OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2717 lines
64 KiB

/*
* Copyright 2011-2013 Con Kolivas
* Copyright 2010 Jeff Garzik
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <jansson.h>
#ifdef HAVE_LIBCURL
#include <curl/curl.h>
#endif
#include <time.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#ifndef WIN32
#include <fcntl.h>
# ifdef __linux__
# include <sys/prctl.h>
# endif
# include <sys/socket.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <netdb.h>
#else
# include <windows.h>
# include <winsock2.h>
# include <ws2tcpip.h>
12 years ago
# include <mmsystem.h>
#endif
#include "miner.h"
#include "elist.h"
#include "compat.h"
#include "util.h"
#define DEFAULT_SOCKWAIT 60
bool successful_connect = false;
static void keep_sockalive(SOCKETTYPE fd)
{
const int tcp_one = 1;
#ifndef WIN32
const int tcp_keepidle = 45;
const int tcp_keepintvl = 30;
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, O_NONBLOCK | flags);
#else
u_long flags = 1;
ioctlsocket(fd, FIONBIO, &flags);
#endif
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (const void *)&tcp_one, sizeof(tcp_one));
#ifndef __linux__
if (!opt_delaynet)
setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (const void *)&tcp_one, sizeof(tcp_one));
#else /* __linux__ */
if (!opt_delaynet)
setsockopt(fd, SOL_TCP, TCP_NODELAY, (const void *)&tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPCNT, &tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPIDLE, &tcp_keepidle, sizeof(tcp_keepidle));
setsockopt(fd, SOL_TCP, TCP_KEEPINTVL, &tcp_keepintvl, sizeof(tcp_keepintvl));
#endif /* __linux__ */
#ifdef __APPLE_CC__
setsockopt(fd, IPPROTO_TCP, TCP_KEEPALIVE, &tcp_keepintvl, sizeof(tcp_keepintvl));
#endif /* __APPLE_CC__ */
}
struct tq_ent {
void *data;
struct list_head q_node;
};
#ifdef HAVE_LIBCURL
struct timeval nettime;
struct data_buffer {
void *buf;
size_t len;
};
struct upload_buffer {
const void *buf;
size_t len;
};
struct header_info {
char *lp_path;
int rolltime;
char *reason;
char *stratum_url;
bool hadrolltime;
bool canroll;
bool hadexpire;
};
static void databuf_free(struct data_buffer *db)
{
if (!db)
return;
free(db->buf);
memset(db, 0, sizeof(*db));
}
static size_t all_data_cb(const void *ptr, size_t size, size_t nmemb,
void *user_data)
{
struct data_buffer *db = user_data;
size_t len = size * nmemb;
size_t oldlen, newlen;
void *newmem;
static const unsigned char zero = 0;
oldlen = db->len;
newlen = oldlen + len;
newmem = realloc(db->buf, newlen + 1);
if (!newmem)
return 0;
db->buf = newmem;
db->len = newlen;
memcpy(db->buf + oldlen, ptr, len);
memcpy(db->buf + newlen, &zero, 1); /* null terminate */
return len;
}
static size_t upload_data_cb(void *ptr, size_t size, size_t nmemb,
void *user_data)
{
struct upload_buffer *ub = user_data;
unsigned int len = size * nmemb;
if (len > ub->len)
len = ub->len;
if (len) {
memcpy(ptr, ub->buf, len);
ub->buf += len;
ub->len -= len;
}
return len;
}
static size_t resp_hdr_cb(void *ptr, size_t size, size_t nmemb, void *user_data)
{
struct header_info *hi = user_data;
size_t remlen, slen, ptrlen = size * nmemb;
char *rem, *val = NULL, *key = NULL;
void *tmp;
val = calloc(1, ptrlen);
key = calloc(1, ptrlen);
if (!key || !val)
goto out;
tmp = memchr(ptr, ':', ptrlen);
