OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1424 lines
40 KiB

/*
* Copyright 2012-2013 Andrew Smith
* Copyright 2012 Xiangfu <xiangfu@openmobilefree.com>
* Copyright 2013 Con Kolivas <kernel@kolivas.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
/*
* Those code should be works fine with V2 and V3 bitstream of Icarus.
* Operation:
* No detection implement.
* Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head.
* Return: send back 32bits immediately when Icarus found a valid nonce.
* no query protocol implemented here, if no data send back in ~11.3
* seconds (full cover time on 32bit nonce range by 380MH/s speed)
* just send another work.
* Notice:
* 1. Icarus will start calculate when you push a work to them, even they
* are busy.
* 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the
* 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF.
* 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2
* valid nonce will all be send back.
* 4. Icarus will stop work when: a valid nonce has been found or 32 bits
* nonce range is completely calculated.
*/
#include <float.h>
#include <limits.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <strings.h>
#include <sys/time.h>
#include <unistd.h>
#include "config.h"
#ifdef WIN32
#include <windows.h>
#endif
#include "compat.h"
#include "miner.h"
#include "usbutils.h"
// The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h
#define ICARUS_IO_SPEED 115200
// The size of a successful nonce read
#define ICARUS_READ_SIZE 4
// Ensure the sizes are correct for the Serial read
#if (ICARUS_READ_SIZE != 4)
#error ICARUS_READ_SIZE must be 4
#endif
#define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1]
ASSERT1(sizeof(uint32_t) == 4);
// TODO: USB? Different calculation? - see usbstats to work it out e.g. 1/2 of normal send time
// or even use that number? 1/2
// #define ICARUS_READ_TIME(baud) ((double)ICARUS_READ_SIZE * (double)8.0 / (double)(baud))
// maybe 1ms?
#define ICARUS_READ_TIME(baud) (0.001)
// USB ms timeout to wait - user specified timeouts are multiples of this
#define ICARUS_WAIT_TIMEOUT 100
#define ICARUS_CMR2_TIMEOUT 1
// Defined in multiples of ICARUS_WAIT_TIMEOUT
// Must of course be greater than ICARUS_READ_COUNT_TIMING/ICARUS_WAIT_TIMEOUT
// There's no need to have this bigger, since the overhead/latency of extra work
// is pretty small once you get beyond a 10s nonce range time and 10s also
// means that nothing slower than 429MH/s can go idle so most icarus devices
// will always mine without idling
#define ICARUS_READ_TIME_LIMIT_MAX 100
// In timing mode: Default starting value until an estimate can be obtained
// 5000 ms allows for up to a ~840MH/s device
#define ICARUS_READ_COUNT_TIMING 5000
#define ICARUS_READ_COUNT_MIN ICARUS_WAIT_TIMEOUT
#define SECTOMS(s) ((int)((s) * 1000))
// How many ms below the expected completion time to abort work
// extra in case the last read is delayed
#define ICARUS_READ_REDUCE ((int)(ICARUS_WAIT_TIMEOUT * 1.5))
// For a standard Icarus REV3 (to 5 places)
// Since this rounds up a the last digit - it is a slight overestimate
// Thus the hash rate will be a VERY slight underestimate
// (by a lot less than the displayed accuracy)
// Minor inaccuracy of these numbers doesn't affect the work done,
// only the displayed MH/s
#define ICARUS_REV3_HASH_TIME 0.0000000026316
#define LANCELOT_HASH_TIME 0.0000000025000
#define ASICMINERUSB_HASH_TIME 0.0000000029761
// TODO: What is it?
#define CAIRNSMORE1_HASH_TIME 0.0000000027000
// Per FPGA
#define CAIRNSMORE2_HASH_TIME 0.0000000066600
#define NANOSEC 1000000000.0
#define CAIRNSMORE2_INTS 4
// Icarus Rev3 doesn't send a completion message when it finishes
// the full nonce range, so to avoid being idle we must abort the
// work (by starting a new work item) shortly before it finishes
//
// Thus we need to estimate 2 things:
// 1) How many hashes were done if the work was aborted
// 2) How high can the timeout be before the Icarus is idle,
// to minimise the number of work items started
// We set 2) to 'the calculated estimate' - ICARUS_READ_REDUCE
// to ensure the estimate ends before idle
//
// The simple calculation used is:
// Tn = Total time in seconds to calculate n hashes
// Hs = seconds per hash
// Xn = number of hashes
// W = code/usb overhead per work
//
