diff --git a/poclbm120327.cl b/poclbm120327.cl index 60b385af..b9244f2f 100644 --- a/poclbm120327.cl +++ b/poclbm120327.cl @@ -91,1262 +91,1262 @@ void search(const uint state0, const uint state1, const uint state2, const uint const u nonce = base + (uint)(get_global_id(0)); #endif -Vals[0]=Preval0; -Vals[0]+=nonce; +Vals[5]=Preval0; +Vals[5]+=nonce; -Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],b1,c1); -Vals[3]+=D1A; +Vals[0]=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],b1,c1); +Vals[0]+=D1A; -Vals[7]=Vals[3]; -Vals[7]+=h1; +Vals[2]=Vals[0]; +Vals[2]+=h1; -Vals[4]=PreVal4addT1; -Vals[4]+=nonce; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]=PreVal4addT1; +Vals[1]+=nonce; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[2]=C1addK5; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],b1); +Vals[6]=C1addK5; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],b1); -Vals[6]=Vals[2]; -Vals[6]+=g1; -Vals[3]+=Ma2(g1,Vals[4],f1); -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma2(f1,Vals[3],Vals[4]); +Vals[3]=Vals[6]; +Vals[3]+=g1; +Vals[0]+=Ma2(g1,Vals[1],f1); +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma2(f1,Vals[0],Vals[1]); -Vals[1]=B1addK6; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); +Vals[7]=B1addK6; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); -Vals[5]=Vals[1]; -Vals[5]+=f1; +Vals[4]=Vals[7]; +Vals[4]+=f1; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[7]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); - -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[8]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[9]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); - -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[10]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[7]; Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[11]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[8]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[12]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); - -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[13]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); - -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[14]; +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[9]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); + +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[10]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); + +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[11]; Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=0xC19BF3F4U; -Vals[4]+=Vals[0]; +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[12]; +Vals[2]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); - -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=W16addK16; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=W17addK17; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); + +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[13]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); + +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[14]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); + +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=0xC19BF3F4U; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); + +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=W16addK16; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); + +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=W17addK17; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); W[2]+=fw2; -Vals[5]+=W[2]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[18]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[2]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[18]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]=nonce; W[3]+=fw3; -Vals[4]+=W[3]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[19]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[3]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[19]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); W[4]+=0x80000000U; -Vals[3]+=W[4]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[20]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[4]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[20]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=W[5]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[21]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[5]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[21]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); W[6]+=0x00000280U; -Vals[1]+=W[6]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[22]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[6]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[22]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); W[7]+=fw0; -Vals[0]+=W[7]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[23]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[7]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[23]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); W[8]+=fw1; -Vals[7]+=W[8]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[24]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[8]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[24]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=W[9]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[25]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[9]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[25]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=W[10]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[26]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[10]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[26]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=W[11]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[27]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[11]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[27]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -Vals[3]+=W[12]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[28]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[12]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[28]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -Vals[2]+=W[13]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[29]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[13]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[29]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[14]=0x00a00055U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -Vals[1]+=W[14]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[30]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[14]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[30]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[15]=fw15; W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -Vals[0]+=W[15]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[31]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[15]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[31]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[0]=fw01r; W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -Vals[7]+=W[0]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[32]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[0]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[32]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[1]=fw1; W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -Vals[6]+=W[1]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[33]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[1]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[33]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[34]; -Vals[5]+=W[2]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[34]; +Vals[4]+=W[2]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[35]; -Vals[4]+=W[3]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[35]; +Vals[1]+=W[3]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[36]; -Vals[3]+=W[4]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[36]; +Vals[0]+=W[4]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[37]; -Vals[2]+=W[5]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[37]; +Vals[6]+=W[5]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[38]; -Vals[1]+=W[6]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[38]; +Vals[7]+=W[6]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[39]; -Vals[0]+=W[7]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