1
0
mirror of https://github.com/GOSTSec/sgminer synced 2025-01-10 06:48:05 +00:00
sgminer/algorithm/yescrypt-opt.c

1365 lines
33 KiB
C
Raw Normal View History

/*-
* Copyright 2009 Colin Percival
* Copyright 2013,2014 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifdef __i386__
#warning "This implementation does not use SIMD, and thus it runs a lot slower than the SIMD-enabled implementation. Enable at least SSE2 in the C compiler and use yescrypt-best.c instead unless you're building this SIMD-less implementation on purpose (portability to older CPUs or testing)."
#elif defined(__x86_64__)
#warning "This implementation does not use SIMD, and thus it runs a lot slower than the SIMD-enabled implementation. Use yescrypt-best.c instead unless you're building this SIMD-less implementation on purpose (for testing only)."
#endif
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include "algorithm/yescrypt_core.h"
#include "sph/sha256_Y.h"
#include "algorithm/sysendian.h"
// #include "sph/yescrypt-platform.c"
#define HUGEPAGE_THRESHOLD (12 * 1024 * 1024)
#ifdef __x86_64__
#define HUGEPAGE_SIZE (2 * 1024 * 1024)
#else
#undef HUGEPAGE_SIZE
#endif
static void *
alloc_region(yescrypt_region_t * region, size_t size)
{
size_t base_size = size;
uint8_t * base, *aligned;
#ifdef MAP_ANON
int flags =
#ifdef MAP_NOCORE
MAP_NOCORE |
#endif
MAP_ANON | MAP_PRIVATE;
#if defined(MAP_HUGETLB) && defined(HUGEPAGE_SIZE)
size_t new_size = size;
const size_t hugepage_mask = (size_t)HUGEPAGE_SIZE - 1;
if (size >= HUGEPAGE_THRESHOLD && size + hugepage_mask >= size) {
flags |= MAP_HUGETLB;
/*
* Linux's munmap() fails on MAP_HUGETLB mappings if size is not a multiple of
* huge page size, so let's round up to huge page size here.
*/
new_size = size + hugepage_mask;
new_size &= ~hugepage_mask;
}
base = mmap(NULL, new_size, PROT_READ | PROT_WRITE, flags, -1, 0);
if (base != MAP_FAILED) {
base_size = new_size;
}
else
if (flags & MAP_HUGETLB) {
flags &= ~MAP_HUGETLB;
base = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
}
#else
base = mmap(NULL, size, PROT_READ | PROT_WRITE, flags, -1, 0);
#endif
if (base == MAP_FAILED)
base = NULL;
aligned = base;
#elif defined(HAVE_POSIX_MEMALIGN)
if ((errno = posix_memalign((void **)&base, 64, size)) != 0)
base = NULL;
aligned = base;
#else
base = aligned = NULL;
if (size + 63 < size) {
errno = ENOMEM;
}
else if ((base = (uint8_t *)malloc(size + 63)) != NULL) {
aligned = base + 63;
aligned -= (uintptr_t)aligned & 63;
}
#endif
region->base = base;
region->aligned = aligned;
region->base_size = base ? base_size : 0;
region->aligned_size = base ? size : 0;
return aligned;
}
static void init_region(yescrypt_region_t * region)
{
region->base = region->aligned = NULL;
region->base_size = region->aligned_size = 0;
}
static int
free_region(yescrypt_region_t * region)
{
if (region->base) {
#ifdef MAP_ANON
if (munmap(region->base, region->base_size))
return -1;
#else
free(region->base);
#endif
}
init_region(region);
return 0;
}
int
yescrypt_init_shared(yescrypt_shared_t * shared,
const uint8_t * param, size_t paramlen,
uint64_t N, uint32_t r, uint32_t p,
yescrypt_init_shared_flags_t flags, uint32_t mask,
uint8_t * buf, size_t buflen)
{
yescrypt_shared1_t * shared1 = &shared->shared1;
yescrypt_shared_t dummy, half1, half2;
// yescrypt_shared_t * half2;
uint8_t salt[32];
if (flags & YESCRYPT_SHARED_PREALLOCATED) {
if (!shared1->aligned || !shared1->aligned_size)
return -1;
}
else {
init_region(shared1);
}
shared->mask1 = 1;
if (!param && !paramlen && !N && !r && !p && !buf && !buflen)
return 0;
init_region(&dummy.shared1);
dummy.mask1 = 1;
if (yescrypt_kdf(&dummy, shared1,
param, paramlen, NULL, 0, N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