// Rough but reasonable estimate:
// Tn = Hs * Xn + W (of the form y = mx + b)
//
// Thus:
// Line of best fit (using least squares)
//
// Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2)
// W = Sum(Ti)/n - (Hs*Sum(Xi))/n
//
// N.B. W is less when aborting work since we aren't waiting for the reply
// to be transferred back (ICARUS_READ_TIME)
// Calculating the hashes aborted at n seconds is thus just n/Hs
// (though this is still a slight overestimate due to code delays)
//
// Both below must be exceeded to complete a set of data
// Minimum how long after the first, the last data point must be
#define HISTORY_SEC 60
// Minimum how many points a single ICARUS_HISTORY should have
#define MIN_DATA_COUNT 5
// The value MIN_DATA_COUNT used is doubled each history until it exceeds:
#define MAX_MIN_DATA_COUNT 100
static struct timeval history_sec = { HISTORY_SEC, 0 };
// Store the last INFO_HISTORY data sets
// [0] = current data, not yet ready to be included as an estimate
// Each new data set throws the last old set off the end thus
// keeping a ongoing average of recent data
#define INFO_HISTORY 10
struct ICARUS_HISTORY {
struct timeval finish;
double sumXiTi;
double sumXi;
double sumTi;
double sumXi2;
uint32_t values;
uint32_t hash_count_min;
uint32_t hash_count_max;
};
enum timing_mode { MODE_DEFAULT, MODE_SHORT, MODE_LONG, MODE_VALUE };
static const char *MODE_DEFAULT_STR = "default";
static const char *MODE_SHORT_STR = "short";
static const char *MODE_SHORT_STREQ = "short=";
static const char *MODE_LONG_STR = "long";
static const char *MODE_LONG_STREQ = "long=";
static const char *MODE_VALUE_STR = "value";
static const char *MODE_UNKNOWN_STR = "unknown";
struct ICARUS_INFO {
enum sub_ident ident;
int intinfo;
// time to calculate the golden_ob
uint64_t golden_hashes;
struct timeval golden_tv;
struct ICARUS_HISTORY history[INFO_HISTORY+1];
uint32_t min_data_count;
int timeout;
// seconds per Hash
double Hs;
// ms til we abort
int read_time;
// ms limit for (short=/long=) read_time
int read_time_limit;
enum timing_mode timing_mode;
bool do_icarus_timing;
double fullnonce;
int count;
double W;
uint32_t values;
uint64_t hash_count_range;
// Determine the cost of history processing
// (which will only affect W)
uint64_t history_count;
struct timeval history_time;
// icarus-options
int baud;
int work_division;
int fpga_count;
uint32_t nonce_mask;
uint8_t cmr2_speed;
bool speed_next_work;
bool flash_next_work;
};
#define ICARUS_MIDSTATE_SIZE 32
#define ICARUS_UNUSED_SIZE 16
#define ICARUS_WORK_SIZE 12
#define ICARUS_WORK_DATA_OFFSET 64
#define ICARUS_CMR2_SPEED_FACTOR 2.5
#define ICARUS_CMR2_SPEED_MIN_INT 100
#define ICARUS_CMR2_SPEED_DEF_INT 180
#define ICARUS_CMR2_SPEED_MAX_INT 220
#define CMR2_INT_TO_SPEED(_speed) ((uint8_t)((float)_speed / ICARUS_CMR2_SPEED_FACTOR))
#define ICARUS_CMR2_SPEED_MIN CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_MIN_INT)
#define ICARUS_CMR2_SPEED_DEF CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_DEF_INT)
#define ICARUS_CMR2_SPEED_MAX CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_MAX_INT)
#define ICARUS_CMR2_SPEED_INC 1
#define ICARUS_CMR2_SPEED_DEC -1
#define ICARUS_CMR2_SPEED_FAIL -10
#define ICARUS_CMR2_PREFIX ((uint8_t)0xB7)
#define ICARUS_CMR2_CMD_SPEED ((uint8_t)0)
#define ICARUS_CMR2_CMD_FLASH ((uint8_t)1)
#define ICARUS_CMR2_DATA_FLASH_OFF ((uint8_t)0)
#define ICARUS_CMR2_DATA_FLASH_ON ((uint8_t)1)
#define ICARUS_CMR2_CHECK ((uint8_t)0x6D)
struct ICARUS_WORK {
uint8_t midstate[ICARUS_MIDSTATE_SIZE];
// These 4 bytes are for CMR2 bitstreams that handle MHz adjustment
uint8_t check;
uint8_t data;
uint8_t cmd;
uint8_t prefix;
uint8_t unused[ICARUS_UNUSED_SIZE];
uint8_t work[ICARUS_WORK_SIZE];
};
#define END_CONDITION 0x0000ffff
// Looking for options in --icarus-timing and --icarus-options:
//
// Code increments this each time we start to look at a device
// However, this means that if other devices are checked by
// the Icarus code (e.g. Avalon only as at 20130517)
// they will count in the option offset
//
// This, however, is deterministic so that's OK
//
// If we were to increment after successfully finding an Icarus
// that would be random since an Icarus may fail and thus we'd
// not be able to predict the option order
//
// Devices are checked in the order libusb finds them which is ?
