mirror of https://github.com/GOSTSec/sgminer
ystarnaud
10 years ago
committed by
troky
11 changed files with 2286 additions and 89 deletions
@ -0,0 +1,13 @@
@@ -0,0 +1,13 @@
|
||||
#ifndef NEOSCRYPT_H |
||||
#define NEOSCRYPT_H |
||||
|
||||
#include "miner.h" |
||||
|
||||
/* The neoscrypt scratch buffer needs 32kBytes memory. */ |
||||
#define NEOSCRYPT_SCRATCHBUF_SIZE (32 * 1024) |
||||
|
||||
/* These routines are always available. */ |
||||
extern void neoscrypt_regenhash(struct work *work); |
||||
extern void neoscrypt(const unsigned char *input, unsigned char *output, unsigned int profile); |
||||
|
||||
#endif /* NEOSCRYPT_H */ |
@ -0,0 +1,525 @@
@@ -0,0 +1,525 @@
|
||||
/* NeoScrypt(128, 2, 1) with Salsa20/20 and ChaCha20/20 */ |
||||
/* Adapted and improved for 14.x drivers by Wolf9466 (Wolf`) */ |
||||
|
||||
// Stupid AMD compiler ignores the unroll pragma in these two |
||||
#define SALSA_SMALL_UNROLL 3 |
||||
#define CHACHA_SMALL_UNROLL 3 |
||||
|
||||
// If SMALL_BLAKE2S is defined, BLAKE2S_UNROLL is interpreted |
||||
// as the unroll factor; must divide cleanly into ten. |
||||
// Usually a bad idea. |
||||
//#define SMALL_BLAKE2S |
||||
//#define BLAKE2S_UNROLL 5 |
||||
|
||||
#define BLOCK_SIZE 64U |
||||
#define FASTKDF_BUFFER_SIZE 256U |
||||
#ifndef PASSWORD_LEN |
||||
#define PASSWORD_LEN 80U |
||||
#endif |
||||
|
||||
#if !defined(cl_khr_byte_addressable_store) |
||||
#error "Device does not support unaligned stores" |
||||
#endif |
||||
|
||||
// Swaps 128 bytes at a time without using temp vars |
||||
void SwapBytes128(void *restrict A, void *restrict B, uint len) |
||||
{ |
||||
#pragma unroll 2 |
||||
for(int i = 0; i < (len >> 7); ++i) |
||||
{ |
||||
((ulong16 *)A)[i] ^= ((ulong16 *)B)[i]; |
||||
((ulong16 *)B)[i] ^= ((ulong16 *)A)[i]; |
||||
((ulong16 *)A)[i] ^= ((ulong16 *)B)[i]; |
||||
} |
||||
} |
||||
|
||||
void CopyBytes128(void *restrict dst, const void *restrict src, uint len) |
||||
{ |
||||
#pragma unroll 2 |
||||
for(int i = 0; i < len; ++i) |
||||
((ulong16 *)dst)[i] = ((ulong16 *)src)[i]; |
||||
} |
||||
|
||||
void CopyBytes(void *restrict dst, const void *restrict src, uint len) |
||||
{ |
||||
for(int i = 0; i < len; ++i) |
||||
((uchar *)dst)[i] = ((uchar *)src)[i]; |
||||
} |
||||
|
||||
void XORBytesInPlace(void *restrict dst, const void *restrict src, uint len) |
||||
{ |
||||
for(int i = 0; i < len; ++i) |
||||
((uchar *)dst)[i] ^= ((uchar *)src)[i]; |
||||
} |
||||
|
||||
void XORBytes(void *restrict dst, const void *restrict src1, const void *restrict src2, uint len) |
||||
{ |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < len; ++i) |
||||
((uchar *)dst)[i] = ((uchar *)src1)[i] ^ ((uchar *)src2)[i]; |
||||
} |
||||
|
||||
// Blake2S |
||||
|
||||
#define BLAKE2S_BLOCK_SIZE 64U |
||||
#define BLAKE2S_OUT_SIZE 32U |
||||
#define BLAKE2S_KEY_SIZE 32U |
||||
|
||||
static const __constant uint BLAKE2S_IV[8] = |
||||
{ |
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
||||
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 |
||||
}; |
||||
|
||||
static const __constant uchar BLAKE2S_SIGMA[10][16] = |
||||