if (!tmp || (tmp == ptr)) /* skip empty keys / blanks */
goto out;
slen = tmp - ptr;
if ((slen + 1) == ptrlen) /* skip key w/ no value */
goto out;
memcpy(key, ptr, slen); /* store & nul term key */
key[slen] = 0;
rem = ptr + slen + 1; /* trim value's leading whitespace */
remlen = ptrlen - slen - 1;
while ((remlen > 0) && (isspace(*rem))) {
remlen--;
rem++;
}
memcpy(val, rem, remlen); /* store value, trim trailing ws */
val[remlen] = 0;
while ((*val) && (isspace(val[strlen(val) - 1])))
val[strlen(val) - 1] = 0;
if (!*val) /* skip blank value */
goto out;
if (opt_protocol)
applog(LOG_DEBUG, "HTTP hdr(%s): %s", key, val);
if (!strcasecmp("X-Roll-Ntime", key)) {
hi->hadrolltime = true;
if (!strncasecmp("N", val, 1))
applog(LOG_DEBUG, "X-Roll-Ntime: N found");
else {
hi->canroll = true;
/* Check to see if expire= is supported and if not, set
* the rolltime to the default scantime */
if (strlen(val) > 7 && !strncasecmp("expire=", val, 7)) {
sscanf(val + 7, "%d", &hi->rolltime);
hi->hadexpire = true;
} else
hi->rolltime = opt_scantime;
applog(LOG_DEBUG, "X-Roll-Ntime expiry set to %d", hi->rolltime);
}
}
if (!strcasecmp("X-Long-Polling", key)) {
hi->lp_path = val; /* steal memory reference */
val = NULL;
}
if (!strcasecmp("X-Reject-Reason", key)) {
hi->reason = val; /* steal memory reference */
val = NULL;
}
if (!strcasecmp("X-Stratum", key)) {
hi->stratum_url = val;
val = NULL;
}
out:
free(key);
free(val);
return ptrlen;
}
static void last_nettime(struct timeval *last)
{
rd_lock(&netacc_lock);
last->tv_sec = nettime.tv_sec;
last->tv_usec = nettime.tv_usec;
rd_unlock(&netacc_lock);
}
static void set_nettime(void)
{
wr_lock(&netacc_lock);
cgtime(&nettime);
wr_unlock(&netacc_lock);
}
#if CURL_HAS_KEEPALIVE
static void keep_curlalive(CURL *curl)
{
const long int keepalive = 1;
curl_easy_setopt(curl, CURLOPT_TCP_KEEPALIVE, keepalive);
curl_easy_setopt(curl, CURLOPT_TCP_KEEPIDLE, opt_tcp_keepalive);
curl_easy_setopt(curl, CURLOPT_TCP_KEEPINTVL, opt_tcp_keepalive);
}
#else
static void keep_curlalive(CURL *curl)
{
SOCKETTYPE sock;
curl_easy_getinfo(curl, CURLINFO_LASTSOCKET, (long *)&sock);
keep_sockalive(sock);
}
#endif
static int curl_debug_cb(__maybe_unused CURL *handle, curl_infotype type,
__maybe_unused char *data, size_t size, void *userdata)
{
struct pool *pool = (struct pool *)userdata;
switch(type) {
case CURLINFO_HEADER_IN:
case CURLINFO_DATA_IN:
case CURLINFO_SSL_DATA_IN:
pool->sgminer_pool_stats.net_bytes_received += size;
break;
case CURLINFO_HEADER_OUT:
case CURLINFO_DATA_OUT:
case CURLINFO_SSL_DATA_OUT:
pool->sgminer_pool_stats.net_bytes_sent += size;
break;
case CURLINFO_TEXT:
default:
break;
}
return 0;
}
json_t *json_rpc_call(CURL *curl, const char *url,
const char *userpass, const char *rpc_req,
bool probe, bool longpoll, int *rolltime,
struct pool *pool, bool share)
{
long timeout = longpoll ? (60 * 60) : 60;
struct data_buffer all_data = {NULL, 0};
struct header_info hi = {NULL, 0, NULL, NULL, false, false, false};
char len_hdr[64], user_agent_hdr[128];
char curl_err_str[CURL_ERROR_SIZE];
struct curl_slist *headers = NULL;
struct upload_buffer upload_data;
json_t *val, *err_val, *res_val;
bool probing = false;
double byte_count;
json_error_t err;
int rc;
memset(&err, 0, sizeof(err));
