Browse Source

Import the phatk kernel. Enable it only for hardware with amd media ops for now since it crashes nvidia et. al.

Fallback to the poclbm kernel for the rest. Try harder to avoid stale blocks around longpoll detecting new blocks.
nfactor-troky
Con Kolivas 13 years ago
parent
commit
6374e0fafe
  1. 61
      cpu-miner.c
  2. 9
      findnonce.c
  3. 2
      miner.h
  4. 28
      ocl.c
  5. 1
      ocl.h
  6. 423
      phatk.cl

61
cpu-miner.c

@ -829,9 +829,9 @@ enum { @@ -829,9 +829,9 @@ enum {
static _clState *clStates[16];
static inline cl_int queue_kernel_parameters(dev_blk_ctx *blk, cl_kernel *kernel,
struct _cl_mem *output)
static inline cl_int queue_kernel_parameters(_clState *clState, dev_blk_ctx *blk)
{
cl_kernel *kernel = &clState->kernel;
cl_int status = 0;
int num = 0;
@ -850,15 +850,27 @@ static inline cl_int queue_kernel_parameters(dev_blk_ctx *blk, cl_kernel *kernel @@ -850,15 +850,27 @@ static inline cl_int queue_kernel_parameters(dev_blk_ctx *blk, cl_kernel *kernel
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_g);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->cty_h);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->nonce);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2);
status |= clSetKernelArg(*kernel, num++, sizeof(output), (void *)&output);
if (clState->hasBitAlign == true) {
/* Parameters for phatk kernel */
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W16);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->W17);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->PreVal4);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->T1);
} else {
/* Parameters for poclbm kernel */
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW0);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW1);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW2);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW3);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW15);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fW01r);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e);
status |= clSetKernelArg(*kernel, num++, sizeof(uint), (void *)&blk->fcty_e2);
}
status |= clSetKernelArg(*kernel, num++, sizeof(clState->outputBuffer),
(void *)&clState->outputBuffer);
return status;
}
@ -886,11 +898,6 @@ static void *gpuminer_thread(void *userdata) @@ -886,11 +898,6 @@ static void *gpuminer_thread(void *userdata)
_clState *clState = clStates[thr_id];
kernel = &clState->kernel;
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_TRUE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
struct work *work = malloc(sizeof(struct work));
unsigned const int threads = 1 << (15 + scan_intensity);
unsigned const int vectors = clState->preferred_vwidth;
@ -910,6 +917,13 @@ static void *gpuminer_thread(void *userdata) @@ -910,6 +917,13 @@ static void *gpuminer_thread(void *userdata)
/* This finish flushes the readbuffer set with CL_FALSE later */
clFinish(clState->commandQueue);
if (diff.tv_sec > opt_scantime || work->blk.nonce > MAXTHREADS - hashes || work_restart[thr_id].restart) {
/* Ignore any reads since we're getting new work and queue a clean buffer */
status = clEnqueueWriteBuffer(clState->commandQueue, clState->outputBuffer, CL_FALSE, 0,
BUFFERSIZE, blank_res, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clEnqueueWriteBuffer failed."); goto out; }
memset(res, 0, BUFFERSIZE);
gettimeofday(&tv_workstart, NULL);
/* obtain new work from internal workio thread */
if (unlikely(!get_work(work))) {
@ -920,14 +934,15 @@ static void *gpuminer_thread(void *userdata) @@ -920,14 +934,15 @@ static void *gpuminer_thread(void *userdata)
precalc_hash(&work->blk, (uint32_t *)(work->midstate), (uint32_t *)(work->data + 64));
work->blk.nonce = 0;
status = queue_kernel_parameters(&work->blk, kernel, clState->outputBuffer);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; }
work_restart[thr_id].restart = 0;
if (opt_debug)
applog(LOG_DEBUG, "getwork");
applog(LOG_DEBUG, "getwork thread %d", thr_id);
/* Flushes the writebuffer set with CL_FALSE above */
clFinish(clState->commandQueue);
status = queue_kernel_parameters(clState, &work->blk);
if (unlikely(status != CL_SUCCESS))
{ applog(LOG_ERR, "Error: clSetKernelArg of all params failed."); goto out; }
} else {
status = clSetKernelArg(*kernel, 14, sizeof(uint), (void *)&work->blk.nonce);
if (unlikely(status != CL_SUCCESS))
@ -983,11 +998,11 @@ static void restart_threads(void) @@ -983,11 +998,11 @@ static void restart_threads(void)
{
int i;
pthread_mutex_lock(&get_lock);
for (i = 0; i < opt_n_threads + gpu_threads; i++)
work_restart[i].restart = 1;
/* If longpoll has detected a new block, we should discard any queued
* blocks in work_heap */
pthread_mutex_lock(&get_lock);
if (likely(work_heap)) {
free(work_heap);
work_heap = NULL;
@ -1123,7 +1138,7 @@ static void parse_arg (int key, char *arg) @@ -1123,7 +1138,7 @@ static void parse_arg (int key, char *arg)
break;
case 'I':
v = atoi(arg);
if (v < 0 || v > 10) /* sanity check */
if (v < 0 || v > 16) /* sanity check */
show_usage();
scan_intensity = v;
break;