{ |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , |
||||
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , |
||||
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , |
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , |
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , |
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } , |
||||
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , |
||||
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , |
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , |
||||
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } , |
||||
}; |
||||
|
||||
#define BLAKE_G(idx0, idx1, a, b, c, d, key) do { \ |
||||
a += b + key[BLAKE2S_SIGMA[idx0][idx1]]; \ |
||||
d = rotate(d ^ a, 16U); \ |
||||
c += d; \ |
||||
b = rotate(b ^ c, 20U); \ |
||||
a += b + key[BLAKE2S_SIGMA[idx0][idx1 + 1]]; \ |
||||
d = rotate(d ^ a, 24U); \ |
||||
c += d; \ |
||||
b = rotate(b ^ c, 25U); \ |
||||
} while(0) |
||||
|
||||
void Blake2S(uint *restrict inout, const uint *restrict inkey) |
||||
{ |
||||
uint16 V; |
||||
uint8 tmpblock; |
||||
|
||||
// Load first block (IV into V.lo) and constants (IV into V.hi) |
||||
V.lo = V.hi = vload8(0U, BLAKE2S_IV); |
||||
|
||||
// XOR with initial constant |
||||
V.s0 ^= 0x01012020; |
||||
|
||||
// Copy input block for later |
||||
tmpblock = V.lo; |
||||
|
||||
// XOR length of message so far (including this block) |
||||
// There are two uints for this field, but high uint is zero |
||||
V.sc ^= BLAKE2S_BLOCK_SIZE; |
||||
|
||||
// Compress state, using the key as the key |
||||
#ifdef SMALL_BLAKE2S |
||||
#pragma unroll BLAKE2S_UNROLL |
||||
#else |
||||
#pragma unroll |
||||
#endif |
||||
for(int x = 0; x < 10; ++x) |
||||
{ |
||||
BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inkey); |
||||
BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inkey); |
||||
BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inkey); |
||||
BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inkey); |
||||
BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inkey); |
||||
BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inkey); |
||||
BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inkey); |
||||
BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inkey); |
||||
} |
||||
|
||||
// XOR low part of state with the high part, |
||||
// then with the original input block. |
||||
V.lo ^= V.hi ^ tmpblock; |
||||
|
||||
// Load constants (IV into V.hi) |
||||
V.hi = vload8(0U, BLAKE2S_IV); |
||||
|
||||
// Copy input block for later |
||||
tmpblock = V.lo; |
||||
|
||||
// XOR length of message into block again |
||||
V.sc ^= BLAKE2S_BLOCK_SIZE << 1; |
||||
|
||||
// Last block compression - XOR final constant into state |
||||
V.se ^= 0xFFFFFFFFU; |
||||
|
||||
// Compress block, using the input as the key |
||||
#ifdef SMALL_BLAKE2S |
||||
#pragma unroll BLAKE2S_UNROLL |
||||
#else |
||||
#pragma unroll |
||||
#endif |
||||
for(int x = 0; x < 10; ++x) |
||||
{ |
||||
BLAKE_G(x, 0x00, V.s0, V.s4, V.s8, V.sc, inout); |
||||
BLAKE_G(x, 0x02, V.s1, V.s5, V.s9, V.sd, inout); |
||||
BLAKE_G(x, 0x04, V.s2, V.s6, V.sa, V.se, inout); |
||||