/* it is assumed that 'curl' is freshly [re]initialized at this pt */
if (probe)
probing = !pool->probed;
curl_easy_setopt(curl, CURLOPT_TIMEOUT, timeout);
// CURLOPT_VERBOSE won't write to stderr if we use CURLOPT_DEBUGFUNCTION
curl_easy_setopt(curl, CURLOPT_DEBUGFUNCTION, curl_debug_cb);
curl_easy_setopt(curl, CURLOPT_DEBUGDATA, (void *)pool);
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1);
/* Shares are staggered already and delays in submission can be costly
* so do not delay them */
if (!opt_delaynet || share)
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, all_data_cb);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
curl_easy_setopt(curl, CURLOPT_READFUNCTION, upload_data_cb);
curl_easy_setopt(curl, CURLOPT_READDATA, &upload_data);
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, resp_hdr_cb);
curl_easy_setopt(curl, CURLOPT_HEADERDATA, &hi);
curl_easy_setopt(curl, CURLOPT_USE_SSL, CURLUSESSL_TRY);
if (pool->rpc_proxy) {
curl_easy_setopt(curl, CURLOPT_PROXY, pool->rpc_proxy);
curl_easy_setopt(curl, CURLOPT_PROXYTYPE, pool->rpc_proxytype);
} else if (opt_socks_proxy) {
curl_easy_setopt(curl, CURLOPT_PROXY, opt_socks_proxy);
curl_easy_setopt(curl, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS4);
}
if (userpass) {
curl_easy_setopt(curl, CURLOPT_USERPWD, userpass);
curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
}
if (longpoll)
keep_curlalive(curl);
curl_easy_setopt(curl, CURLOPT_POST, 1);
if (opt_protocol)
applog(LOG_DEBUG, "JSON protocol request:\n%s", rpc_req);
upload_data.buf = rpc_req;
upload_data.len = strlen(rpc_req);
sprintf(len_hdr, "Content-Length: %lu",
(unsigned long) upload_data.len);
sprintf(user_agent_hdr, "User-Agent: %s", PACKAGE_STRING);
headers = curl_slist_append(headers,
"Content-type: application/json");
headers = curl_slist_append(headers,
"X-Mining-Extensions: longpoll midstate rollntime submitold");
if (likely(global_hashrate)) {
char ghashrate[255];
sprintf(ghashrate, "X-Mining-Hashrate: %llu", global_hashrate);
headers = curl_slist_append(headers, ghashrate);
}
headers = curl_slist_append(headers, len_hdr);
headers = curl_slist_append(headers, user_agent_hdr);
headers = curl_slist_append(headers, "Expect:"); /* disable Expect hdr*/
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
if (opt_delaynet) {
/* Don't delay share submission, but still track the nettime */
if (!share) {
long long now_msecs, last_msecs;
struct timeval now, last;
cgtime(&now);
last_nettime(&last);
now_msecs = (long long)now.tv_sec * 1000;
now_msecs += now.tv_usec / 1000;
last_msecs = (long long)last.tv_sec * 1000;
last_msecs += last.tv_usec / 1000;
if (now_msecs > last_msecs && now_msecs - last_msecs < 250) {
struct timespec rgtp;
rgtp.tv_sec = 0;
rgtp.tv_nsec = (250 - (now_msecs - last_msecs)) * 1000000;
nanosleep(&rgtp, NULL);
}
}
set_nettime();
}
rc = curl_easy_perform(curl);
if (rc) {
applog(LOG_INFO, "HTTP request failed: %s", curl_err_str);
goto err_out;
}
if (!all_data.buf) {
applog(LOG_DEBUG, "Empty data received in json_rpc_call.");
goto err_out;
}
pool->sgminer_pool_stats.times_sent++;
if (curl_easy_getinfo(curl, CURLINFO_SIZE_UPLOAD, &byte_count) == CURLE_OK)
pool->sgminer_pool_stats.bytes_sent += byte_count;
pool->sgminer_pool_stats.times_received++;