//
static int option_offset = -1;
/*
#define ICA_BUFSIZ (0x200)
static void transfer_read(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, enum usb_cmds cmd)
{
int err;
err = usb_transfer_read(icarus, request_type, bRequest, wValue, wIndex, buf, bufsiz, amount, cmd);
applog(LOG_DEBUG, "%s: cgid %d %s got err %d",
icarus->drv->name, icarus->cgminer_id,
usb_cmdname(cmd), err);
}
*/
static void _transfer(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, enum usb_cmds cmd)
{
int err;
err = usb_transfer_data(icarus, request_type, bRequest, wValue, wIndex, data, siz, cmd);
applog(LOG_DEBUG, "%s: cgid %d %s got err %d",
icarus->drv->name, icarus->cgminer_id,
usb_cmdname(cmd), err);
}
#define transfer(icarus, request_type, bRequest, wValue, wIndex, cmd) \
_transfer(icarus, request_type, bRequest, wValue, wIndex, NULL, 0, cmd)
static void icarus_initialise(struct cgpu_info *icarus, int baud)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
uint16_t wValue, wIndex;
enum sub_ident ident;
int interface;
if (icarus->usbinfo.nodev)
return;
usb_set_cps(icarus, baud / 10);
usb_enable_cps(icarus);
interface = _usb_interface(icarus, info->intinfo);
ident = usb_ident(icarus);
switch (ident) {
case IDENT_BLT:
case IDENT_LLT:
case IDENT_CMR1:
case IDENT_CMR2:
// Reset
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_RESET,
interface, C_RESET);
if (icarus->usbinfo.nodev)
return;
// Latency
_usb_ftdi_set_latency(icarus, info->intinfo);
if (icarus->usbinfo.nodev)
return;
// Set data control
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, FTDI_VALUE_DATA_BLT,
interface, C_SETDATA);
if (icarus->usbinfo.nodev)
return;
// default to BLT/LLT 115200
wValue = FTDI_VALUE_BAUD_BLT;
wIndex = FTDI_INDEX_BAUD_BLT;
if (ident == IDENT_CMR1 || ident == IDENT_CMR2) {
switch (baud) {
case 115200:
wValue = FTDI_VALUE_BAUD_CMR_115;
wIndex = FTDI_INDEX_BAUD_CMR_115;
break;
case 57600:
wValue = FTDI_VALUE_BAUD_CMR_57;
wIndex = FTDI_INDEX_BAUD_CMR_57;
break;
default:
quit(1, "icarus_intialise() invalid baud (%d) for Cairnsmore1", baud);
break;
}
}
// Set the baud
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, wValue,
(wIndex & 0xff00) | interface, C_SETBAUD);
if (icarus->usbinfo.nodev)
return;
// Set Modem Control
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM,
interface, C_SETMODEM);
if (icarus->usbinfo.nodev)
return;
// Set Flow Control
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW,
interface, C_SETFLOW);
if (icarus->usbinfo.nodev)
return;
// Clear any sent data
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_TX,
interface, C_PURGETX);
if (icarus->usbinfo.nodev)
return;
// Clear any received data
transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_RX,
interface, C_PURGERX);
break;
case IDENT_ICA:
// Set Data Control
transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_CTRL, PL2303_VALUE_CTRL,
interface, C_SETDATA);
if (icarus->usbinfo.nodev)
return;
// Set Line Control
uint32_t ica_data[2] = { PL2303_VALUE_LINE0, PL2303_VALUE_LINE1 };
_transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_LINE, PL2303_VALUE_LINE,
interface, &ica_data[0], PL2303_VALUE_LINE_SIZE, C_SETLINE);
if (icarus->usbinfo.nodev)
return;
// Vendor
transfer(icarus, PL2303_VENDOR_OUT, PL2303_REQUEST_VENDOR, PL2303_VALUE_VENDOR,
interface, C_VENDOR);
break;
case IDENT_AMU:
// Enable the UART
transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_IFC_ENABLE,
CP210X_VALUE_UART_ENABLE,
interface, C_ENABLE_UART);
if (icarus->usbinfo.nodev)
return;
// Set data control
transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_DATA, CP210X_VALUE_DATA,
interface, C_SETDATA);
if (icarus->usbinfo.nodev)
return;
// Set the baud
uint32_t data = CP210X_DATA_BAUD;
_transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_BAUD, 0,
interface, &data, sizeof(data), C_SETBAUD);
break;
default:
quit(1, "icarus_intialise() called with invalid %s cgid %i ident=%d",
icarus->drv->name, icarus->cgminer_id, ident);
}
}
static void rev(unsigned char *s, size_t l)
{
size_t i, j;
unsigned char t;
for (i = 0, j = l - 1; i < j; i++, j--) {
t = s[i];
s[i] = s[j];
s[j] = t;
}
}
#define ICA_NONCE_ERROR -1
#define ICA_NONCE_OK 0
#define ICA_NONCE_RESTART 1
#define ICA_NONCE_TIMEOUT 2
static int icarus_get_nonce(struct cgpu_info *icarus, unsigned char *buf, struct timeval *tv_start,
struct timeval *tv_finish, struct thr_info *thr, int read_time)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
int err, amt, rc;
if (icarus->usbinfo.nodev)
return ICA_NONCE_ERROR;
cgtime(tv_start);
err = usb_read_ii_timeout_cancellable(icarus, info->intinfo, (char *)buf,
ICARUS_READ_SIZE, &amt, read_time,
C_GETRESULTS);
cgtime(tv_finish);
if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