[39]; +Vals[5]+=W[7]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[40]; -Vals[7]+=W[8]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[40]; +Vals[2]+=W[8]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[41]; -Vals[6]+=W[9]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[41]; +Vals[3]+=W[9]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[42]; -Vals[5]+=W[10]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[42]; +Vals[4]+=W[10]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[43]; -Vals[4]+=W[11]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[43]; +Vals[1]+=W[11]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[44]; -Vals[3]+=W[12]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[44]; +Vals[0]+=W[12]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[45]; -Vals[2]+=W[13]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[45]; +Vals[6]+=W[13]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[46]; -Vals[1]+=W[14]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[46]; +Vals[7]+=W[14]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[47]; -Vals[0]+=W[15]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[47]; +Vals[5]+=W[15]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[48]; -Vals[7]+=W[0]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[48]; +Vals[2]+=W[0]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[49]; -Vals[6]+=W[1]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[49]; +Vals[3]+=W[1]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[50]; -Vals[5]+=W[2]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[50]; +Vals[4]+=W[2]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[51]; -Vals[4]+=W[3]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[51]; +Vals[1]+=W[3]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[52]; -Vals[3]+=W[4]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[52]; +Vals[0]+=W[4]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[53]; -Vals[2]+=W[5]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[53]; +Vals[6]+=W[5]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[54]; -Vals[1]+=W[6]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[54]; +Vals[7]+=W[6]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[55]; -Vals[0]+=W[7]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[55]; +Vals[5]+=W[7]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[56]; -Vals[7]+=W[8]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[56]; +Vals[2]+=W[8]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[57]; -Vals[6]+=W[9]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[57]; +Vals[3]+=W[9]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[58]; -Vals[5]+=W[10]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[58]; +Vals[4]+=W[10]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[59]; -Vals[4]+=W[11]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[59]; +Vals[1]+=W[11]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[60]; -Vals[3]+=W[12]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[60]; +Vals[0]+=W[12]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[61]; -Vals[2]+=W[13]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[61]; +Vals[6]+=W[13]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[62]; -Vals[1]+=W[14]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[62]; +Vals[7]+=W[14]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[63]; -Vals[0]+=W[15]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[63]; +Vals[5]+=W[15]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); -W[0]=Vals[0]; +W[0]=Vals[5]; W[0]+=state0; W[7]=state7; -W[7]+=Vals[7]; +W[7]+=Vals[2]; -Vals[7]=0xF377ED68U; -Vals[7]+=W[0]; +Vals[2]=0xF377ED68U; +Vals[2]+=W[0]; W[3]=state3; -W[3]+=Vals[3]; +W[3]+=Vals[0]; -Vals[3]=0xa54ff53aU; -Vals[3]+=Vals[7]; -Vals[7]+=0x08909ae5U; +Vals[0]=0xa54ff53aU; +Vals[0]+=Vals[2]; +Vals[2]+=0x08909ae5U; W[6]=state6; -W[6]+=Vals[6]; +W[6]+=Vals[3]; -Vals[6]=0x90BB1E3CU; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U)); +Vals[3]=0x90BB1E3CU; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=(0x9b05688cU^(Vals[0]&0xca0b3af3U)); -W[1]=Vals[1]; +W[1]=Vals[7]; W[1]+=state1; -Vals[6]+=W[1]; +Vals[3]+=W[1]; W[2]=state2; -W[2]+=Vals[2]; +W[2]+=Vals[6]; -Vals[2]=0x3c6ef372U; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U); +Vals[6]=0x3c6ef372U; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma2(0xbb67ae85U,Vals[2],0x6a09e667U); W[5]=state5; -W[5]+=Vals[5]; +W[5]+=Vals[4]; -Vals[5]=0x50C6645BU; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU); -Vals[5]+=W[2]; +Vals[4]=0x50C6645BU; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],0x510e527fU); +Vals[4]+=W[2]; -Vals[1]=0xbb67ae85U; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]); +Vals[7]=0xbb67ae85U; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma2(0x6a09e667U,Vals[3],Vals[2]); W[4]=state4; -W[4]+=Vals[4]; - -Vals[4]=0x3AC42E24U; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=W[3]; +W[4]+=Vals[1]; -Vals[0]=Vals[4]; -Vals[0]+=0x6a09e667U; +Vals[1]=0x3AC42E24U; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=W[3]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[5]=Vals[1]; +Vals[5]+=0x6a09e667U; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[4]; -Vals[3]+=W[4]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); - -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[5]; -Vals[2]+=W[5]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); - -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[6]; -Vals[1]+=W[6]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[7]; -Vals[0]+=W[7]; -Vals[4]+=Vals[0]; +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[4]; +Vals[0]+=W[4]; +Vals[2]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); - -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=0x5807AA98U; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[9]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); - -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[10]; +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); + +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[5]; +Vals[6]+=W[5]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); + +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[6]; +Vals[7]+=W[6]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); + +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[7]; +Vals[5]+=W[7]; Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[11]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=0x5807AA98U; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[12]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); - -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[13]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); - -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[14]; +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[9]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); + +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[10]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); + +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[11]; Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=0xC19BF274U; -Vals[4]+=Vals[0]; +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[12]; +Vals[2]+=Vals[0]; Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); + +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[13]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); + +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[14]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); + +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=0xC19BF274U; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); -Vals[7]+=W[0]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[16]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[0]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[16]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=0x00a00000U; -Vals[6]+=W[1]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[17]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[1]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[17]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); -Vals[5]+=W[2]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[18]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[2]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