if (curl_easy_getinfo(curl, CURLINFO_SIZE_DOWNLOAD, &byte_count) == CURLE_OK)
pool->sgminer_pool_stats.bytes_received += byte_count;
if (probing) {
pool->probed = true;
/* If X-Long-Polling was found, activate long polling */
if (hi.lp_path) {
if (pool->hdr_path != NULL)
free(pool->hdr_path);
pool->hdr_path = hi.lp_path;
} else
pool->hdr_path = NULL;
if (hi.stratum_url) {
pool->stratum_url = hi.stratum_url;
hi.stratum_url = NULL;
}
} else {
if (hi.lp_path) {
free(hi.lp_path);
hi.lp_path = NULL;
}
if (hi.stratum_url) {
free(hi.stratum_url);
hi.stratum_url = NULL;
}
}
*rolltime = hi.rolltime;
pool->sgminer_pool_stats.rolltime = hi.rolltime;
pool->sgminer_pool_stats.hadrolltime = hi.hadrolltime;
pool->sgminer_pool_stats.canroll = hi.canroll;
pool->sgminer_pool_stats.hadexpire = hi.hadexpire;
val = JSON_LOADS(all_data.buf, &err);
if (!val) {
applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text);
if (opt_protocol)
applog(LOG_DEBUG, "JSON protocol response:\n%s", (char *)(all_data.buf));
goto err_out;
}
if (opt_protocol) {
char *s = json_dumps(val, JSON_INDENT(3));
applog(LOG_DEBUG, "JSON protocol response:\n%s", s);
free(s);
}
/* JSON-RPC valid response returns a non-null 'result',
* and a null 'error'.
*/
res_val = json_object_get(val, "result");
err_val = json_object_get(val, "error");
if (!res_val ||(err_val && !json_is_null(err_val))) {
char *s;
if (err_val)
s = json_dumps(err_val, JSON_INDENT(3));
else
s = strdup("(unknown reason)");
applog(LOG_INFO, "JSON-RPC call failed: %s", s);
free(s);
goto err_out;
}
if (hi.reason) {
json_object_set_new(val, "reject-reason", json_string(hi.reason));
free(hi.reason);
hi.reason = NULL;
}
successful_connect = true;
databuf_free(&all_data);
curl_slist_free_all(headers);
curl_easy_reset(curl);
return val;
err_out:
databuf_free(&all_data);
curl_slist_free_all(headers);
curl_easy_reset(curl);
if (!successful_connect)
applog(LOG_DEBUG, "Failed to connect in json_rpc_call");
curl_easy_setopt(curl, CURLOPT_FRESH_CONNECT, 1);
return NULL;
}
#define PROXY_HTTP CURLPROXY_HTTP
#define PROXY_HTTP_1_0 CURLPROXY_HTTP_1_0
#define PROXY_SOCKS4 CURLPROXY_SOCKS4
#define PROXY_SOCKS5 CURLPROXY_SOCKS5
#define PROXY_SOCKS4A CURLPROXY_SOCKS4A
#define PROXY_SOCKS5H CURLPROXY_SOCKS5_HOSTNAME
#else /* HAVE_LIBCURL */
#define PROXY_HTTP 0
#define PROXY_HTTP_1_0 1
#define PROXY_SOCKS4 2
#define PROXY_SOCKS5 3
#define PROXY_SOCKS4A 4
#define PROXY_SOCKS5H 5
#endif /* HAVE_LIBCURL */
static struct {
const char *name;
proxytypes_t proxytype;
} proxynames[] = {
{ "http:", PROXY_HTTP },
{ "http0:", PROXY_HTTP_1_0 },
{ "socks4:", PROXY_SOCKS4 },
{ "socks5:", PROXY_SOCKS5 },
{ "socks4a:", PROXY_SOCKS4A },
{ "socks5h:", PROXY_SOCKS5H },
{ NULL, 0 }
};
const char *proxytype(proxytypes_t proxytype)
{
int i;
for (i = 0; proxynames[i].name; i++)
if (proxynames[i].proxytype == proxytype)
return proxynames[i].name;
return "invalid";
}
char *get_proxy(char *url, struct pool *pool)
{
pool->rpc_proxy = NULL;
char *split;
int plen, len, i;
for (i = 0; proxynames[i].name; i++) {
plen = strlen(proxynames[i].name);
if (strncmp(url, proxynames[i].name, plen) == 0) {
if (!(split = strchr(url, '|')))
return url;
*split = '\0';
len = split - url;
pool->rpc_proxy = malloc(1 + len - plen);
if (!(pool->rpc_proxy))