goto out;
half1 = half2 = *shared;
half1.shared1.aligned_size /= 2;
half2.shared1.aligned_size = half1.shared1.aligned_size;
half2.shared1.aligned = (char*)half2.shared1.aligned + half1.shared1.aligned_size;
N /= 2;
if (p > 1 && yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_2,
salt, sizeof(salt)))
goto out;
if (yescrypt_kdf(&half2, &half1.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
goto out;
if (yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
buf, buflen))
goto out;
shared->mask1 = mask;
return 0;
out:
if (!(flags & YESCRYPT_SHARED_PREALLOCATED))
free_region(shared1);
return -1;
}
int
yescrypt_free_shared(yescrypt_shared_t * shared)
{
return free_region(&shared->shared1);
}
int
yescrypt_init_local(yescrypt_local_t * local)
{
init_region(local);
return 0;
}
int
yescrypt_free_local(yescrypt_local_t * local)
{
return free_region(local);
}
static void
blkcpy(uint64_t * dest, const uint64_t * src, size_t count)
{
do {
*dest++ = *src++; *dest++ = *src++;
*dest++ = *src++; *dest++ = *src++;
} while (count -= 4);
};
static void
blkxor(uint64_t * dest, const uint64_t * src, size_t count)
{
do {
*dest++ ^= *src++; *dest++ ^= *src++;
*dest++ ^= *src++; *dest++ ^= *src++;
} while (count -= 4);
};
typedef union {
uint32_t w[16];
uint64_t d[8];
} salsa20_blk_t;
static void
salsa20_simd_shuffle(const salsa20_blk_t * Bin, salsa20_blk_t * Bout)
{
#define COMBINE(out, in1, in2) \
Bout->d[out] = Bin->w[in1 * 2] | ((uint64_t)Bin->w[in2 * 2 + 1] << 32);
COMBINE(0, 0, 2)
COMBINE(1, 5, 7)
COMBINE(2, 2, 4)
COMBINE(3, 7, 1)
COMBINE(4, 4, 6)
COMBINE(5, 1, 3)
COMBINE(6, 6, 0)
COMBINE(7, 3, 5)
#undef COMBINE
}
static void
salsa20_simd_unshuffle(const salsa20_blk_t * Bin, salsa20_blk_t * Bout)
{
#define COMBINE(out, in1, in2) \
Bout->w[out * 2] = Bin->d[in1]; \
Bout->w[out * 2 + 1] = Bin->d[in2] >> 32;
COMBINE(0, 0, 6)
COMBINE(1, 5, 3)
COMBINE(2, 2, 0)
COMBINE(3, 7, 5)
COMBINE(4, 4, 2)
COMBINE(5, 1, 7)
COMBINE(6, 6, 4)
COMBINE(7, 3, 1)
#undef COMBINE
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(uint64_t B[8])
{
size_t i;
salsa20_blk_t X;
#define x X.w
salsa20_simd_unshuffle((const salsa20_blk_t *)B, &X);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
/* Operate on rows */
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
#undef R
}
#undef x
{
salsa20_blk_t Y;
salsa20_simd_shuffle(&X, &Y);
for (i = 0; i < 16; i += 4) {
((salsa20_blk_t *)B)->w[i] += Y.w[i];
((salsa20_blk_t *)B)->w[i + 1] += Y.w[i + 1];
((salsa20_blk_t *)B)->w[i + 2] += Y.w[i + 2];
((salsa20_blk_t *)B)->w[i + 3] += Y.w[i + 3];
}
}
}
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
blockmix_salsa8(const uint64_t * Bin, uint64_t * Bout, uint64_t * X, size_t r)
{
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy(X, &Bin[(2 * r - 1) * 8], 8);
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < 2 * r; i += 2) {
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 8], 8);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 4], X, 8);
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 8 + 8], 8);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 4 + r * 8], X, 8);
}
}
/* These are tunable */
#define S_BITS 8
#define S_SIMD 2
#define S_P 4
#define S_ROUNDS 6
/* Number of S-boxes. Not tunable, hard-coded in a few places. */
#define S_N 2
/* Derived values. Not tunable on their own. */
#define S_SIZE1 (1 << S_BITS)
#define S_MASK ((S_SIZE1 - 1) * S_SIMD * 8)
#define S_MASK2 (((uint64_t)S_MASK << 32) | S_MASK)
#define S_SIZE_ALL (S_N * S_SIZE1 * S_SIMD)
#define S_P_SIZE (S_P * S_SIMD)
#define S_MIN_R ((S_P * S_SIMD + 15) / 16)
/**
* pwxform(B):
* Transform the provided block using the provided S-boxes.