9
findnonce.c

@ -87,15 +87,16 @@ void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data) { @@ -87,15 +87,16 @@ void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data) {
blk->ntime = data[1];
blk->nbits = data[2];
blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3));
blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000;
blk->W16 = blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3));
blk->W17 = blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000;
blk->W2 = data[2];
blk->fW2 = data[2] + (rotr(blk->fW0, 17) ^ rotr(blk->fW0, 19) ^ (blk->fW0 >> 10));
blk->fW3 = 0x11002000 + (rotr(blk->fW1, 17) ^ rotr(blk->fW1, 19) ^ (blk->fW1 >> 10));
blk->fW15 = 0x00000280 + (rotr(blk->fW0, 7) ^ rotr(blk->fW0, 18) ^ (blk->fW0 >> 3));
blk->fW01r = blk->fW0 + (rotr(blk->fW1, 7) ^ rotr(blk->fW1, 18) ^ (blk->fW1 >> 3));
blk->fcty_e = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5;
blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
blk->PreVal4 = blk->fcty_e = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5;
blk->T1 = blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
}
#define P(t) (W[(t)&0xF] = W[(t-16)&0xF] + (rotate(W[(t-15)&0xF], 25) ^ rotate(W[(t-15)&0xF], 14) ^ (W[(t-15)&0xF] >> 3)) + W[(t-7)&0xF] + (rotate(W[(t-2)&0xF], 15) ^ rotate(W[(t-2)&0xF], 13) ^ (W[(t-2)&0xF] >> 10)))

2
miner.h

@ -208,6 +208,8 @@ typedef struct { @@ -208,6 +208,8 @@ typedef struct {
cl_uint merkle; cl_uint ntime; cl_uint nbits; cl_uint nonce;
cl_uint fW0; cl_uint fW1; cl_uint fW2; cl_uint fW3; cl_uint fW15;
cl_uint fW01r; cl_uint fcty_e; cl_uint fcty_e2;
cl_uint W16; cl_uint W17; cl_uint W2;
cl_uint PreVal4; cl_uint T1;
} dev_blk_ctx;
struct work {