applog(LOG_ERR, "%s%i: Comms error (rerr=%d amt=%d)", icarus->drv->name,
icarus->device_id, err, amt);
dev_error(icarus, REASON_DEV_COMMS_ERROR);
return ICA_NONCE_ERROR;
}
if (amt >= ICARUS_READ_SIZE)
return ICA_NONCE_OK;
rc = SECTOMS(tdiff(tv_finish, tv_start));
if (thr && thr->work_restart) {
applog(LOG_DEBUG, "Icarus Read: Work restart at %d ms", rc);
return ICA_NONCE_RESTART;
}
if (amt > 0)
applog(LOG_DEBUG, "Icarus Read: Timeout reading for %d ms", rc);
else
applog(LOG_DEBUG, "Icarus Read: No data for %d ms", rc);
return ICA_NONCE_TIMEOUT;
}
static const char *timing_mode_str(enum timing_mode timing_mode)
{
switch(timing_mode) {
case MODE_DEFAULT:
return MODE_DEFAULT_STR;
case MODE_SHORT:
return MODE_SHORT_STR;
case MODE_LONG:
return MODE_LONG_STR;
case MODE_VALUE:
return MODE_VALUE_STR;
default:
return MODE_UNKNOWN_STR;
}
}
static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
enum sub_ident ident;
double Hs;
char buf[BUFSIZ+1];
char *ptr, *comma, *eq;
size_t max;
int i;
if (opt_icarus_timing == NULL)
buf[0] = '\0';
else {
ptr = opt_icarus_timing;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
ident = usb_ident(icarus);
switch (ident) {
case IDENT_ICA:
info->Hs = ICARUS_REV3_HASH_TIME;
break;
case IDENT_BLT:
case IDENT_LLT:
info->Hs = LANCELOT_HASH_TIME;
break;
case IDENT_AMU:
info->Hs = ASICMINERUSB_HASH_TIME;
break;
case IDENT_CMR1:
info->Hs = CAIRNSMORE1_HASH_TIME;
break;
case IDENT_CMR2:
info->Hs = CAIRNSMORE2_HASH_TIME;
break;
default:
quit(1, "Icarus get_options() called with invalid %s ident=%d",
icarus->drv->name, ident);
}
info->read_time = 0;
info->read_time_limit = 0; // 0 = no limit
if (strcasecmp(buf, MODE_SHORT_STR) == 0) {
// short
info->read_time = ICARUS_READ_COUNT_TIMING;
info->timing_mode = MODE_SHORT;
info->do_icarus_timing = true;
} else if (strncasecmp(buf, MODE_SHORT_STREQ, strlen(MODE_SHORT_STREQ)) == 0) {
// short=limit
info->read_time = ICARUS_READ_COUNT_TIMING;
info->timing_mode = MODE_SHORT;
info->do_icarus_timing = true;
info->read_time_limit = atoi(&buf[strlen(MODE_SHORT_STREQ)]);
if (info->read_time_limit < 0)
info->read_time_limit = 0;
if (info->read_time_limit > ICARUS_READ_TIME_LIMIT_MAX)
info->read_time_limit = ICARUS_READ_TIME_LIMIT_MAX;
} else if (strcasecmp(buf, MODE_LONG_STR) == 0) {
// long
info->read_time = ICARUS_READ_COUNT_TIMING;
info->timing_mode = MODE_LONG;
info->do_icarus_timing = true;
} else if (strncasecmp(buf, MODE_LONG_STREQ, strlen(MODE_LONG_STREQ)) == 0) {
// long=limit
info->read_time = ICARUS_READ_COUNT_TIMING;
info->timing_mode = MODE_LONG;
info->do_icarus_timing = true;
info->read_time_limit = atoi(&buf[strlen(MODE_LONG_STREQ)]);
if (info->read_time_limit < 0)
info->read_time_limit = 0;
if (info->read_time_limit > ICARUS_READ_TIME_LIMIT_MAX)
info->read_time_limit = ICARUS_READ_TIME_LIMIT_MAX;
} else if ((Hs = atof(buf)) != 0) {
// ns[=read_time]
info->Hs = Hs / NANOSEC;
info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
if ((eq = strchr(buf, '=')) != NULL)
info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT;
if (info->read_time < ICARUS_READ_COUNT_MIN)
info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE;
if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN))
info->read_time = ICARUS_READ_COUNT_MIN;
info->timing_mode = MODE_VALUE;
info->do_icarus_timing = false;
} else {
// Anything else in buf just uses DEFAULT mode
info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
if ((eq = strchr(buf, '=')) != NULL)
info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT;
if (info->read_time < ICARUS_READ_COUNT_MIN)
info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE;
if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN))
info->read_time = ICARUS_READ_COUNT_MIN;
info->timing_mode = MODE_DEFAULT;
info->do_icarus_timing = false;
}
info->min_data_count = MIN_DATA_COUNT;
// All values are in multiples of ICARUS_WAIT_TIMEOUT
info->read_time_limit *= ICARUS_WAIT_TIMEOUT;
applog(LOG_DEBUG, "%s: cgid %d Init: mode=%s read_time=%dms limit=%dms Hs=%e",
icarus->drv->name, icarus->cgminer_id,
timing_mode_str(info->timing_mode),
info->read_time, info->read_time_limit, info->Hs);
}
static uint32_t mask(int work_division)
{
uint32_t nonce_mask = 0x7fffffff;
// yes we can calculate these, but this way it's easy to see what they are
switch (work_division) {
case 1:
nonce_mask = 0xffffffff;
break;
case 2:
nonce_mask = 0x7fffffff;
break;
case 4:
nonce_mask = 0x3fffffff;
break;
case 8:
nonce_mask = 0x1fffffff;
break;
default:
quit(1, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division);
}
return nonce_mask;
}
static void get_options(int this_option_offset, struct cgpu_info *icarus, int *baud, int *work_division, int *fpga_count)
{
char buf[BUFSIZ+1];
char *ptr, *comma, *colon, *colon2;
enum sub_ident ident;