*/
static void
block_pwxform(uint64_t * B, const uint64_t * S)
{
uint64_t(*X)[S_SIMD] = (uint64_t(*)[S_SIMD])B;
const uint8_t *S0 = (const uint8_t *)S;
const uint8_t *S1 = (const uint8_t *)(S + S_SIZE1 * S_SIMD);
size_t i, j;
for (j = 0; j < S_P; j++) {
uint64_t *Xj = X[j];
uint64_t x0 = Xj[0];
uint64_t x1 = Xj[1];
for (i = 0; i < S_ROUNDS; i++) {
uint64_t x = x0 & S_MASK2;
const uint64_t *p0, *p1;
p0 = (const uint64_t *)(S0 + (uint32_t)x);
p1 = (const uint64_t *)(S1 + (x >> 32));
x0 = (uint64_t)(x0 >> 32) * (uint32_t)x0;
x0 += p0[0];
x0 ^= p1[0];
x1 = (uint64_t)(x1 >> 32) * (uint32_t)x1;
x1 += p0[1];
x1 ^= p1[1];
}
Xj[0] = x0;
Xj[1] = x1;
}
}
/**
* blockmix_pwxform(Bin, Bout, S, r):
* Compute Bout = BlockMix_pwxform{salsa20/8, S, r}(Bin). The input Bin must
* be 128r bytes in length; the output Bout must also be the same size.
*
* S lacks const qualifier to match blockmix_salsa8()'s prototype, which we
* need to refer to both functions via the same function pointers.
*/
static void
blockmix_pwxform(const uint64_t * Bin, uint64_t * Bout, uint64_t * S, size_t r)
{
size_t r1, r2, i;
// S_P_SIZE = 8;
/* Convert 128-byte blocks to (S_P_SIZE * 64-bit) blocks */
r1 = r * 128 / (S_P_SIZE * 8);
/* X <-- B_{r1 - 1} */
blkcpy(Bout, &Bin[(r1 - 1) * S_P_SIZE], S_P_SIZE);
/* X <-- X \xor B_i */
blkxor(Bout, Bin, S_P_SIZE);
/* X <-- H'(X) */
/* B'_i <-- X */
block_pwxform(Bout, S);
/* for i = 0 to r1 - 1 do */
for (i = 1; i < r1; i++) {
/* X <-- X \xor B_i */
blkcpy(&Bout[i * S_P_SIZE], &Bout[(i - 1) * S_P_SIZE],S_P_SIZE);
blkxor(&Bout[i * S_P_SIZE], &Bin[i * S_P_SIZE], S_P_SIZE);
/* X <-- H'(X) */
/* B'_i <-- X */
block_pwxform(&Bout[i * S_P_SIZE], S);
}
/* Handle partial blocks */
if (i * S_P_SIZE < r * 16) {
blkcpy(&Bout[i * S_P_SIZE], &Bin[i * S_P_SIZE],r * 16 - i * S_P_SIZE);
}
i = (r1 - 1) * S_P_SIZE / 8;
/* Convert 128-byte blocks to 64-byte blocks */
r2 = r * 2;
/* B'_i <-- H(B'_i) */
salsa20_8(&Bout[i * 8]);
i++;
/// not used yescrypt
for (; i < r2; i++) {
/* B'_i <-- H(B'_i \xor B'_{i-1}) */
blkxor(&Bout[i * 8], &Bout[(i - 1) * 8], 8);
salsa20_8(&Bout[i * 8]);
}
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
integerify(const uint64_t * B, size_t r)
{
/*
* Our 64-bit words are in host byte order, and word 6 holds the second 32-bit
* word of B_{2r-1} due to SIMD shuffling. The 64-bit value we return is also
* in host byte order, as it should be.
*/
const uint64_t * X = &B[(2 * r - 1) * 8];
uint32_t lo = X[0];
uint32_t hi = X[6] >> 32;
return ((uint64_t)hi << 32) + lo;
}
/**
* smix1(B, r, N, flags, V, NROM, shared, XY, S):
* Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be even and
* no smaller than 2.