quithere(1, "Failed to malloc rpc_proxy");
strcpy(pool->rpc_proxy, url + plen);
extract_sockaddr(pool->rpc_proxy, &pool->sockaddr_proxy_url, &pool->sockaddr_proxy_port);
pool->rpc_proxytype = proxynames[i].proxytype;
url = split + 1;
break;
}
}
return url;
}
/* Adequate size s==len*2 + 1 must be alloced to use this variant */
void __bin2hex(char *s, const unsigned char *p, size_t len)
{
int i;
static const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
for (i = 0; i < (int)len; i++) {
*s++ = hex[p[i] >> 4];
*s++ = hex[p[i] & 0xF];
}
*s++ = '\0';
}
/* Returns a malloced array string of a binary value of arbitrary length. The
* array is rounded up to a 4 byte size to appease architectures that need
* aligned array sizes */
char *bin2hex(const unsigned char *p, size_t len)
{
ssize_t slen;
char *s;
slen = len * 2 + 1;
if (slen % 4)
slen += 4 - (slen % 4);
s = calloc(slen, 1);
if (unlikely(!s))
quithere(1, "Failed to calloc");
__bin2hex(s, p, len);
return s;
}
/* Does the reverse of bin2hex but does not allocate any ram */
static const int hex2bin_tbl[256] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
bool hex2bin(unsigned char *p, const char *hexstr, size_t len)
{
int nibble1, nibble2;
unsigned char idx;
bool ret = false;
while (*hexstr && len) {
if (unlikely(!hexstr[1])) {
applog(LOG_ERR, "hex2bin str truncated");
return ret;
}
idx = *hexstr++;
nibble1 = hex2bin_tbl[idx];
idx = *hexstr++;
nibble2 = hex2bin_tbl[idx];
if (unlikely((nibble1 < 0) || (nibble2 < 0))) {
applog(LOG_ERR, "hex2bin scan failed");
return ret;
}
*p++ = (((unsigned char)nibble1) << 4) | ((unsigned char)nibble2);
--len;
}
if (likely(len == 0 && *hexstr == 0))
ret = true;
return ret;
}
bool fulltest(const unsigned char *hash, const unsigned char *target)
{
uint32_t *hash32 = (uint32_t *)hash;
uint32_t *target32 = (uint32_t *)target;
bool rc = true;
int i;
for (i = 28 / 4; i >= 0; i--) {
uint32_t h32tmp = le32toh(hash32[i]);
uint32_t t32tmp = le32toh(target32[i]);
if (h32tmp > t32tmp) {
rc = false;
break;
}
if (h32tmp < t32tmp) {
rc = true;
break;
}
}
if (opt_debug) {
unsigned char hash_swap[32], target_swap[32];
char *hash_str, *target_str;
swab256(hash_swap, hash);
swab256(target_swap, target);
hash_str = bin2hex(hash_swap, 32);
target_str = bin2hex(target_swap, 32);
applog(LOG_DEBUG, " Proof: %s\nTarget: %s\nTrgVal? %s",
hash_str,
target_str,
rc ? "YES (hash <= target)" :
"no (false positive; hash > target)");
free(hash_str);
free(target_str);
}
return rc;
}
struct thread_q *tq_new(void)
{
struct thread_q *tq;
tq = calloc(1, sizeof(*tq));
if (!tq)
return NULL;
INIT_LIST_HEAD(&tq->q);
pthread_mutex_init(&tq->mutex, NULL);
pthread_cond_init(&tq->cond, NULL);
return tq;
}
void tq_free(struct thread_q *tq)
{
struct tq_ent *ent, *iter;
if (!tq)
return;
list_for_each_entry_safe(ent, iter, &tq->q, q_node) {
list_del(&ent->q_node);
free(ent);
}
pthread_cond_destroy(&tq->cond);
pthread_mutex_destroy(&tq->mutex);
memset(tq, 0, sizeof(*tq)); /* poison */
free(tq);
}
static void tq_freezethaw(struct thread_q *tq, bool frozen)
{
mutex_lock(&tq->mutex);
tq->frozen = frozen;
pthread_cond_signal(&tq->cond);
mutex_unlock(&tq->mutex);
}
void tq_freeze(struct thread_q *tq)
{
tq_freezethaw(tq, true);
}
void tq_thaw(struct thread_q *tq)
{