size_t max;
int i, tmp;
if (opt_icarus_options == NULL)
buf[0] = '\0';
else {
ptr = opt_icarus_options;
for (i = 0; i < this_option_offset; i++) {
comma = strchr(ptr, ',');
if (comma == NULL)
break;
ptr = comma + 1;
}
comma = strchr(ptr, ',');
if (comma == NULL)
max = strlen(ptr);
else
max = comma - ptr;
if (max > BUFSIZ)
max = BUFSIZ;
strncpy(buf, ptr, max);
buf[max] = '\0';
}
ident = usb_ident(icarus);
switch (ident) {
case IDENT_ICA:
case IDENT_BLT:
case IDENT_LLT:
*baud = ICARUS_IO_SPEED;
*work_division = 2;
*fpga_count = 2;
break;
case IDENT_AMU:
*baud = ICARUS_IO_SPEED;
*work_division = 1;
*fpga_count = 1;
break;
case IDENT_CMR1:
*baud = ICARUS_IO_SPEED;
*work_division = 2;
*fpga_count = 2;
break;
case IDENT_CMR2:
*baud = ICARUS_IO_SPEED;
*work_division = 1;
*fpga_count = 1;
break;
default:
quit(1, "Icarus get_options() called with invalid %s ident=%d",
icarus->drv->name, ident);
}
if (*buf) {
colon = strchr(buf, ':');
if (colon)
*(colon++) = '\0';
if (*buf) {
tmp = atoi(buf);
switch (tmp) {
case 115200:
*baud = 115200;
break;
case 57600:
*baud = 57600;
break;
default:
quit(1, "Invalid icarus-options for baud (%s) must be 115200 or 57600", buf);
}
}
if (colon && *colon) {
colon2 = strchr(colon, ':');
if (colon2)
*(colon2++) = '\0';
if (*colon) {
tmp = atoi(colon);
if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) {
*work_division = tmp;
*fpga_count = tmp; // default to the same
} else {
quit(1, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon);
}
}
if (colon2 && *colon2) {
tmp = atoi(colon2);
if (tmp > 0 && tmp <= *work_division)
*fpga_count = tmp;
else {
quit(1, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division);
}
}
}
}
}
static bool icarus_detect_one(struct libusb_device *dev, struct usb_find_devices *found)
{
int this_option_offset = ++option_offset;
struct ICARUS_INFO *info;
struct timeval tv_start, tv_finish;
// Block 171874 nonce = (0xa2870100) = 0x000187a2
// N.B. golden_ob MUST take less time to calculate
// than the timeout set in icarus_open()
// This one takes ~0.53ms on Rev3 Icarus
const char golden_ob[] =
"4679ba4ec99876bf4bfe086082b40025"
"4df6c356451471139a3afa71e48f544a"
"00000000000000000000000000000000"
"0000000087320b1a1426674f2fa722ce";
const char golden_nonce[] = "000187a2";
const uint32_t golden_nonce_val = 0x000187a2;
unsigned char nonce_bin[ICARUS_READ_SIZE];
struct ICARUS_WORK workdata;
char *nonce_hex;
int baud, uninitialised_var(work_division), uninitialised_var(fpga_count);
struct cgpu_info *icarus;
int ret, err, amount, tries, i;
bool ok;
bool cmr2_ok[CAIRNSMORE2_INTS];
int cmr2_count;
if ((sizeof(workdata) << 1) != (sizeof(golden_ob) - 1))
quithere(1, "Data and golden_ob sizes don't match");
icarus = usb_alloc_cgpu(&icarus_drv, 1);
if (!usb_init(icarus, dev, found))
goto shin;
usb_buffer_enable(icarus);
get_options(this_option_offset, icarus, &baud, &work_division, &fpga_count);
hex2bin((void *)(&workdata), golden_ob, sizeof(workdata));
info = (struct ICARUS_INFO *)calloc(1, sizeof(struct ICARUS_INFO));
if (unlikely(!info))
quit(1, "Failed to malloc ICARUS_INFO");
icarus->device_data = (void *)info;
info->ident = usb_ident(icarus);
switch (info->ident) {
case IDENT_ICA:
case IDENT_BLT:
case IDENT_LLT:
case IDENT_AMU:
case IDENT_CMR1:
info->timeout = ICARUS_WAIT_TIMEOUT;
break;
case IDENT_CMR2:
if (found->intinfo_count != CAIRNSMORE2_INTS) {
quithere(1, "CMR2 Interface count (%d) isn't expected: %d",
found->intinfo_count,
CAIRNSMORE2_INTS);
}
info->timeout = ICARUS_CMR2_TIMEOUT;
cmr2_count = 0;
for (i = 0; i < CAIRNSMORE2_INTS; i++)
cmr2_ok[i] = false;
break;
default:
quit(1, "%s icarus_detect_one() invalid %s ident=%d",
icarus->drv->dname, icarus->drv->dname, info->ident);
}
// For CMR2 test each USB Interface
cmr2_retry:
tries = 2;
ok = false;
while (!ok && tries-- > 0) {
icarus_initialise(icarus, baud);
err = usb_write_ii(icarus, info->intinfo,
(char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK);
if (err != LIBUSB_SUCCESS || amount != sizeof(workdata))
continue;
memset(nonce_bin, 0, sizeof(nonce_bin));
ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, NULL, 100);
if (ret != ICA_NONCE_OK)
continue;
nonce_hex = bin2hex(nonce_bin, sizeof(nonce_bin));
if (strncmp(nonce_hex, golden_nonce, 8) == 0)
ok = true;
else {
if (tries < 0 && info->ident != IDENT_CMR2) {
applog(LOG_ERR,
"Icarus Detect: "
"Test failed at %s: get %s, should: %s",
icarus->device_path, nonce_hex, golden_nonce);
}
}
free(nonce_hex);
}
if (!ok) {
if (info->ident != IDENT_CMR2)
goto unshin;
if (info->intinfo < CAIRNSMORE2_INTS-1) {
info->intinfo++;
goto cmr2_retry;
}
} else {
if (info->ident == IDENT_CMR2) {
applog(LOG_DEBUG,
"Icarus Detect: "
"Test succeeded at %s i%d: got %s",
icarus->device_path, info->intinfo, golden_nonce);