*/
static void
smix1(uint64_t * B, size_t r, uint64_t N, yescrypt_flags_t flags,
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
uint64_t * XY, uint64_t * S)
{
void (*blockmix)(const uint64_t *, uint64_t *, uint64_t *, size_t) = (S ? blockmix_pwxform : blockmix_salsa8);
const uint64_t * VROM = (uint64_t *)shared->shared1.aligned;
uint32_t VROM_mask = shared->mask1;
size_t s = 16 * r;
uint64_t * X = V;
uint64_t * Y = &XY[s];
uint64_t * Z = S ? S : &XY[2 * s];
uint64_t n, i, j;
size_t k;
/* 1: X <-- B */
/* 3: V_i <-- X */
for (i = 0; i < 2 * r; i++) {
const salsa20_blk_t *src = (const salsa20_blk_t *)&B[i * 8];
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
salsa20_blk_t *dst = (salsa20_blk_t *)&X[i * 8];
for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]);
salsa20_simd_shuffle(tmp, dst);
}
/* 4: X <-- H(X) */
/* 3: V_i <-- X */
blockmix(X, Y, Z, r);
blkcpy(&V[s], Y, s);
X = XY;
if (NROM && (VROM_mask & 1)) {
if ((1 & VROM_mask) == 1) {
/* j <-- Integerify(X) mod NROM */
j = integerify(Y, r) & (NROM - 1);
/* X <-- H(X \xor VROM_j) */
blkxor(Y, &VROM[j * s], s);
}
blockmix(Y, X, Z, r);
/* 2: for i = 0 to N - 1 do */
for (n = 1, i = 2; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy(&V[i * s], X, s);
if ((i & (i - 1)) == 0)
n <<= 1;
/* j <-- Wrap(Integerify(X), i) */
j = integerify(X, r) & (n - 1);
j += i - n;
/* X <-- X \xor V_j */
blkxor(X, &V[j * s], s);
/* 4: X <-- H(X) */
blockmix(X, Y, Z, r);
/* 3: V_i <-- X */
blkcpy(&V[(i + 1) * s], Y, s);
j = integerify(Y, r);
if (((i + 1) & VROM_mask) == 1) {
/* j <-- Integerify(X) mod NROM */
j &= NROM - 1;
/* X <-- H(X \xor VROM_j) */
blkxor(Y, &VROM[j * s], s);
} else {
/* j <-- Wrap(Integerify(X), i) */
j &= n - 1;
j += i + 1 - n;
/* X <-- H(X \xor V_j) */
blkxor(Y, &V[j * s], s);
}
blockmix(Y, X, Z, r);
}
} else {
yescrypt_flags_t rw = flags & YESCRYPT_RW;
/* 4: X <-- H(X) */
blockmix(Y, X, Z, r);
/* 2: for i = 0 to N - 1 do */
for (n = 1, i = 2; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy(&V[i * s], X, s);
if (rw) {
if ((i & (i - 1)) == 0)
n <<= 1;
/* j <-- Wrap(Integerify(X), i) */
j = integerify(X, r) & (n - 1);
j += i - n;
/* X <-- X \xor V_j */
blkxor(X, &V[j * s], s);
}
/* 4: X <-- H(X) */
blockmix(X, Y, Z, r);
/* 3: V_i <-- X */
blkcpy(&V[(i + 1) * s], Y, s);
if (rw) {
/* j <-- Wrap(Integerify(X), i) */
j = integerify(Y, r) & (n - 1);
j += (i + 1) - n;
/* X <-- X \xor V_j */
blkxor(Y, &V[j * s], s);
}
/* 4: X <-- H(X) */
blockmix(Y, X, Z, r);
}
}
/* B' <-- X */
for (i = 0; i < 2 * r; i++) {
const salsa20_blk_t *src = (const salsa20_blk_t *)&X[i * 8];
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 8];
for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]);
salsa20_simd_unshuffle(tmp, dst);
}
}
/**
* smix2(B, r, N, Nloop, flags, V, NROM, shared, XY, S):
* Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The value Nloop must be even.
*/
static void
smix2(uint64_t * B, size_t r, uint64_t N, uint64_t Nloop,
yescrypt_flags_t flags,
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
uint64_t * XY, uint64_t * S)
{
void (*blockmix)(const uint64_t *, uint64_t *, uint64_t *, size_t) =
(S ? blockmix_pwxform : blockmix_salsa8);
const uint64_t * VROM = (uint64_t *)shared->shared1.aligned;
uint32_t VROM_mask = shared->mask1 | 1;
size_t s = 16 * r;
yescrypt_flags_t rw = flags & YESCRYPT_RW;
uint64_t * X = XY;
uint64_t * Y = &XY[s];
uint64_t * Z = S ? S : &XY[2 * s];
uint64_t i, j;
size_t k;
if (Nloop == 0)
return;
/* X <-- B' */
for (i = 0; i < 2 * r; i++) {
const salsa20_blk_t *src = (const salsa20_blk_t *)&B[i * 8];
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
salsa20_blk_t *dst = (salsa20_blk_t *)&X[i * 8];
for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]);
salsa20_simd_shuffle(tmp, dst);
}
if (NROM) {
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < Nloop; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, &V[j * s], s);
/* V_j <-- Xprev \xor V_j */
if (rw)
blkcpy(&V[j * s], X, s);
blockmix(X, Y, Z, r);
j = integerify(Y, r);
if (((i + 1) & VROM_mask) == 1) {
/* j <-- Integerify(X) mod NROM */
j &= NROM - 1;
/* X <-- H(X \xor VROM_j) */
blkxor(Y, &VROM[j * s], s);
} else {
/* 7: j <-- Integerify(X) mod N */
j &= N - 1;
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, &V[j * s], s);
/* V_j <-- Xprev \xor V_j */
if (rw)
blkcpy(&V[j * s], Y, s);
}
blockmix(Y, X, Z, r);
}
} else {
/* 6: for i = 0 to N - 1 do */
i = Nloop / 2;
do {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, &V[j * s], s);
/* V_j <-- Xprev \xor V_j */
if (rw)
blkcpy(&V[j * s], X, s);
blockmix(X, Y, Z, r);
/* 7: j <-- Integerify(X) mod N */
j = integerify(Y, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, &V[j * s], s);
/* V_j <-- Xprev \xor V_j */
if (rw)
blkcpy(&V[j * s], Y, s);
blockmix(Y, X, Z, r);
} while (--i);
}
/* 10: B' <-- X */
for (i = 0; i < 2 * r; i++) {
const salsa20_blk_t *src = (const salsa20_blk_t *)&X[i * 8];
salsa20_blk_t *tmp = (salsa20_blk_t *)Y;
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 8];
for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]);
salsa20_simd_unshuffle(tmp, dst);
}
}
/**
* p2floor(x):
* Largest power of 2 not greater than argument.