28
ocl.c

@ -161,12 +161,11 @@ void patch_opcodes(char *w, unsigned remaining) @@ -161,12 +161,11 @@ void patch_opcodes(char *w, unsigned remaining)
_clState *initCl(unsigned int gpu, char *name, size_t nameSize)
{
bool hasBitAlign = false;
bool patchbfi = false;
int patchbfi = 0;
cl_int status = 0;
unsigned int i;
_clState *clState = malloc(sizeof(_clState));;
_clState *clState = calloc(1, sizeof(_clState));
cl_uint numPlatforms;
cl_platform_id platform = NULL;
@ -287,7 +286,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize) @@ -287,7 +286,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize)
}
find = strstr(extensions, camo);
if (find)
hasBitAlign = patchbfi = true;
clState->hasBitAlign = patchbfi = 1;
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), (void *)&clState->preferred_vwidth, NULL);
if (status != CL_SUCCESS) {
@ -311,7 +310,12 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize) @@ -311,7 +310,12 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize)
/* Load a different kernel depending on whether it supports
* cl_amd_media_ops or not */
char *filename = "poclbm.cl";
char filename[10];
if (clState->hasBitAlign)
strcpy(filename, "phatk.cl");
else
strcpy(filename, "poclbm.cl");
int pl;
char *source, *rawsource = file_contents(filename, &pl);
@ -353,7 +357,7 @@ retry: @@ -353,7 +357,7 @@ retry:
}
/* Patch the source file defining BITALIGN */
if (hasBitAlign == true) {
if (clState->hasBitAlign) {
char *find = strstr(source, "BITALIGNX");
if (unlikely(!find)) {
@ -367,7 +371,7 @@ retry: @@ -367,7 +371,7 @@ retry:
} else if (opt_debug)
applog(LOG_DEBUG, "cl_amd_media_ops not found, will not BITALIGN patch");
if (patchbfi == true) {
if (patchbfi) {
char *find = strstr(source, "BFI_INTX");
if (unlikely(!find)) {
@ -403,7 +407,7 @@ retry: @@ -403,7 +407,7 @@ retry:
}
/* Patch the kernel if the hardware supports BFI_INT */
if (patchbfi == true) {
if (patchbfi) {
size_t nDevices;
size_t * binary_sizes;
char ** binaries;
@ -430,7 +434,7 @@ retry: @@ -430,7 +434,7 @@ retry:
* back and find the 2nd incidence of \x7ELF (rewind by one
* from ELF) and then patch the opcocdes */
if (!advance(&w, &remaining, ".text"))
{patchbfi = false; goto retry;}
{patchbfi = 0; goto retry;}
w++; remaining--;
if (!advance(&w, &remaining, ".text")) {
/* 32 bit builds only one ELF */
@ -440,7 +444,7 @@ retry: @@ -440,7 +444,7 @@ retry:
memcpy(&length, w + 289, 4);
w = binaries[gpu]; remaining = binary_sizes[gpu];
if (!advance(&w, &remaining, "ELF"))
{patchbfi = false; goto retry;}
{patchbfi = 0; goto retry;}
w++; remaining--;
if (!advance(&w, &remaining, "ELF")) {
/* 32 bit builds only one ELF */
@ -471,8 +475,8 @@ retry: @@ -471,8 +475,8 @@ retry:
free(source);
free(rawsource);
applog(LOG_INFO, "Initialising kernel with%s BFI_INT patching, %d vectors and worksize %d",
patchbfi ? "" : "out", clState->preferred_vwidth, clState->work_size);
applog(LOG_INFO, "Initialising kernel %s with%s BFI_INT patching, %d vectors and worksize %d",
filename, patchbfi ? "" : "out", clState->preferred_vwidth, clState->work_size);
/* create a cl program executable for all the devices specified */
status = clBuildProgram(clState->program, 1, &devices[gpu], NULL, NULL, NULL);

1
ocl.h

@ -12,6 +12,7 @@ typedef struct { @@ -12,6 +12,7 @@ typedef struct {
cl_command_queue commandQueue;
cl_program program;
cl_mem outputBuffer;
int hasBitAlign;
cl_uint preferred_vwidth;
size_t max_work_size;
size_t work_size;