cmr2_ok[info->intinfo] = true;
cmr2_count++;
if (info->intinfo < CAIRNSMORE2_INTS-1) {
info->intinfo++;
goto cmr2_retry;
}
}
}
if (info->ident == IDENT_CMR2) {
if (cmr2_count == 0) {
applog(LOG_ERR,
"Icarus Detect: Test failed at %s: for all %d CMR2 Interfaces",
icarus->device_path, CAIRNSMORE2_INTS);
goto unshin;
}
// set the interface to the first one that succeeded
for (i = 0; i < CAIRNSMORE2_INTS; i++)
if (cmr2_ok[i]) {
info->intinfo = i;
break;
}
} else {
applog(LOG_DEBUG,
"Icarus Detect: "
"Test succeeded at %s: got %s",
icarus->device_path, golden_nonce);
}
/* We have a real Icarus! */
if (!add_cgpu(icarus))
goto unshin;
update_usb_stats(icarus);
applog(LOG_INFO, "%s%d: Found at %s",
icarus->drv->name, icarus->device_id, icarus->device_path);
if (info->ident == IDENT_CMR2) {
applog(LOG_INFO, "%s%d: with %d Interface%s",
icarus->drv->name, icarus->device_id,
cmr2_count, cmr2_count > 1 ? "s" : "");
// Assume 1 or 2 are running FPGA pairs
if (cmr2_count < 3) {
work_division = fpga_count = 2;
info->Hs /= 2;
}
}
applog(LOG_DEBUG, "%s%d: Init baud=%d work_division=%d fpga_count=%d",
icarus->drv->name, icarus->device_id, baud, work_division, fpga_count);
info->baud = baud;
info->work_division = work_division;
info->fpga_count = fpga_count;
info->nonce_mask = mask(work_division);
info->golden_hashes = (golden_nonce_val & info->nonce_mask) * fpga_count;
timersub(&tv_finish, &tv_start, &(info->golden_tv));
set_timing_mode(this_option_offset, icarus);
if (info->ident == IDENT_CMR2) {
int i;
for (i = info->intinfo + 1; i < icarus->usbdev->found->intinfo_count; i++) {
struct cgpu_info *cgtmp;
struct ICARUS_INFO *intmp;
if (!cmr2_ok[i])
continue;
cgtmp = usb_copy_cgpu(icarus);
if (!cgtmp) {
applog(LOG_ERR, "%s%d: Init failed initinfo %d",
icarus->drv->name, icarus->device_id, i);
continue;
}
cgtmp->usbinfo.usbstat = USB_NOSTAT;
intmp = (struct ICARUS_INFO *)malloc(sizeof(struct ICARUS_INFO));
if (unlikely(!intmp))
quit(1, "Failed2 to malloc ICARUS_INFO");
cgtmp->device_data = (void *)intmp;
// Initialise everything to match
memcpy(intmp, info, sizeof(struct ICARUS_INFO));
intmp->intinfo = i;
icarus_initialise(cgtmp, baud);
if (!add_cgpu(cgtmp)) {
usb_uninit(cgtmp);
free(intmp);
continue;
}
update_usb_stats(cgtmp);
}
}
return true;
unshin:
usb_uninit(icarus);
free(info);
icarus->device_data = NULL;
shin:
icarus = usb_free_cgpu(icarus);
return false;
}
static void icarus_detect(bool __maybe_unused hotplug)
{
usb_detect(&icarus_drv, icarus_detect_one);
}
static bool icarus_prepare(__maybe_unused struct thr_info *thr)
{
// struct cgpu_info *icarus = thr->cgpu;
return true;
}
static void cmr2_command(struct cgpu_info *icarus, uint8_t cmd, uint8_t data)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
struct ICARUS_WORK workdata;
int amount;
memset((void *)(&workdata), 0, sizeof(workdata));
workdata.prefix = ICARUS_CMR2_PREFIX;
workdata.cmd = cmd;
workdata.data = data;
workdata.check = workdata.data ^ workdata.cmd ^ workdata.prefix ^ ICARUS_CMR2_CHECK;
usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK);
}
static void cmr2_commands(struct cgpu_info *icarus)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
if (info->speed_next_work) {
info->speed_next_work = false;
cmr2_command(icarus, ICARUS_CMR2_CMD_SPEED, info->cmr2_speed);
return;
}
if (info->flash_next_work) {
info->flash_next_work = false;
cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_ON);
cgsleep_ms(250);
cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_OFF);
cgsleep_ms(250);
cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_ON);
cgsleep_ms(250);
cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_OFF);
return;
}
}
static int64_t icarus_scanwork(struct thr_info *thr)
{
struct cgpu_info *icarus = thr->cgpu;
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data);
int ret, err, amount;
unsigned char nonce_bin[ICARUS_READ_SIZE];
struct ICARUS_WORK workdata;
char *ob_hex;
uint32_t nonce;
int64_t hash_count = 0;
struct timeval tv_start, tv_finish, elapsed;
struct timeval tv_history_start, tv_history_finish;
double Ti, Xi;
int curr_hw_errors, i;
bool was_hw_error;
struct work *work;
struct ICARUS_HISTORY *history0, *history;
int count;
double Hs, W, fullnonce;
int read_time;
bool limited;
int64_t estimate_hashes;
uint32_t values;
int64_t hash_count_range;
// Device is gone
if (icarus->usbinfo.nodev)
return -1;
elapsed.tv_sec = elapsed.tv_usec = 0;
work = get_work(thr, thr->id);
memset((void *)(&workdata), 0, sizeof(workdata));
memcpy(&(workdata.midstate), work->midstate, ICARUS_MIDSTATE_SIZE);
memcpy(&(workdata.work), work->data + ICARUS_WORK_DATA_OFFSET, ICARUS_WORK_SIZE);
rev((void *)(&(workdata.midstate)), ICARUS_MIDSTATE_SIZE);
rev((void *)(&(workdata.work)), ICARUS_WORK_SIZE);