*/
static uint64_t
p2floor(uint64_t x)
{
uint64_t y;
while ((y = x & (x - 1)))
x = y;
return x;
}
/**
* smix(B, r, N, p, t, flags, V, NROM, shared, XY, S):
* Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the
* temporary storage V must be 128rN bytes in length; the temporary storage
* XY must be 256r+64 or (256r+64)*p bytes in length (the larger size is
* required with OpenMP-enabled builds). The value N must be a power of 2
* greater than 1.
*/
static void
smix(uint64_t * B, size_t r, uint64_t N, uint32_t p, uint32_t t,
yescrypt_flags_t flags,
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
uint64_t * XY, uint64_t * S)
{
size_t s = 16 * r;
uint64_t Nchunk = N / p, Nloop_all, Nloop_rw;
uint32_t i;
Nloop_all = Nchunk;
if (flags & YESCRYPT_RW) {
if (t <= 1) {
if (t)
Nloop_all *= 2; /* 2/3 */
Nloop_all = (Nloop_all + 2) / 3; /* 1/3, round up */
} else {
Nloop_all *= t - 1;
}
} else if (t) {
if (t == 1)
Nloop_all += (Nloop_all + 1) / 2; /* 1.5, round up */
Nloop_all *= t;
}
Nloop_rw = 0;
if (flags & __YESCRYPT_INIT_SHARED)
Nloop_rw = Nloop_all;
else if (flags & YESCRYPT_RW)
Nloop_rw = Nloop_all / p;
Nchunk &= ~(uint64_t)1; /* round down to even */
Nloop_all++; Nloop_all &= ~(uint64_t)1; /* round up to even */
Nloop_rw &= ~(uint64_t)1; /* round down to even */
for (i = 0; i < p; i++) {
uint64_t Vchunk = i * Nchunk;
uint64_t * Bp = &B[i * s];
uint64_t * Vp = &V[Vchunk * s];
uint64_t * XYp = XY;
uint64_t Np = (i < p - 1) ? Nchunk : (N - Vchunk);
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
if (Sp)
smix1(Bp, 1, S_SIZE_ALL / 16, (yescrypt_flags_t)flags & ~YESCRYPT_PWXFORM,Sp, NROM, shared, XYp, NULL);
if (!(flags & __YESCRYPT_INIT_SHARED_2))
smix1(Bp, r, Np, flags, Vp, NROM, shared, XYp, Sp);
smix2(Bp, r, p2floor(Np), Nloop_rw, flags, Vp, NROM, shared, XYp, Sp);
}
if (Nloop_all > Nloop_rw) {
for (i = 0; i < p; i++) {
uint64_t * Bp = &B[i * s];
uint64_t * XYp = XY;
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
smix2(Bp, r, N, Nloop_all - Nloop_rw,flags & ~YESCRYPT_RW, V, NROM, shared, XYp, Sp);
}
}
}
static void
smix_old(uint64_t * B, size_t r, uint64_t N, uint32_t p, uint32_t t,
yescrypt_flags_t flags,
uint64_t * V, uint64_t NROM, const yescrypt_shared_t * shared,
uint64_t * XY, uint64_t * S)
{
size_t s = 16 * r;
uint64_t Nchunk = N / p, Nloop_all, Nloop_rw;
uint32_t i;
Nloop_all = Nchunk;
if (flags & YESCRYPT_RW) {
if (t <= 1) {
if (t)
Nloop_all *= 2; /* 2/3 */
Nloop_all = (Nloop_all + 2) / 3; /* 1/3, round up */
}
else {
Nloop_all *= t - 1;
}
}
else if (t) {
if (t == 1)
Nloop_all += (Nloop_all + 1) / 2; /* 1.5, round up */
Nloop_all *= t;
}
Nloop_rw = 0;
if (flags & __YESCRYPT_INIT_SHARED)
Nloop_rw = Nloop_all;
else if (flags & YESCRYPT_RW)
Nloop_rw = Nloop_all / p;
Nchunk &= ~(uint64_t)1; /* round down to even */
Nloop_all++; Nloop_all &= ~(uint64_t)1; /* round up to even */
Nloop_rw &= ~(uint64_t)1; /* round down to even */
for (i = 0; i < p; i++) {
uint64_t Vchunk = i * Nchunk;
uint64_t * Bp = &B[i * s];
uint64_t * Vp = &V[Vchunk * s];
uint64_t * XYp = XY;
uint64_t Np = (i < p - 1) ? Nchunk : (N - Vchunk);
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