BLAKE_G(x, 0x06, V.s3, V.s7, V.sb, V.sf, inout); |
||||
BLAKE_G(x, 0x08, V.s0, V.s5, V.sa, V.sf, inout); |
||||
BLAKE_G(x, 0x0A, V.s1, V.s6, V.sb, V.sc, inout); |
||||
BLAKE_G(x, 0x0C, V.s2, V.s7, V.s8, V.sd, inout); |
||||
BLAKE_G(x, 0x0E, V.s3, V.s4, V.s9, V.se, inout); |
||||
} |
||||
|
||||
// XOR low part of state with high part, then with input block |
||||
V.lo ^= V.hi ^ tmpblock; |
||||
|
||||
// Store result in input/output buffer |
||||
vstore8(V.lo, 0, inout); |
||||
} |
||||
|
||||
/* FastKDF, a fast buffered key derivation function: |
||||
* FASTKDF_BUFFER_SIZE must be a power of 2; |
||||
* password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE; |
||||
* prf_output_size must be <= prf_key_size; */ |
||||
void fastkdf(const uchar *restrict password, const uchar *restrict salt, const uint salt_len, uchar *restrict output, uint output_len) |
||||
{ |
||||
|
||||
/* WARNING! |
||||
* This algorithm uses byte-wise addressing for memory blocks. |
||||
* Or in other words, trying to copy an unaligned memory region |
||||
* will significantly slow down the algorithm, when copying uses |
||||
* words or bigger entities. It even may corrupt the data, when |
||||
* the device does not support it properly. |
||||
* Therefore use byte copying, which will not the fastest but at |
||||
* least get reliable results. */ |
||||
|
||||
// BLOCK_SIZE 64U |
||||
// FASTKDF_BUFFER_SIZE 256U |
||||
// BLAKE2S_BLOCK_SIZE 64U |
||||
// BLAKE2S_KEY_SIZE 32U |
||||
// BLAKE2S_OUT_SIZE 32U |
||||
uchar bufidx = 0; |
||||
uint8 Abuffer[9], Bbuffer[9] = { (uint8)(0) }; |
||||
uchar *A = (uchar *)Abuffer, *B = (uchar *)Bbuffer; |
||||
|
||||
// Initialize the password buffer |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)A)[i] = ((ulong *)password)[i % 10]; |
||||
|
||||
((uint16 *)(A + FASTKDF_BUFFER_SIZE))[0] = ((uint16 *)password)[0]; |
||||
|
||||
// Initialize the salt buffer |
||||
if(salt_len == FASTKDF_BUFFER_SIZE) |
||||
{ |
||||
((ulong16 *)B)[0] = ((ulong16 *)B)[2] = ((ulong16 *)salt)[0]; |
||||
((ulong16 *)B)[1] = ((ulong16 *)B)[3] = ((ulong16 *)salt)[1]; |
||||
} |
||||
else |
||||
{ |
||||
// salt_len is 80 bytes here |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < (FASTKDF_BUFFER_SIZE >> 3); ++i) ((ulong *)B)[i] = ((ulong *)salt)[i % 10]; |
||||
|
||||
// Initialized the rest to zero earlier |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < 10; ++i) ((ulong *)(B + FASTKDF_BUFFER_SIZE))[i] = ((ulong *)salt)[i]; |
||||
} |
||||
|
||||
// The primary iteration |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < 32; ++i) |
||||
{ |
||||
// Make the key buffer twice the size of the key so it fits a Blake2S block |
||||
// This way, we don't need a temp buffer in the Blake2S function. |
||||
uchar input[BLAKE2S_BLOCK_SIZE], key[BLAKE2S_BLOCK_SIZE] = { 0 }; |
||||
|
||||
// Copy input and key to their buffers |
||||
CopyBytes(input, A + bufidx, BLAKE2S_BLOCK_SIZE); |
||||
CopyBytes(key, B + bufidx, BLAKE2S_KEY_SIZE); |
||||
|
||||
// PRF |
||||
Blake2S((uint *)input, (uint *)key); |
||||
|
||||
// Calculate the next buffer pointer |
||||
bufidx = 0; |
||||
|
||||