[18]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); -Vals[4]+=W[3]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[19]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[3]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[19]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); -Vals[3]+=W[4]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[20]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[4]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[20]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=W[5]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[21]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[5]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[21]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=0x00000100U; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); -Vals[1]+=W[6]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[22]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[6]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[22]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]+=0x11002000U; W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); -Vals[0]+=W[7]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[23]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[7]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[23]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]=0x80000000U; W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); -Vals[7]+=W[8]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[24]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[8]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[24]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[9]=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=W[9]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[25]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[9]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[25]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[10]=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=W[10]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[26]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[10]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[26]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[11]=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=W[11]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[27]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[11]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[27]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[12]=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -Vals[3]+=W[12]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[28]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[12]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[28]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[13]=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -Vals[2]+=W[13]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[29]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[13]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[29]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[14]=0x00400022U; W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -Vals[1]+=W[14]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[30]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[14]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[30]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[15]=0x00000100U; W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -Vals[0]+=W[15]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[31]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[15]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[31]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -Vals[7]+=W[0]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[32]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[0]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[32]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -Vals[6]+=W[1]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[33]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[1]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[33]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); -Vals[5]+=W[2]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[34]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[2]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[34]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); -Vals[4]+=W[3]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[35]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[3]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[35]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); -Vals[3]+=W[4]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[36]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[4]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[36]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=W[5]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[37]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[5]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[37]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); -Vals[1]+=W[6]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[38]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[6]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[38]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); -Vals[0]+=W[7]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[39]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[7]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[39]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); -Vals[7]+=W[8]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[40]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[8]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[40]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=W[9]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[41]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[9]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[41]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=W[10]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[42]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[10]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[42]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); W[11]+=W[4]; W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=W[11]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[43]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[11]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[43]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); W[12]+=W[5]; W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); -Vals[3]+=W[12]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[44]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[12]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[44]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); W[13]+=W[6]; W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); -Vals[2]+=W[13]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[45]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[13]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[45]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); W[14]+=W[7]; W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); -Vals[1]+=W[14]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[46]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[14]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[46]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); W[15]+=W[8]; W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); -Vals[0]+=W[15]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[47]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[15]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[47]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); W[0]+=W[9]; W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); -Vals[7]+=W[0]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[48]; -Vals[3]+=Vals[7]; -Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); -Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); +Vals[2]+=W[0]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[48]; +Vals[0]+=Vals[2]; +Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); +Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); W