if (Sp) {
smix1(Bp, 1, S_SIZE_ALL / 16, flags & ~YESCRYPT_PWXFORM, Sp, NROM, shared, XYp, NULL);
}
if (!(flags & __YESCRYPT_INIT_SHARED_2)) {
smix1(Bp, r, Np, flags, Vp, NROM, shared, XYp, Sp);
}
smix2(Bp, r, p2floor(Np), Nloop_rw, flags, Vp, NROM, shared, XYp, Sp);
}
if (Nloop_all > Nloop_rw) {
for (i = 0; i < p; i++) {
uint64_t * Bp = &B[i * s];
uint64_t * XYp = XY;
uint64_t * Sp = S ? &S[i * S_SIZE_ALL] : S;
smix2(Bp, r, N, Nloop_all - Nloop_rw, flags & ~YESCRYPT_RW, V, NROM, shared, XYp, Sp);
}
}
}
/**
* yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen,
* N, r, p, t, flags, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen), or a revision of scrypt as requested by flags and shared, and
* write the result into buf. The parameters r, p, and buflen must satisfy
* r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N must be a power
* of 2 greater than 1.
*
* t controls computation time while not affecting peak memory usage. shared
* and flags may request special modes as described in yescrypt.h. local is
* the thread-local data structure, allowing to preserve and reuse a memory
* allocation across calls, thereby reducing its overhead.
*
* Return 0 on success; or -1 on error.
*/
int
yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen,
uint64_t N, uint32_t r, uint32_t p, uint32_t t, yescrypt_flags_t flags,
uint8_t * buf, size_t buflen)
{
yescrypt_region_t tmp;
uint64_t NROM;
size_t B_size, V_size, XY_size, need;
uint64_t * B, * V, * XY, * S;
uint64_t sha256[4];
/*
* YESCRYPT_PARALLEL_SMIX is a no-op at p = 1 for its intended purpose,
* so don't let it have side-effects. Without this adjustment, it'd
* enable the SHA-256 password pre-hashing and output post-hashing,
* because any deviation from classic scrypt implies those.
*/
if (p == 1)
flags &= ~YESCRYPT_PARALLEL_SMIX;
/* Sanity-check parameters */
if (flags & ~YESCRYPT_KNOWN_FLAGS) {
errno = EINVAL;
return -1;
}
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
return -1;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
return -1;
}
if (((N & (N - 1)) != 0) || (N <= 1) || (r < 1) || (p < 1)) {
errno = EINVAL;
return -1;
}
if ((flags & YESCRYPT_PARALLEL_SMIX) && (N / p <= 1)) {
errno = EINVAL;
return -1;
}
#if S_MIN_R > 1
if ((flags & YESCRYPT_PWXFORM) && (r < S_MIN_R)) {
errno = EINVAL;
return -1;
}
#endif
if ((p > SIZE_MAX / ((size_t)256 * r + 64)) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > SIZE_MAX / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
return -1;
}
if (N > UINT64_MAX / ((uint64_t)t + 1)) {
errno = EFBIG;
return -1;
}
if ((flags & YESCRYPT_PWXFORM) &&
p > SIZE_MAX / (S_SIZE_ALL * sizeof(*S))) {
errno = ENOMEM;
return -1;
}
NROM = 0;
if (shared->shared1.aligned) {
NROM = shared->shared1.aligned_size / ((size_t)128 * r);
if (((NROM & (NROM - 1)) != 0) || (NROM <= 1) ||
!(flags & YESCRYPT_RW)) {
errno = EINVAL;
return -1;
}
}
/* Allocate memory */
V = NULL;
V_size = (size_t)128 * r * N;
need = V_size;
if (flags & __YESCRYPT_INIT_SHARED) {
if (local->aligned_size < need) {
if (local->base || local->aligned ||
local->base_size || local->aligned_size) {