423
phatk.cl

@ -0,0 +1,423 @@ @@ -0,0 +1,423 @@
// This file is taken and modified from the public-domain poclbm project, and
// we have therefore decided to keep it public-domain in Phoenix.
// The X is a placeholder for patching to suit hardware
#define VECTORSX
#ifdef VECTORS4
typedef uint4 u;
#elif defined VECTORS2
typedef uint2 u;
#else
typedef uint u;
#endif
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
__constant uint H[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
#define BFI_INTX
#define BITALIGNX
#ifdef BITALIGN
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
#define rot(x, y) amd_bitalign(x, x, (u)(32-y))
#else
#define rotr(x, y) rotate((u)x, (u)(32-y))
#endif
// This part is not from the stock poclbm kernel. It's part of an optimization
// added in the Phoenix Miner.
// Some AMD devices have the BFI_INT opcode, which behaves exactly like the
// SHA-256 Ch function, but provides it in exactly one instruction. If
// detected, use it for Ch. Otherwise, construct Ch out of simpler logical
// primitives.
#ifdef BFI_INT
// Well, slight problem... It turns out BFI_INT isn't actually exposed to
// OpenCL (or CAL IL for that matter) in any way. However, there is
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
// amd_bytealign, takes the same inputs, and provides the same output.
// We can use that as a placeholder for BFI_INT and have the application
// patch it after compilation.
// This is the BFI_INT function
#define Ch(x, y, z) amd_bytealign(x, y, z)
// Ma can also be implemented in terms of BFI_INT...
#define Ma(a, b, c) amd_bytealign((c ^ a), (b), (a))
#else
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Ma(x, y, z) ((x & z) | (y & (x | z)))
#endif
//Various intermediate calculations for each SHA round
#define s0(n) (rot(Vals[(0 + 128 - (n)) % 8], 30)^rot(Vals[(0 + 128 - (n)) % 8], 19)^rot(Vals[(0 + 128 - (n)) % 8], 10))
#define s1(n) (rot(Vals[(4 + 128 - (n)) % 8], 26)^rot(Vals[(4 + 128 - (n)) % 8], 21)^rot(Vals[(4 + 128 - (n)) % 8], 7))
#define ch(n) (Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8]))
#define maj(n) (Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8]))
#define t1(n) (Vals[(7 + 128 - (n)) % 8] + K[(n) % 64]+ W[(n)] + ch(n) + s1(n))
#define t1W(n) (Vals[(7 + 128 - (n)) % 8] + K[(n) % 64]+ w(n) + ch(n) + s1(n))
#define t2(n) (s0(n) + maj(n))
//W calculation used for SHA round
#define w(n) (W[n] = P1(n) + P2(n) + P3(n) + P4(n))
//Full W calculation
#define R(x) (W[x] = (rot(W[x-2],15)^rot(W[x-2],13)^((W[x-2])>>10U)) + W[x-7] + (rot(W[x-15],25)^rot(W[x-15],14)^((W[x-15])>>3U)) + W[x-16])
//Partial W calculations (used for the begining where only some values are nonzero)
#define r0(x) ((rot(x,25)^rot(x,14)^((x)>>3U)))
#define r1(x) ((rot(x],15)^rot(x,13)^((x)>>10U)))
#define R0(n) ((rot(W[(n)],25)^rot(W[(n)],14)^((W[(n)])>>3U)))
#define R1(n) ((rot(W[(n)],15)^rot(W[(n)],13)^((W[(n)])>>10U)))
#define P1(x) R1(x-2)
#define P2(x) R0(x-15)
#define P3(x) W[x-7]
#define P4(x) W[x-16]
//SHA round with built in W calc