if (info->speed_next_work || info->flash_next_work)
cmr2_commands(icarus);
// We only want results for the work we are about to send
usb_buffer_clear(icarus);
err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK);
if (err < 0 || amount != sizeof(workdata)) {
applog(LOG_ERR, "%s%i: Comms error (werr=%d amt=%d)",
icarus->drv->name, icarus->device_id, err, amount);
dev_error(icarus, REASON_DEV_COMMS_ERROR);
icarus_initialise(icarus, info->baud);
goto out;
}
if (opt_debug) {
ob_hex = bin2hex((void *)(&workdata), sizeof(workdata));
applog(LOG_DEBUG, "%s%d: sent %s",
icarus->drv->name, icarus->device_id, ob_hex);
free(ob_hex);
}
/* Icarus will return 4 bytes (ICARUS_READ_SIZE) nonces or nothing */
memset(nonce_bin, 0, sizeof(nonce_bin));
ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, thr, info->read_time);
if (ret == ICA_NONCE_ERROR)
goto out;
work->blk.nonce = 0xffffffff;
// aborted before becoming idle, get new work
if (ret == ICA_NONCE_TIMEOUT || ret == ICA_NONCE_RESTART) {
timersub(&tv_finish, &tv_start, &elapsed);
// ONLY up to just when it aborted
// We didn't read a reply so we don't subtract ICARUS_READ_TIME
estimate_hashes = ((double)(elapsed.tv_sec)
+ ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs;
// If some Serial-USB delay allowed the full nonce range to
// complete it can't have done more than a full nonce
if (unlikely(estimate_hashes > 0xffffffff))
estimate_hashes = 0xffffffff;
applog(LOG_DEBUG, "%s%d: no nonce = 0x%08lX hashes (%ld.%06lds)",
icarus->drv->name, icarus->device_id,
(long unsigned int)estimate_hashes,
elapsed.tv_sec, elapsed.tv_usec);
hash_count = estimate_hashes;
goto out;
}
memcpy((char *)&nonce, nonce_bin, sizeof(nonce_bin));
nonce = htobe32(nonce);
curr_hw_errors = icarus->hw_errors;
submit_nonce(thr, work, nonce);
was_hw_error = (curr_hw_errors > icarus->hw_errors);
hash_count = (nonce & info->nonce_mask);
hash_count++;
hash_count *= info->fpga_count;
#if 0
// This appears to only return zero nonce values
if (usb_buffer_size(icarus) > 3) {
memcpy((char *)&nonce, icarus->usbdev->buffer, sizeof(nonce_bin));
nonce = htobe32(nonce);
applog(LOG_WARNING, "%s%d: attempting to submit 2nd nonce = 0x%08lX",
icarus->drv->name, icarus->device_id,
(long unsigned int)nonce);
curr_hw_errors = icarus->hw_errors;
submit_nonce(thr, work, nonce);
was_hw_error = (curr_hw_errors > icarus->hw_errors);
}
#endif
if (opt_debug || info->do_icarus_timing)
timersub(&tv_finish, &tv_start, &elapsed);
applog(LOG_DEBUG, "%s%d: nonce = 0x%08x = 0x%08lX hashes (%ld.%06lds)",
icarus->drv->name, icarus->device_id,
nonce, (long unsigned int)hash_count,
elapsed.tv_sec, elapsed.tv_usec);
// Ignore possible end condition values ... and hw errors
// TODO: set limitations on calculated values depending on the device
// to avoid crap values caused by CPU/Task Switching/Swapping/etc
if (info->do_icarus_timing
&& !was_hw_error
&& ((nonce & info->nonce_mask) > END_CONDITION)
&& ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) {
cgtime(&tv_history_start);
history0 = &(info->history[0]);
if (history0->values == 0)
timeradd(&tv_start, &history_sec, &(history0->finish));
Ti = (double)(elapsed.tv_sec)
+ ((double)(elapsed.tv_usec))/((double)1000000)
- ((double)ICARUS_READ_TIME(info->baud));
Xi = (double)hash_count;
history0->sumXiTi += Xi * Ti;
history0->sumXi += Xi;
history0->sumTi += Ti;
history0->sumXi2 += Xi * Xi;
history0->values++;
if (history0->hash_count_max < hash_count)
history0->hash_count_max = hash_count;
if (history0->hash_count_min > hash_count || history0->hash_count_min == 0)
history0->hash_count_min = hash_count;
if (history0->values >= info->min_data_count
&& timercmp(&tv_start, &(history0->finish), >)) {
for (i = INFO_HISTORY; i > 0; i--)
memcpy(&(info->history[i]),
&(info->history[i-1]),
sizeof(struct ICARUS_HISTORY));
// Initialise history0 to zero for summary calculation
memset(history0, 0, sizeof(struct ICARUS_HISTORY));
// We just completed a history data set
// So now recalc read_time based on the whole history thus we will
// initially get more accurate until it completes INFO_HISTORY
// total data sets
count = 0;
for (i = 1 ; i <= INFO_HISTORY; i++) {
history = &(info->history[i]);
if (history->values >= MIN_DATA_COUNT) {
count++;
history0->sumXiTi += history->sumXiTi;
history0->sumXi += history->sumXi;
history0->sumTi += history->sumTi;
history0->sumXi2 += history->sumXi2;
history0->values += history->values;
if (history0->hash_count_max < history->hash_count_max)
history0->hash_count_max = history->hash_count_max;
if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0)
history0->hash_count_min = history->hash_count_min;
}
}
// All history data
Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi)
/ (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi);
