1] ]; \
((uint2*)&d)[0] = ror64( ((uint2*)&d)[0] ^ ((uint2*)&a)[0], 16U); \
c = c + d; \
((uint2*)&b)[0] = ror64_2( ((uint2*)&b)[0] ^ ((uint2*)&c)[0], 63U);
#define ROUND(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
ROUND( 0 );
ROUND( 1 );
ROUND( 2 );
ROUND( 3 );
ROUND( 4 );
ROUND( 5 );
ROUND( 6 );
ROUND( 7 );
ROUND( 8 );
ROUND( 9 );
ROUND( 10 );
ROUND( 11 );
#undef G
#undef ROUND
bool result = (SWAP8(0x6a09e667f2bdc928 ^ v[0] ^ v[8]) <= target);
if (result)
output[output[0xFF]++] = SWAP4(gid);
}

18
sgminer.c

@ -5630,6 +5630,9 @@ static void *stratum_sthread(void *userdata) @@ -5630,6 +5630,9 @@ static void *stratum_sthread(void *userdata)
else if (pool->algorithm.type == ALGO_LBRY) {
nonce = *((uint32_t *)(work->data + 108));
}
else if (pool->algorithm.type == ALGO_SIA) {
nonce = *((uint32_t *)(work->data + 32));
}
else {
nonce = *((uint32_t *)(work->data + 76));
}
@ -6116,7 +6119,7 @@ static void gen_stratum_work(struct pool *pool, struct work *work) @@ -6116,7 +6119,7 @@ static void gen_stratum_work(struct pool *pool, struct work *work)
cg_wlock(&pool->data_lock);
nonce2le = htole64(pool->nonce2);
if (pool->algorithm.type != ALGO_DECRED) {
if (pool->algorithm.type != ALGO_DECRED && pool->algorithm.type != ALGO_SIA) {
/* Update coinbase. Always use an LE encoded nonce2 to fill in values
* from left to right and prevent overflow errors with small n2sizes */
memcpy(pool->coinbase + pool->nonce2_offset, &nonce2le, pool->n2size);
@ -6127,7 +6130,7 @@ static void gen_stratum_work(struct pool *pool, struct work *work) @@ -6127,7 +6130,7 @@ static void gen_stratum_work(struct pool *pool, struct work *work)
/* Downgrade to a read lock to read off the pool variables */
cg_dwlock(&pool->data_lock);
if (pool->algorithm.type != ALGO_DECRED) {
if (pool->algorithm.type != ALGO_DECRED && pool->algorithm.type != ALGO_SIA) {
/* Generate merkle root */
pool->algorithm.gen_hash(pool->coinbase, pool->swork.cb_len, merkle_root);
memcpy(merkle_sha, merkle_root, 32);
@ -6181,6 +6184,14 @@ static void gen_stratum_work(struct pool *pool, struct work *work) @@ -6181,6 +6184,14 @@ static void gen_stratum_work(struct pool *pool, struct work *work)
memcpy(work->data + 144, pool->nonce1bin, nonce2_offset);
memcpy(work->data + 144 + nonce2_offset, &nonce2le, pool->n2size);
}
else if (pool->algorithm.type == ALGO_SIA) {
size_t nonce2_offset = MIN(pool->n1_len, 4);
swab256(work->data, pool->header_bin + 4); // prevhash
memcpy(work->data + 32 + 4, pool->nonce1bin, nonce2_offset);
memcpy(work->data + 32 + 4 + nonce2_offset, &nonce2le, pool->n2size);
memcpy(work->data + 32 + 8, pool->header_bin + 68, 4); // timestamp
flip32(work->data + 32 + 8 + 8, pool->coinbase); // merkleroot
}
else {
data32 = (uint32_t *)merkle_sha;
swap32 = (uint32_t *)merkle_root;
@ -7153,6 +7164,7 @@ static void rebuild_nonce(struct work *work, uint32_t nonce) @@ -7153,6 +7164,7 @@ static void rebuild_nonce(struct work *work, uint32_t nonce)
if (work->pool->algorithm.type == ALGO_CRE) nonce_pos = 140;
else if (work->pool->algorithm.type == ALGO_DECRED) nonce_pos = 140;
else if (work->pool->algorithm.type == ALGO_LBRY) nonce_pos = 108;
else if (work->pool->algorithm.type == ALGO_SIA) nonce_pos = 32;
uint32_t *work_nonce = (uint32_t *)(work->data + nonce_pos);
@ -7189,7 +7201,7 @@ static void update_work_stats(struct thr_info *thr, struct work *work) @@ -7189,7 +7201,7 @@ static void update_work_stats(struct thr_info *thr, struct work *work)
test_diff *= work->pool->algorithm.share_diff_multiplier;
if (unlikely(work->share_diff >= test_diff)) {
if (unlikely(work->pool->algorithm.type != ALGO_SIA && work->share_diff >= test_diff)) {
work->block = true;
work->pool->solved++;
found_blocks++;

Loading…
Cancel
Save