#define sharound2(n) { Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n); }
//SHA round without W calc
#define sharound(n) {t1 = t1(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n); }
//Partial SHA calculations (used for begining and end)
#define partround(n) {Vals[(7 + 128 - n) % 8]=(Vals[(7 + 128 - n) % 8]+W[n]); Vals[(3 + 128 - n) % 8]+=Vals[(7 + 128 - n) % 8]; Vals[(7 + 128 - n) % 8]+=t1;}
__kernel
void search( const uint state0, const uint state1, const uint state2, const uint state3,
const uint state4, const uint state5, const uint state6, const uint state7,
const uint B1, const uint C1, const uint D1,
const uint F1, const uint G1, const uint H1,
const uint base,
const uint W2,
const uint W16, const uint W17,
const uint PreVal4, const uint T1,
__global uint * output)
{
u W[128];
u Vals[8];
u t1 = T1;
Vals[0]=state0;
Vals[1]=B1;
Vals[2]=C1;
Vals[3]=D1;
Vals[4]=PreVal4;
Vals[5]=F1;
Vals[6]=G1;
Vals[7]=H1;
W[2] = W2;
W[4]=0x80000000U;
W[5]=0x00000000U;
W[6]=0x00000000U;
W[7]=0x00000000U;
W[8]=0x00000000U;
W[9]=0x00000000U;
W[10]=0x00000000U;
W[11]=0x00000000U;
W[12]=0x00000000U;
W[13]=0x00000000U;
W[14]=0x00000000U;
W[15]=0x00000280U;
W[16] = W16;
W[17] = W17;
W[19] = P1(19) + P2(19) + P3(19);
W[18] = P1(18) + P3(18) + P4(18);
W[20] = P2(20) + P3(20) + P4(20);
u it;
#ifdef VECTORS4
W[3] = base + (get_global_id(0)<<2) + (uint4)(0, 1, 2, 3);
#elif defined VECTORS2
W[3] = base + (get_global_id(0)<<1) + (uint2)(0, 1);
#else
W[3] = base + get_global_id(0);
#endif
//the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions
W[31] = P2(31) + P4(31);
W[18] += P2(18);
partround(3);
W[19] += P4(19);
sharound(4);
W[20] += P1(20);
sharound(5);
W[32] = P2(32) + P4(32);
W[21] = P1(21);
sharound(6);
W[22] = P3(22) + P1(22);
W[23] = P3(23) + P1(23);
sharound(7);
W[24] = P1(24) + P3(24);
sharound(8);
W[25] = P1(25) + P3(25);
sharound(9);
W[26] = P1(26) + P3(26);
W[27] = P1(27) + P3(27);
sharound(10);
sharound(11);
W[28] = P1(28) + P3(28);
sharound(12);
W[29] = P1(29) + P3(29);
W[30] = P1(30) + P2(30) + P3(30);
sharound(13);
sharound(14);
W[31] += (P1(31) + P3(31));
sharound(15);
sharound(16);
W[32] += (P1(32) + P3(32));
sharound(17);
sharound(18);
sharound(19);
sharound(20);
sharound(21);
sharound(22);
sharound(23);
sharound(24);
sharound(25);
sharound(26);
sharound(27);
sharound(28);
sharound(29);
sharound(30);
sharound(31);
sharound(32);
sharound2(33);
sharound2(34);
sharound2(35);
sharound2(36);
sharound2(37);
sharound2(38);
sharound2(39);
sharound2(40);
sharound2(41);
sharound2(42);
sharound2(43);
sharound2(44);
sharound2(45);
sharound2(46);
//for some reason, this is faster than using all sharound2...
R(47);
sharound(47);
R(48);
sharound(48);
R(49);
sharound(49);
R(50);
sharound(50);
R(51);
sharound(51);
R(52);
sharound(52);
R(53);
sharound(53);
R(54);
sharound(54);
R(55);
sharound(55);
R(56);
sharound(56);
R(57);
sharound(57);
R(58);
sharound(58);
R(59);
sharound(59);
R(60);
sharound(60);
R(61);
sharound(61);
sharound2(62);
sharound2(63);
W[64]=state0+Vals[0];
W[65]=state1+Vals[1];
W[66]=state2+Vals[2];
W[67]=state3+Vals[3];
W[68]=state4+Vals[4];