for(int x = 0; x < BLAKE2S_OUT_SIZE; ++x) |
||||
bufidx += input[x]; |
||||
|
||||
// bufidx a uchar now - always mod 255 |
||||
//bufidx &= (FASTKDF_BUFFER_SIZE - 1); |
||||
|
||||
// Modify the salt buffer |
||||
XORBytesInPlace(B + bufidx, input, BLAKE2S_OUT_SIZE); |
||||
|
||||
if(bufidx < BLAKE2S_KEY_SIZE) |
||||
{ |
||||
// Head modified, tail updated |
||||
// this was made off the original code... wtf |
||||
//CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, min(BLAKE2S_OUT_SIZE, BLAKE2S_KEY_SIZE - bufidx)); |
||||
CopyBytes(B + FASTKDF_BUFFER_SIZE + bufidx, B + bufidx, BLAKE2S_KEY_SIZE - bufidx); |
||||
} |
||||
else if((FASTKDF_BUFFER_SIZE - bufidx) < BLAKE2S_OUT_SIZE) |
||||
{ |
||||
// Tail modified, head updated |
||||
CopyBytes(B, B + FASTKDF_BUFFER_SIZE, BLAKE2S_OUT_SIZE - (FASTKDF_BUFFER_SIZE - bufidx)); |
||||
} |
||||
} |
||||
|
||||
// Modify and copy into the output buffer |
||||
|
||||
// Damned compiler crashes |
||||
// Fuck you, AMD |
||||
|
||||
//for(uint i = 0; i < output_len; ++i, ++bufidx) |
||||
// output[i] = B[bufidx] ^ A[i]; |
||||
|
||||
uint left = FASTKDF_BUFFER_SIZE - bufidx; |
||||
//uint left = (~bufidx) + 1 |
||||
|
||||
if(left < output_len) |
||||
{ |
||||
XORBytes(output, B + bufidx, A, left); |
||||
XORBytes(output + left, B, A + left, output_len - left); |
||||
} |
||||
else |
||||
{ |
||||
XORBytes(output, B + bufidx, A, output_len); |
||||
} |
||||
} |
||||
|
||||
#define SALSA_CORE(state) do { \ |
||||
state.s4 ^= rotate(state.s0 + state.sc, 7U); state.s8 ^= rotate(state.s4 + state.s0, 9U); state.sc ^= rotate(state.s8 + state.s4, 13U); state.s0 ^= rotate(state.sc + state.s8, 18U); \ |
||||
state.s9 ^= rotate(state.s5 + state.s1, 7U); state.sd ^= rotate(state.s9 + state.s5, 9U); state.s1 ^= rotate(state.sd + state.s9, 13U); state.s5 ^= rotate(state.s1 + state.sd, 18U); \ |
||||
state.se ^= rotate(state.sa + state.s6, 7U); state.s2 ^= rotate(state.se + state.sa, 9U); state.s6 ^= rotate(state.s2 + state.se, 13U); state.sa ^= rotate(state.s6 + state.s2, 18U); \ |
||||
state.s3 ^= rotate(state.sf + state.sb, 7U); state.s7 ^= rotate(state.s3 + state.sf, 9U); state.sb ^= rotate(state.s7 + state.s3, 13U); state.sf ^= rotate(state.sb + state.s7, 18U); \ |
||||
state.s1 ^= rotate(state.s0 + state.s3, 7U); state.s2 ^= rotate(state.s1 + state.s0, 9U); state.s3 ^= rotate(state.s2 + state.s1, 13U); state.s0 ^= rotate(state.s3 + state.s2, 18U); \ |
||||
state.s6 ^= rotate(state.s5 + state.s4, 7U); state.s7 ^= rotate(state.s6 + state.s5, 9U); state.s4 ^= rotate(state.s7 + state.s6, 13U); state.s5 ^= rotate(state.s4 + state.s7, 18U); \ |
||||
state.sb ^= rotate(state.sa + state.s9, 7U); state.s8 ^= rotate(state.sb + state.sa, 9U); state.s9 ^= rotate(state.s8 + state.sb, 13U); state.sa ^= rotate(state.s9 + state.s8, 18U); \ |
||||
state.sc ^= rotate(state.sf + state.se, 7U); state.sd ^= rotate(state.sc + state.sf, 9U); state.se ^= rotate(state.sd + state.sc, 13U); state.sf ^= rotate(state.se + state.sd, 18U); \ |
||||
} while(0) |
||||
|
||||
uint16 salsa_small_scalar_rnd(uint16 X) |
||||
{ |
||||
uint16 st = X; |
||||
|
||||
#if SALSA_SMALL_UNROLL == 1 |
||||
|
||||