W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values;
hash_count_range = history0->hash_count_max - history0->hash_count_min;
values = history0->values;
// Initialise history0 to zero for next data set
memset(history0, 0, sizeof(struct ICARUS_HISTORY));
fullnonce = W + Hs * (((double)0xffffffff) + 1);
read_time = SECTOMS(fullnonce) - ICARUS_READ_REDUCE;
if (info->read_time_limit > 0 && read_time > info->read_time_limit) {
read_time = info->read_time_limit;
limited = true;
} else
limited = false;
info->Hs = Hs;
info->read_time = read_time;
info->fullnonce = fullnonce;
info->count = count;
info->W = W;
info->values = values;
info->hash_count_range = hash_count_range;
if (info->min_data_count < MAX_MIN_DATA_COUNT)
info->min_data_count *= 2;
else if (info->timing_mode == MODE_SHORT)
info->do_icarus_timing = false;
applog(LOG_WARNING, "%s%d Re-estimate: Hs=%e W=%e read_time=%dms%s fullnonce=%.3fs",
icarus->drv->name, icarus->device_id, Hs, W, read_time,
limited ? " (limited)" : "", fullnonce);
}
info->history_count++;
cgtime(&tv_history_finish);
timersub(&tv_history_finish, &tv_history_start, &tv_history_finish);
timeradd(&tv_history_finish, &(info->history_time), &(info->history_time));
}
out:
free_work(work);
return hash_count;
}
static struct api_data *icarus_api_stats(struct cgpu_info *cgpu)
{
struct api_data *root = NULL;
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data);
// Warning, access to these is not locked - but we don't really
// care since hashing performance is way more important than
// locking access to displaying API debug 'stats'
// If locking becomes an issue for any of them, use copy_data=true also
root = api_add_int(root, "read_time", &(info->read_time), false);
root = api_add_int(root, "read_time_limit", &(info->read_time_limit), false);
root = api_add_double(root, "fullnonce", &(info->fullnonce), false);
root = api_add_int(root, "count", &(info->count), false);
root = api_add_hs(root, "Hs", &(info->Hs), false);
root = api_add_double(root, "W", &(info->W), false);
root = api_add_uint(root, "total_values", &(info->values), false);
root = api_add_uint64(root, "range", &(info->hash_count_range), false);
root = api_add_uint64(root, "history_count", &(info->history_count), false);
root = api_add_timeval(root, "history_time", &(info->history_time), false);
root = api_add_uint(root, "min_data_count", &(info->min_data_count), false);
root = api_add_uint(root, "timing_values", &(info->history[0].values), false);
root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false);
root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false);
root = api_add_int(root, "baud", &(info->baud), false);
root = api_add_int(root, "work_division", &(info->work_division), false);
root = api_add_int(root, "fpga_count", &(info->fpga_count), false);
return root;
}
static void icarus_statline_before(char *buf, size_t bufsiz, struct cgpu_info *cgpu)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data);
if (info->ident == IDENT_CMR2 && info->cmr2_speed > 0)
tailsprintf(buf, bufsiz, "%5.1fMhz", (float)(info->cmr2_speed) * ICARUS_CMR2_SPEED_FACTOR);
else
tailsprintf(buf, bufsiz, " ");
tailsprintf(buf, bufsiz, " | ");
}
static void icarus_shutdown(__maybe_unused struct thr_info *thr)
{
// TODO: ?
}
static void icarus_identify(struct cgpu_info *cgpu)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data);
if (info->ident == IDENT_CMR2)
info->flash_next_work = true;
}
static char *icarus_set(struct cgpu_info *cgpu, char *option, char *setting, char *replybuf)
{
struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data);
int val;
if (info->ident != IDENT_CMR2) {
strcpy(replybuf, "no set options available");
return replybuf;
}
if (strcasecmp(option, "help") == 0) {
sprintf(replybuf, "clock: range %d-%d",
ICARUS_CMR2_SPEED_MIN_INT, ICARUS_CMR2_SPEED_MAX_INT);
return replybuf;
}
if (strcasecmp(option, "clock") == 0) {
if (!setting || !*setting) {
sprintf(replybuf, "missing clock setting");
return replybuf;
}
val = atoi(setting);
if (val < ICARUS_CMR2_SPEED_MIN_INT || val > ICARUS_CMR2_SPEED_MAX_INT) {
sprintf(replybuf, "invalid clock: '%s' valid range %d-%d",
setting,
ICARUS_CMR2_SPEED_MIN_INT,
ICARUS_CMR2_SPEED_MAX_INT);
}
info->cmr2_speed = CMR2_INT_TO_SPEED(val);
info->speed_next_work = true;
return NULL;
}
sprintf(replybuf, "Unknown option: %s", option);
return replybuf;
}
struct device_drv icarus_drv = {
.drv_id = DRIVER_icarus,
.dname = "Icarus",
.name = "ICA",
.drv_detect = icarus_detect,
.hash_work = &hash_driver_work,
.get_api_stats = icarus_api_stats,
.get_statline_before = icarus_statline_before,
.set_device = icarus_set,
.identify_device = icarus_identify,
.thread_prepare = icarus_prepare,
.scanwork = icarus_scanwork,
.thread_shutdown = icarus_shutdown,
};