mirror of https://github.com/GOSTSec/sgminer
ckolivas
14 years ago
committed by
Con Kolivas
6 changed files with 639 additions and 105 deletions
@ -0,0 +1,563 @@
@@ -0,0 +1,563 @@
|
||||
/* |
||||
* DiabloMiner - OpenCL miner for BitCoin |
||||
* Copyright (C) 2010, 2011 Patrick McFarland <diablod3@gmail.com> |
||||
* |
||||
* This program is free software: you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation, either version 3 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>. |
||||
*/ |
||||
|
||||
typedef uint z; |
||||
|
||||
#if BITALIGN |
||||
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
||||
#define Zrotr(a, b) amd_bitalign((z)a, (z)a, (z)b) |
||||
#define Ch(a, b, c) amd_bytealign(a, b, c) |
||||
#define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a)) |
||||
#else |
||||
#define Zrotr(a, b) rotate((z)a, (z)(32 - b)) |
||||
#define Ch(a, b, c) (c ^ (a & (b ^ c))) |
||||
#define Ma(a, b, c) ((b & c) | (a & (b | c))) |
||||
#endif |
||||
|
||||
#define WORKSIZE 128 |
||||
|
||||
#define Ma2(a, b, c) ((b & c) | (a & (b | c))) |
||||
|
||||
__constant uint K[64] = { |
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
||||
}; |
||||
|
||||
typedef struct { |
||||
uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d; |
||||
uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h; |
||||
uint cty_a; uint cty_b; uint cty_c; uint cty_d; |
||||
uint cty_e; uint cty_f; uint cty_g; uint cty_h; |
||||
uint merkle; uint ntime; uint nbits; uint nonce; |
||||
uint fW0; uint fW1; uint fW2; uint fW3; uint fW15; |
||||
uint fW01r; uint fcty_e; uint fcty_e2; |
||||
} dev_blk_ctx; |
||||
|
||||
__kernel __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) void search( |
||||
__constant dev_blk_ctx *ctx, |
||||
__global uint * output) |
||||
{ |
||||
const uint fW0 = ctx->fW0; |
||||
const uint fW1 = ctx->fW1; |
||||
const uint fW2 = ctx->fW2; |
||||
const uint fW3 = ctx->fW3; |
||||
const uint fW15 = ctx->fW15; |
||||
const uint fW01r = ctx->fW01r; |
||||
const uint fcty_e = ctx->fcty_e; |
||||
const uint fcty_e2 = ctx->fcty_e2; |
||||
const uint fcty_e_plus_e2 = fcty_e + fcty_e2; |
||||
const uint state0 = ctx->ctx_a; |
||||
const uint fcty_e_plus_state0 = fcty_e + state0; |
||||
const uint state1 = ctx->ctx_b; |
||||
const uint state2 = ctx->ctx_c; |
||||
const uint state3 = ctx->ctx_d; |
||||
const uint state4 = ctx->ctx_e; |
||||
const uint state5 = ctx->ctx_f; |
||||
const uint state6 = ctx->ctx_g; |
||||
const uint state7 = ctx->ctx_h; |
||||
const uint b1 = ctx->cty_b; |
||||
const uint c1 = ctx->cty_c; |
||||
const uint d1 = ctx->cty_d; |
||||
const uint f1 = ctx->cty_f; |
||||
const uint g1 = ctx->cty_g; |
||||
const uint h1 = ctx->cty_h; |
||||
const uint base = ctx->nonce; |
||||
|
||||
z ZA, ZB, ZC, ZD, ZE, ZF, ZG, ZH; |
||||
z ZW0, ZW1, ZW2, ZW3, ZW4, ZW5, ZW6, ZW7, ZW8, ZW9, ZW10, ZW11, ZW12, ZW13, ZW14, ZW15; |
||||
z Znonce = base + get_global_id(0); |
||||
|
||||
#ifdef DOLOOPS |
||||
Znonce *= (z)loops; |
||||
|
||||
uint it; |
||||
const z Zloopnonce = Znonce; |
||||
for(it = loops; it != 0; it--) { |
||||
Znonce = (loops - it) ^ Zloopnonce; |
||||
#endif |
||||
|
||||
ZW3 = Znonce + fW3; |
||||
|
||||
ZE = Znonce + fcty_e_plus_e2 ; |
||||
ZA = Znonce + fcty_e_plus_state0; |
||||
ZD = d1 + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, b1, c1); |
||||
ZH = h1 + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma2(g1, ZE, f1); |
||||
ZC = c1 + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, b1) + K[ 5]; |
||||
ZG = g1 + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma2(f1, ZD, ZE); |
||||
ZB = b1 + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6]; |
||||
ZF = f1 + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7]; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8]; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9]; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10]; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11]; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12]; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13]; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14]; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000280U; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + fW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + fW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = (Zrotr(Znonce, 7) ^ Zrotr(Znonce, 18) ^ (Znonce >> 3U)) + fW2; |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)) + 0x80000000U; |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)) + 0x00000280U; |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)) + fW0; |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)) + fW1; |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = 0x00a00055U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = fW15 + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = fW01r + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = fW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[60] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[61] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[62] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[63] + ZW15; |