errno = EINVAL;
return -1;
}
if (!alloc_region(local, need))
return -1;
}
V = (uint64_t *)local->aligned;
need = 0;
}
B_size = (size_t)128 * r * p;
need += B_size;
if (need < B_size) {
errno = ENOMEM;
return -1;
}
XY_size = (size_t)256 * r + 64;
need += XY_size;
if (need < XY_size) {
errno = ENOMEM;
return -1;
}
if (flags & YESCRYPT_PWXFORM) {
size_t S_size = S_SIZE_ALL * sizeof(*S);
if (flags & YESCRYPT_PARALLEL_SMIX)
S_size *= p;
need += S_size;
if (need < S_size) {
errno = ENOMEM;
return -1;
}
}
if (flags & __YESCRYPT_INIT_SHARED) {
if (!alloc_region(&tmp, need))
return -1;
B = (uint64_t *)tmp.aligned;
XY = (uint64_t *)((uint8_t *)B + B_size);
} else {
init_region(&tmp);
if (local->aligned_size < need) {
if (free_region(local))
return -1;
if (!alloc_region(local, need))
return -1;
}
B = (uint64_t *)local->aligned;
V = (uint64_t *)((uint8_t *)B + B_size);
XY = (uint64_t *)((uint8_t *)V + V_size);
}
S = NULL;
if (flags & YESCRYPT_PWXFORM)
S = (uint64_t *)((uint8_t *)XY + XY_size);
if (t || flags) {
SHA256_CTX_Y ctx;
SHA256_Init_Y(&ctx);
SHA256_Update_Y(&ctx, passwd, passwdlen);
SHA256_Final_Y((uint8_t *)sha256, &ctx);
passwd = (uint8_t *)sha256;
passwdlen = sizeof(sha256);
}
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1,(uint8_t *)B, B_size);
if (t || flags)
{
blkcpy(sha256, B, sizeof(sha256) / sizeof(sha256[0]));
}
if (p == 1 || (flags & YESCRYPT_PARALLEL_SMIX)) {
smix(B, r, N, p, t, flags, V, NROM, shared, XY, S);
} else {
uint32_t i;
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[(size_t)16 * r * i], r, N, 1, t, flags, V, NROM, shared, XY, S);
}
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, (uint8_t *)B, B_size, 1, buf, buflen);
/*
* Except when computing classic scrypt, allow all computation so far
* to be performed on the client. The final steps below match those of
* SCRAM (RFC 5802), so that an extension of SCRAM (with the steps so
* far in place of SCRAM's use of PBKDF2 and with SHA-256 in place of
* SCRAM's use of SHA-1) would be usable with yescrypt hashes.
*/
if ((t || flags) && buflen == sizeof(sha256)) {
/* Compute ClientKey */
{
HMAC_SHA256_CTX_Y ctx;
HMAC_SHA256_Init_Y(&ctx, buf, buflen);
HMAC_SHA256_Update_Y(&ctx, salt, saltlen);
HMAC_SHA256_Final_Y((uint8_t *)sha256, &ctx);
}
/* Compute StoredKey */
{
SHA256_CTX_Y ctx;
SHA256_Init_Y(&ctx);
SHA256_Update_Y(&ctx, (uint8_t *)sha256, sizeof(sha256));
SHA256_Final_Y(buf, &ctx);
}
}
if (free_region(&tmp))
return -1;
/* Success! */
return 0;
}
int
yescrypt_kdf_old(const yescrypt_shared_t * shared, yescrypt_local_t * local,
const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen,
uint64_t N, uint32_t r, uint32_t p, uint32_t t, yescrypt_flags_t flags,
uint8_t * buf, size_t buflen)
{
yescrypt_region_t tmp;
uint64_t NROM;
size_t B_size, V_size, XY_size, need;
uint64_t * B, *V, *XY, *S;
uint64_t sha256[4];
/*
* YESCRYPT_PARALLEL_SMIX is a no-op at p = 1 for its intended purpose,
* so don't let it have side-effects. Without this adjustment, it'd
* enable the SHA-256 password pre-hashing and output post-hashing,
* because any deviation from classic scrypt implies those.