tq_freezethaw(tq, false);
}
bool tq_push(struct thread_q *tq, void *data)
{
struct tq_ent *ent;
bool rc = true;
ent = calloc(1, sizeof(*ent));
if (!ent)
return false;
ent->data = data;
INIT_LIST_HEAD(&ent->q_node);
mutex_lock(&tq->mutex);
if (!tq->frozen) {
list_add_tail(&ent->q_node, &tq->q);
} else {
free(ent);
rc = false;
}
pthread_cond_signal(&tq->cond);
mutex_unlock(&tq->mutex);
return rc;
}
void *tq_pop(struct thread_q *tq, const struct timespec *abstime)
{
struct tq_ent *ent;
void *rval = NULL;
int rc;
mutex_lock(&tq->mutex);
if (!list_empty(&tq->q))
goto pop;
if (abstime)
rc = pthread_cond_timedwait(&tq->cond, &tq->mutex, abstime);
else
rc = pthread_cond_wait(&tq->cond, &tq->mutex);
if (rc)
goto out;
if (list_empty(&tq->q))
goto out;
pop:
ent = list_entry(tq->q.next, struct tq_ent, q_node);
rval = ent->data;
list_del(&ent->q_node);
free(ent);
out:
mutex_unlock(&tq->mutex);
return rval;
}
int thr_info_create(struct thr_info *thr, pthread_attr_t *attr, void *(*start) (void *), void *arg)
{
cgsem_init(&thr->sem);
return pthread_create(&thr->pth, attr, start, arg);
}
void thr_info_cancel(struct thr_info *thr)
{
if (!thr)
return;
if (PTH(thr) != 0L) {
pthread_cancel(thr->pth);
PTH(thr) = 0L;
}
cgsem_destroy(&thr->sem);
}
void subtime(struct timeval *a, struct timeval *b)
{
timersub(a, b, b);
}
void addtime(struct timeval *a, struct timeval *b)
{
timeradd(a, b, b);
}
bool time_more(struct timeval *a, struct timeval *b)
{
return timercmp(a, b, >);
}
bool time_less(struct timeval *a, struct timeval *b)
{
return timercmp(a, b, <);
}
void copy_time(struct timeval *dest, const struct timeval *src)
{
memcpy(dest, src, sizeof(struct timeval));
}
void timespec_to_val(struct timeval *val, const struct timespec *spec)
{
val->tv_sec = spec->tv_sec;
val->tv_usec = spec->tv_nsec / 1000;
}
void timeval_to_spec(struct timespec *spec, const struct timeval *val)
{
spec->tv_sec = val->tv_sec;
spec->tv_nsec = val->tv_usec * 1000;
}
void us_to_timeval(struct timeval *val, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem;
}
void us_to_timespec(struct timespec *spec, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000;
}
void ms_to_timespec(struct timespec *spec, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000000;
}
void ms_to_timeval(struct timeval *val, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem * 1000;
}
void timeraddspec(struct timespec *a, const struct timespec *b)
{
a->tv_sec += b->tv_sec;
a->tv_nsec += b->tv_nsec;
if (a->tv_nsec >= 1000000000) {
a->tv_nsec -= 1000000000;
a->tv_sec++;
}
}
static int __maybe_unused timespec_to_ms(struct timespec *ts)
{
return ts->tv_sec * 1000 + ts->tv_nsec / 1000000;
}
/* Subtract b from a */
static void __maybe_unused timersubspec(struct timespec *a, const struct timespec *b)
{
a->tv_sec -= b->tv_sec;
a->tv_nsec -= b->tv_nsec;
if (a->tv_nsec < 0) {
a->tv_nsec += 1000000000;
a->tv_sec--;
}
}
/* These are sgminer specific sleep functions that use an absolute nanosecond
* resolution timer to avoid poor usleep accuracy and overruns. */
#ifdef WIN32
/* Windows start time is since 1601 LOL so convert it to unix epoch 1970. */
#define EPOCHFILETIME (116444736000000000LL)
/* Return the system time as an lldiv_t in decimicroseconds. */
static void decius_time(lldiv_t *lidiv)