[1]+=W[10]; W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); -Vals[6]+=W[1]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[49]; -Vals[2]+=Vals[6]; -Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); -Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); +Vals[3]+=W[1]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[49]; +Vals[6]+=Vals[3]; +Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); +Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]); W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); W[2]+=W[11]; W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); -Vals[5]+=W[2]; -Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); -Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); -Vals[5]+=K[50]; -Vals[1]+=Vals[5]; -Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); -Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); +Vals[4]+=W[2]; +Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); +Vals[4]+=ch(Vals[6],Vals[0],Vals[1]); +Vals[4]+=K[50]; +Vals[7]+=Vals[4]; +Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); +Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]); W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); W[3]+=W[12]; W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); -Vals[4]+=W[3]; -Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); -Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); -Vals[4]+=K[51]; -Vals[0]+=Vals[4]; -Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); -Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); +Vals[1]+=W[3]; +Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); +Vals[1]+=ch(Vals[7],Vals[6],Vals[0]); +Vals[1]+=K[51]; +Vals[5]+=Vals[1]; +Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); +Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]); W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); W[4]+=W[13]; W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); -Vals[3]+=W[4]; -Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); -Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); -Vals[3]+=K[52]; -Vals[7]+=Vals[3]; -Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); -Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); +Vals[0]+=W[4]; +Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); +Vals[0]+=ch(Vals[5],Vals[7],Vals[6]); +Vals[0]+=K[52]; +Vals[2]+=Vals[0]; +Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); +Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]); W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); W[5]+=W[14]; W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); -Vals[2]+=W[5]; -Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); -Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); -Vals[2]+=K[53]; -Vals[6]+=Vals[2]; -Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); -Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); +Vals[6]+=W[5]; +Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); +Vals[6]+=ch(Vals[2],Vals[5],Vals[7]); +Vals[6]+=K[53]; +Vals[3]+=Vals[6]; +Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); +Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]); W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); W[6]+=W[15]; W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); -Vals[1]+=W[6]; -Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); -Vals[1]+=K[54]; -Vals[5]+=Vals[1]; -Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); -Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); +Vals[7]+=W[6]; +Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[7]+=ch(Vals[3],Vals[2],Vals[5]); +Vals[7]+=K[54]; +Vals[4]+=Vals[7]; +Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); +Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]); W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); W[7]+=W[0]; W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); -Vals[0]+=W[7]; -Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); -Vals[0]+=K[55]; -Vals[4]+=Vals[0]; -Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); -Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); +Vals[5]+=W[7]; +Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[5]+=ch(Vals[4],Vals[3],Vals[2]); +Vals[5]+=K[55]; +Vals[1]+=Vals[5]; +Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); +Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]); W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); W[8]+=W[1]; W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); -Vals[7]+=W[8]; -Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); -Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); -Vals[7]+=K[56]; -Vals[3]+=Vals[7]; +Vals[2]+=W[8]; +Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); +Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); +Vals[2]+=K[56]; +Vals[0]+=Vals[2]; W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); W[9]+=W[2]; W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); -Vals[6]+=W[9]; -Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); -Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); -Vals[6]+=K[57]; -Vals[6]+=Vals[2]; +Vals[3]+=W[9]; +Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); +Vals[3]+=ch(Vals[0],Vals[1],Vals[4]); +Vals[3]+=K[57]; +Vals[3]+=Vals[6]; W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); W[10]+=W[3]; W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); -Vals[5]+=W[10]; -Vals[5]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); -Vals[5]+=ch(Vals[6],Vals[3],Vals[4]); -Vals[5]+=K[58]; -Vals[5]+=Vals[1]; -Vals[4]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); -Vals[4]+=ch(Vals[5],Vals[6],Vals[3]); -Vals[4]+=W[11]; -Vals[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); -Vals[4]+=W[4]; -Vals[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); -Vals[4]+=K[59]; -Vals[4]+=Vals[0]; +Vals[4]+=W[10]; +Vals[4]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); +Vals[4]+=ch(Vals[3],Vals[0],Vals[1]); +Vals[4]+=K[58]; +Vals[4]+=Vals[7]; +Vals[1]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); +Vals[1]+=ch(Vals[4],Vals[3],Vals[0]); +Vals[1]+=W[11]; +Vals[1]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); +Vals[1]+=W[4]; +Vals[1]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); +Vals[1]+=K[59]; +Vals[1]+=Vals[5]; #define FOUND (0x80) #define NFLAG (0x7F) #if defined(VECTORS2) || defined(VECTORS4) - Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); - Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); - Vals[7]+=W[12]; - Vals[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); - Vals[7]+=W[5]; - Vals[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); - Vals[7]+=Vals[3]; - Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); - Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); - - if (any(Vals[7] == 0x136032edU)) { - if (Vals[7].x == 0x136032edU) + Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]); + Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); + Vals[2]+=W[12]; + Vals[2]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); + Vals[2]+=W[5]; + Vals[2]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); + Vals[2]+=Vals[0]; + Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); + Vals[2]+=ch(Vals[1],Vals[4],Vals[3]); + + if (any(Vals[2] == 0x136032edU)) { + if (Vals[2].x == 0x136032edU) output[FOUND] = output[NFLAG & nonce.x] = nonce.x; - if (Vals[7].y == 0x136032edU) + if (Vals[2].y == 0x136032edU) output[FOUND] = output[NFLAG & nonce.y] = nonce.y; #if defined(VECTORS4) - if (Vals[7].z == 0x136032edU) + if (Vals[2].z == 0x136032edU) output[FOUND] = output[NFLAG & nonce.z] = nonce.z; - if (Vals[7].w == 0x136032edU) + if (Vals[2].w == 0x136032edU) output[FOUND] = output[NFLAG & nonce.w] = nonce.w; #endif } #else - if ((Vals[7]+ - Ma(Vals[2],Vals[0],Vals[1])+ - (rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22))+ + if ((Vals[2]+ + Ma(Vals[6],Vals[5],Vals[7])+ + (rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22))+ W[12]+ (rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+ W[5]+ (rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+ - Vals[3]+ - (rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25))+ - ch(Vals[4],Vals[5],Vals[6])) == 0x136032edU) + Vals[0]+ + (rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25))+ + ch(Vals[1],Vals[4],Vals[3])) == 0x136032edU) output[FOUND] = output[NFLAG & nonce] = nonce; #endif }