*/
if (p == 1)
flags &= ~YESCRYPT_PARALLEL_SMIX;
/* Sanity-check parameters */
if (flags & ~YESCRYPT_KNOWN_FLAGS) {
errno = EINVAL;
return -1;
}
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
return -1;
}
#endif
if ((uint64_t)(r)* (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
return -1;
}
if (((N & (N - 1)) != 0) || (N <= 1) || (r < 1) || (p < 1)) {
errno = EINVAL;
return -1;
}
if ((flags & YESCRYPT_PARALLEL_SMIX) && (N / p <= 1)) {
errno = EINVAL;
return -1;
}
#if S_MIN_R > 1
if ((flags & YESCRYPT_PWXFORM) && (r < S_MIN_R)) {
errno = EINVAL;
return -1;
}
#endif
if ((p > SIZE_MAX / ((size_t)256 * r + 64)) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > SIZE_MAX / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
return -1;
}
if (N > UINT64_MAX / ((uint64_t)t + 1)) {
errno = EFBIG;
return -1;
}
if ((flags & YESCRYPT_PWXFORM) &&
p > SIZE_MAX / (S_SIZE_ALL * sizeof(*S))) {
errno = ENOMEM;
return -1;
}
NROM = 0;
if (shared->shared1.aligned) {
NROM = shared->shared1.aligned_size / ((size_t)128 * r);
if (((NROM & (NROM - 1)) != 0) || (NROM <= 1) ||
!(flags & YESCRYPT_RW)) {
errno = EINVAL;
return -1;
}
}
/* Allocate memory */
V = NULL;
V_size = (size_t)128 * r * N;
need = V_size;
if (flags & __YESCRYPT_INIT_SHARED) {
if (local->aligned_size < need) {
if (local->base || local->aligned ||
local->base_size || local->aligned_size) {
errno = EINVAL;
return -1;
}
if (!alloc_region(local, need))
return -1;
}
V = (uint64_t *)local->aligned;
need = 0;
}
B_size = (size_t)128 * r * p;
need += B_size;
if (need < B_size) {
errno = ENOMEM;
return -1;
}
XY_size = (size_t)256 * r + 64;
need += XY_size;
if (need < XY_size) {
errno = ENOMEM;
return -1;
}
if (flags & YESCRYPT_PWXFORM) {
size_t S_size = S_SIZE_ALL * sizeof(*S);
if (flags & YESCRYPT_PARALLEL_SMIX)
S_size *= p;
need += S_size;
if (need < S_size) {
errno = ENOMEM;
return -1;
}
}
if (flags & __YESCRYPT_INIT_SHARED) {
if (!alloc_region(&tmp, need))
return -1;
B = (uint64_t *)tmp.aligned;
XY = (uint64_t *)((uint8_t *)B + B_size);
}
else {
init_region(&tmp);
if (local->aligned_size < need) {
if (free_region(local))
return -1;
if (!alloc_region(local, need))
return -1;
}
B = (uint64_t *)local->aligned;
V = (uint64_t *)((uint8_t *)B + B_size);
XY = (uint64_t *)((uint8_t *)V + V_size);
}
S = NULL;
if (flags & YESCRYPT_PWXFORM)
S = (uint64_t *)((uint8_t *)XY + XY_size);
if (t || flags) {
SHA256_CTX_Y ctx;
SHA256_Init_Y(&ctx);
SHA256_Update_Y(&ctx, passwd, passwdlen);
SHA256_Final_Y((uint8_t *)sha256, &ctx);
passwd = (uint8_t *)sha256;
passwdlen = sizeof(sha256);
}
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, (uint8_t *)B, B_size);
if (t || flags)
{
blkcpy(sha256, B, sizeof(sha256) / sizeof(sha256[0]));
}
smix(B, r, N, p, t, flags, V, NROM, shared, XY, S);
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, (uint8_t *)B, B_size, 1, buf, buflen);
/*
* Except when computing classic scrypt, allow all computation so far
* to be performed on the client. The final steps below match those of
* SCRAM (RFC 5802), so that an extension of SCRAM (with the steps so
* far in place of SCRAM's use of PBKDF2 and with SHA-256 in place of
* SCRAM's use of SHA-1) would be usable with yescrypt hashes.
*/
if ((t || flags) && buflen == sizeof(sha256)) {
/* Compute ClientKey */
{
HMAC_SHA256_CTX_Y ctx;
HMAC_SHA256_Init_Y(&ctx, buf, buflen);
HMAC_SHA256_Update_Y(&ctx, salt, saltlen);
HMAC_SHA256_Final_Y((uint8_t *)sha256, &ctx);
}
/* Compute StoredKey */
{
SHA256_CTX_Y ctx;
SHA256_Init_Y(&ctx);
SHA256_Update_Y(&ctx, (uint8_t *)sha256, sizeof(sha256));
SHA256_Final_Y(buf, &ctx);
}
}
if (free_region(&tmp))
return -1;
/* Success! */
return 0;
}