W[69]=state5+Vals[5];
W[70]=state6+Vals[6];
W[71]=state7+Vals[7];
W[64 + 8]=0x80000000U;
W[64 + 9]=0x00000000U;
W[64 + 10]=0x00000000U;
W[64 + 11]=0x00000000U;
W[64 + 12]=0x00000000U;
W[64 + 13]=0x00000000U;
W[64 + 14]=0x00000000U;
W[64 + 15]=0x00000100U;
Vals[0]=H[0];
Vals[1]=H[1];
Vals[2]=H[2];
Vals[3]=H[3];
Vals[4]=H[4];
Vals[5]=H[5];
Vals[6]=H[6];
Vals[7]=H[7];
Vals[7] = 0xb0edbdd0 + K[0] + W[64] + 0x08909ae5U;
Vals[3] = 0xa54ff53a + 0xb0edbdd0 + K[0] + W[64];
R(64 + 16);
sharound(64 + 1);
sharound(64 + 2);
W[64 + 17] = P1(64 + 17) + P2(64 + 17) + P4(64 + 17);
W[64 + 18] = P1(64 + 18) + P2(64 + 18) + P4(64 + 18);
sharound(64 + 3);
W[64 + 19] = P1(64 + 19) + P2(64 + 19) + P4(64 + 19);
sharound(64 + 4);
W[64 + 20] = P1(64 + 20) + P2(64 + 20) + P4(64 + 20);
sharound(64 + 5);
W[64 + 21] = P1(64 + 21) + P2(64 + 21) + P4(64 + 21);
sharound(64 + 6);
R(64 + 22);
sharound(64 + 7);
sharound(64 + 8);
R(64 + 23);
W[64 + 24] = P1(64 + 24) + P3(64 + 24) + P4(64 + 24);
sharound(64 + 9);
sharound(64 + 10);
W[64 + 25] = P1(64 + 25) + P3(64 + 25);
W[64 + 26] = P1(64 + 26) + P3(64 + 26);
sharound(64 + 11);
sharound(64 + 12);
W[64 + 27] = P1(64 + 27) + P3(64 + 27);
W[64 + 28] = P1(64 + 28) + P3(64 + 28);
sharound(64 + 13);
sharound(64 + 14);
sharound(64 + 15);
sharound(64 + 16);
sharound(64 + 17);
sharound(64 + 18);
sharound(64 + 19);
sharound(64 + 20);
sharound(64 + 21);
sharound(64 + 22);
sharound(64 + 23);
sharound(64 + 24);
sharound(64 + 25);
sharound(64 + 26);
sharound(64 + 27);
sharound(64 + 28);
sharound2(64 + 29);
sharound2(64 + 30);
sharound2(64 + 31);
sharound2(64 + 32);
sharound2(64 + 33);
sharound2(64 + 34);
sharound2(64 + 35);
sharound2(64 + 36);
sharound2(64 + 37);
sharound2(64 + 38);
sharound2(64 + 39);
sharound2(64 + 40);
sharound2(64 + 41);
sharound2(64 + 42);
sharound2(64 + 43);
sharound2(64 + 44);
sharound2(64 + 45);
sharound2(64 + 46);
sharound2(64 + 47);
sharound2(64 + 48);
sharound2(64 + 49);
R(64 + 50);
sharound(64 + 50);
R(64 + 51);
sharound(64 + 51);
R(64 + 52);
sharound(64 + 52);
R(64 + 53);
sharound(64 + 53);
R(64 + 54);
sharound(64 + 54);
R(64 + 55);
sharound(64 + 55);
sharound2(64 + 56);
sharound2(64 + 57);
sharound2(64 + 58);
sharound2(64 + 59);
//Faster to write it this way...
Vals[3] += K[60] +s1(124) + ch(124);
R(64+60);
partround(64 + 60);
Vals[7] += H[7];
#if defined(VECTORS4) || defined(VECTORS2)
if (Vals[7].x == 0)
{
for (it.x = 0; it.x != 127; it.x++) {
if (!output[it.x]) {
output[it.x] = W[3].x;
output[127] = 1;
break;
}
}
}
if (Vals[7].y == 0)
{
for (it.y = 0; it.y != 127; it.y++) {
if (!output[it.y]) {
output[it.y] = W[3].y;
output[127] = 1;
break;
}
}
}
#ifdef VECTORS4
if (Vals[7].z == 0)
{
for (it.z = 0; it.z != 127; it.z++) {
if (!output[it.z]) {
output[it.z] = W[3].z;
output[127] = 1;
break;
}
}
}
if (Vals[7].w == 0)
{
for (it.w = 0; it.w != 127; it.w++) {
if (!output[it.w]) {
output[it.w] = W[3].w;
output[127] = 1;
break;
}
}
}
#endif
#else
if (Vals[7] == 0)
{
for (it = 0; it != 127; it++) {
if (!output[it]) {
output[it] = W[3];
output[127] = 1;
break;
}
}
}
#endif
}
Loading…
Cancel
Save