||||
|
||||
ZW0 = ZA + state0 + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW1 = ZB + state1; |
||||
ZW2 = ZC + state2; |
||||
ZW3 = ZD + state3; |
||||
ZW4 = ZE + ZA + state4; |
||||
ZW5 = ZF + state5; |
||||
ZW6 = ZG + state6; |
||||
ZW7 = ZH + state7; |
||||
|
||||
ZD = 0x98C7E2A2U + ZW0; |
||||
ZH = 0xFC08884DU + ZW0; |
||||
|
||||
ZC = 0xCD2A11AEU + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, 0x510e527fU, 0x9b05688cU) + ZW1; |
||||
ZG = 0xC3910C8EU + ZC + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma2(0xbb67ae85U, ZH, 0x6a09e667U); |
||||
|
||||
ZB = 0x0C2E12E0U + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, 0x510e527fU) + ZW2; |
||||
ZF = 0x4498517BU + ZB + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma2(ZG, ZH, 0x6a09e667U); |
||||
|
||||
ZA = 0xA4CE148BU + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + ZW3; |
||||
ZE = 0x95F61999U + ZA + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma2(ZH, ZF, ZG); |
||||
|
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[ 4] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[ 5] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8] + 0x80000000U; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9]; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10]; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11]; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12]; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13]; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14]; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000100U; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + 0x00a00000U; |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + 0x00000100U + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + 0x11002000U + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = 0x80000000U + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = 0x00400022U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = 0x00000100U + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U)); |
||||
ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1; |
||||
ZC = ZC + ZG; |
||||
ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA); |
||||
ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U)); |
||||
ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2; |
||||
ZB = ZB + ZF; |
||||
ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH); |
||||
ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U)); |
||||
ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3; |
||||
ZA = ZA + ZE; |
||||
ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG); |
||||
ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)); |
||||
ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4; |
||||
ZH = ZH + ZD; |
||||
ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF); |
||||
ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U)); |
||||
ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5; |
||||
ZG = ZG + ZC; |
||||
ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE); |
||||
ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)); |
||||
ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6; |
||||
ZF = ZF + ZB; |
||||
ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD); |
||||
ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)); |
||||
ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7; |
||||
ZE = ZE + ZA; |
||||
ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC); |
||||
ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)); |
||||
ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8; |
||||
ZD = ZD + ZH; |
||||
ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB); |
||||
ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U)); |
||||
ZC = ZC + ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9; |
||||
ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U)); |
||||
|
||||
ZB = ZB + ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10; |
||||
|
||||
ZA = ZA + ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U)); |
||||
|
||||
ZH = ZH + ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U)); |
||||
|
||||
if(ZH == 0x136032ED) { output[Znonce & 0xFF] = Znonce;} |
||||
#ifdef DOLOOPS |
||||
} |
||||
#endif |
||||
} |
Loading…
Reference in new issue