for(int i = 0; i < 10; ++i) |
||||
{ |
||||
SALSA_CORE(st); |
||||
} |
||||
|
||||
#elif SALSA_SMALL_UNROLL == 2 |
||||
|
||||
for(int i = 0; i < 5; ++i) |
||||
{ |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
} |
||||
|
||||
#elif SALSA_SMALL_UNROLL == 3 |
||||
|
||||
for(int i = 0; i < 4; ++i) |
||||
{ |
||||
SALSA_CORE(st); |
||||
if(i == 3) break; |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
} |
||||
|
||||
#elif SALSA_SMALL_UNROLL == 4 |
||||
|
||||
for(int i = 0; i < 3; ++i) |
||||
{ |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
if(i == 2) break; |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
} |
||||
|
||||
#else |
||||
|
||||
for(int i = 0; i < 2; ++i) |
||||
{ |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
} |
||||
|
||||
#endif |
||||
|
||||
return(X + st); |
||||
} |
||||
|
||||
#define CHACHA_CORE_PARALLEL(state) do { \ |
||||
state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], (uint4)(16U, 16U, 16U, 16U)); \ |
||||
state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], (uint4)(12U, 12U, 12U, 12U)); \ |
||||
state[0] += state[1]; state[3] = rotate(state[3] ^ state[0], (uint4)(8U, 8U, 8U, 8U)); \ |
||||
state[2] += state[3]; state[1] = rotate(state[1] ^ state[2], (uint4)(7U, 7U, 7U, 7U)); \ |
||||
\ |
||||
state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], (uint4)(16U, 16U, 16U, 16U)); \ |
||||
state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, (uint4)(12U, 12U, 12U, 12U)); \ |
||||
state[0] += state[1].yzwx; state[3].wxyz = rotate(state[3].wxyz ^ state[0], (uint4)(8U, 8U, 8U, 8U)); \ |
||||
state[2].zwxy += state[3].wxyz; state[1].yzwx = rotate(state[1].yzwx ^ state[2].zwxy, (uint4)(7U, 7U, 7U, 7U)); \ |
||||
} while(0) |
||||
|
||||
uint16 chacha_small_parallel_rnd(uint16 X) |
||||
{ |
||||
uint4 t, st[4]; |
||||
|
||||
((uint16 *)st)[0] = X; |
||||
|
||||
#if CHACHA_SMALL_UNROLL == 1 |
||||
|
||||
for(int i = 0; i < 10; ++i) |
||||
{ |
||||
CHACHA_CORE_PARALLEL(st); |
||||
} |
||||
|
||||
#elif CHACHA_SMALL_UNROLL == 2 |
||||
|
||||
for(int i = 0; i < 5; ++i) |
||||
{ |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
} |
||||
|
||||
#elif CHACHA_SMALL_UNROLL == 3 |
||||
|
||||
for(int i = 0; i < 4; ++i) |
||||
{ |
||||
CHACHA_CORE_PARALLEL(st); |
||||
if(i == 3) break; |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
} |
||||
|
||||
#elif CHACHA_SMALL_UNROLL == 4 |
||||
|
||||
for(int i = 0; i < 3; ++i) |
||||
{ |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
if(i == 2) break; |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
} |
||||
|
||||
#else |
||||
|
||||
for(int i = 0; i < 2; ++i) |
||||
{ |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
CHACHA_CORE_PARALLEL(st); |
||||
} |
||||
|
||||
#endif |
||||
|
||||
return(X + ((uint16 *)st)[0]); |
||||
} |
||||
|
||||
void neoscrypt_blkmix(uint16 *XV, bool alg) |
||||
{ |
||||
|
||||
/* NeoScrypt flow: Scrypt flow: |
||||
Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa"; |
||||
Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb"; |
||||
Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya; |
||||
Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb; |
||||
Xa" = Ya; Xb" = Yc; |
||||
Xc" = Yb; Xd" = Yd; */ |
||||
|
||||
XV[0] ^= XV[3]; |
||||
|
||||
if(!alg) |
||||
{ |
||||
XV[0] = salsa_small_scalar_rnd(XV[0]); XV[1] ^= XV[0]; |
||||
XV[1] = salsa_small_scalar_rnd(XV[1]); XV[2] ^= XV[1]; |
||||
XV[2] = salsa_small_scalar_rnd(XV[2]); XV[3] ^= XV[2]; |
||||
XV[3] = salsa_small_scalar_rnd(XV[3]); |
||||
} |
||||
else |
||||
{ |
||||
XV[0] = chacha_small_parallel_rnd(XV[0]); XV[1] ^= XV[0]; |
||||
XV[1] = chacha_small_parallel_rnd(XV[1]); XV[2] ^= XV[1]; |
||||
XV[2] = chacha_small_parallel_rnd(XV[2]); XV[3] ^= XV[2]; |
||||
XV[3] = chacha_small_parallel_rnd(XV[3]); |
||||
} |
||||
|
||||
XV[1] ^= XV[2]; |
||||
XV[2] ^= XV[1]; |
||||
XV[1] ^= XV[2]; |
||||
} |
||||
|
||||
void ScratchpadStore(__global void *V, void *X, uchar idx) |
||||
{ |
||||
((__global ulong16 *)V)[idx << 1] = ((ulong16 *)X)[0]; |
||||
((__global ulong16 *)V)[(idx << 1) + 1] = ((ulong16 *)X)[1]; |
||||
} |
||||
|
||||
void ScratchpadMix(void *X, const __global void *V, uchar idx) |
||||
{ |
||||
((ulong16 *)X)[0] ^= ((__global ulong16 *)V)[idx << 1]; |
||||
((ulong16 *)X)[1] ^= ((__global ulong16 *)V)[(idx << 1) + 1]; |
||||
} |
||||
|
||||
void SMix(uint16 *X, __global uint16 *V, bool flag) |
||||
{ |
||||
#pragma unroll 1 |
||||
for(int i = 0; i < 128; ++i) |
||||
{ |
||||
ScratchpadStore(V, X, i); |
||||
neoscrypt_blkmix(X, flag); |
||||
} |
||||
|
||||
#pragma unroll 1 |
||||
for(int i = 0; i < 128; ++i) |
||||
{ |
||||
const uint idx = convert_uchar(((uint *)X)[48] & 0x7F); |
||||
ScratchpadMix(X, V, idx); |
||||
neoscrypt_blkmix(X, flag); |
||||
} |
||||
} |
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, const uint target) |
||||
{ |
||||
#define CONSTANT_N 128 |
||||
#define CONSTANT_r 2 |
||||
// X = CONSTANT_r * 2 * BLOCK_SIZE(64); Z is a copy of X for ChaCha |
||||
uint16 X[4], Z[4]; |
||||
/* V = CONSTANT_N * CONSTANT_r * 2 * BLOCK_SIZE */ |
||||
__global ulong16 *V = (__global ulong16 *)(padcache + (0x8000 * (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
uchar outbuf[32]; |
||||
uchar data[PASSWORD_LEN]; |
||||
|
||||
((ulong8 *)data)[0] = ((__global const ulong8 *)input)[0]; |
||||
((ulong *)data)[8] = ((__global const ulong *)input)[8]; |
||||
((uint *)data)[18] = ((__global const uint *)input)[18]; |
||||
((uint *)data)[19] = get_global_id(0); |
||||
|
||||
// X = KDF(password, salt) |
||||
fastkdf(data, data, PASSWORD_LEN, (uchar *)X, 256); |
||||
|
||||
// Process ChaCha 1st, Salsa 2nd and XOR them - run that through PBKDF2 |
||||
CopyBytes128(Z, X, 2); |
||||
|
||||
// X = SMix(X); X & Z are swapped, repeat. |
||||
for(bool flag = false;; ++flag) |
||||
{ |
||||
SMix(X, V, flag); |
||||
if(flag) break; |
||||
SwapBytes128(X, Z, 256); |
||||
} |
||||
|
||||
// blkxor(X, Z) |
||||
((ulong16 *)X)[0] ^= ((ulong16 *)Z)[0]; |
||||
((ulong16 *)X)[1] ^= ((ulong16 *)Z)[1]; |
||||
|
||||
// output = KDF(password, X) |
||||
fastkdf(data, (uchar *)X, FASTKDF_BUFFER_SIZE, outbuf, 32); |
||||
if(((uint *)outbuf)[7] <= target) output[atomic_add(output + 0xFF, 1)] = get_global_id(0); |
||||
} |
Loading…
Reference in new issue