{
FILETIME ft;
LARGE_INTEGER li;
GetSystemTimeAsFileTime(&ft);
li.LowPart = ft.dwLowDateTime;
li.HighPart = ft.dwHighDateTime;
li.QuadPart -= EPOCHFILETIME;
/* SystemTime is in decimicroseconds so divide by an unusual number */
*lidiv = lldiv(li.QuadPart, 10000000);
}
/* This is a sgminer gettimeofday wrapper. Since we always call gettimeofday
* with tz set to NULL, and windows' default resolution is only 15ms, this
* gives us higher resolution times on windows. */
void cgtime(struct timeval *tv)
{
lldiv_t lidiv;
decius_time(&lidiv);
tv->tv_sec = lidiv.quot;
tv->tv_usec = lidiv.rem / 10;
}
#else /* WIN32 */
void cgtime(struct timeval *tv)
{
gettimeofday(tv, NULL);
}
int cgtimer_to_ms(cgtimer_t *cgt)
{
return timespec_to_ms(cgt);
}
/* Subtracts b from a and stores it in res. */
void cgtimer_sub(cgtimer_t *a, cgtimer_t *b, cgtimer_t *res)
{
res->tv_sec = a->tv_sec - b->tv_sec;
res->tv_nsec = a->tv_nsec - b->tv_nsec;
if (res->tv_nsec < 0) {
res->tv_nsec += 1000000000;
res->tv_sec--;
}
}
#endif /* WIN32 */
#ifdef CLOCK_MONOTONIC /* Essentially just linux */
void cgtimer_time(cgtimer_t *ts_start)
{
clock_gettime(CLOCK_MONOTONIC, ts_start);
}
static void nanosleep_abstime(struct timespec *ts_end)
{
int ret;
do {
ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, ts_end, NULL);
} while (ret == EINTR);
}
/* Reentrant version of cgsleep functions allow start time to be set separately
* from the beginning of the actual sleep, allowing scheduling delays to be
* counted in the sleep. */
void cgsleep_ms_r(cgtimer_t *ts_start, int ms)
{
struct timespec ts_end;
ms_to_timespec(&ts_end, ms);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
void cgsleep_us_r(cgtimer_t *ts_start, int64_t us)
{
struct timespec ts_end;
us_to_timespec(&ts_end, us);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
#else /* CLOCK_MONOTONIC */
#ifdef __MACH__
#include <mach/clock.h>
#include <mach/mach.h>
void cgtimer_time(cgtimer_t *ts_start)
{
clock_serv_t cclock;
mach_timespec_t mts;
11 years ago
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
11 years ago
ts_start->tv_sec = mts.tv_sec;
ts_start->tv_nsec = mts.tv_nsec;
}
11 years ago
#elif !defined(WIN32) /* __MACH__ - Everything not linux/macosx/win32 */
void cgtimer_time(cgtimer_t *ts_start)
{
struct timeval tv;
cgtime(&tv);
ts_start->tv_sec = tv->tv_sec;
ts_start->tv_nsec = tv->tv_usec * 1000;
}
#endif /* __MACH__ */
#ifdef WIN32
/* For windows we use the SystemTime stored as a LARGE_INTEGER as the cgtimer_t
* typedef, allowing us to have sub-microsecond resolution for times, do simple
* arithmetic for timer calculations, and use windows' own hTimers to get
* accurate absolute timeouts. */
int cgtimer_to_ms(cgtimer_t *cgt)
{
return (int)(cgt->QuadPart / 10000LL);
}
/* Subtracts b from a and stores it in res. */
void cgtimer_sub(cgtimer_t *a, cgtimer_t *b, cgtimer_t *res)
{
res->QuadPart = a->QuadPart - b->QuadPart;
}
/* Note that cgtimer time is NOT offset by the unix epoch since we use absolute
* timeouts with hTimers. */
void cgtimer_time(cgtimer_t *ts_start)
{
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
ts_start->LowPart = ft.dwLowDateTime;
ts_start->HighPart = ft.dwHighDateTime;
}
static void liSleep(LARGE_INTEGER *li, int timeout)
{
HANDLE hTimer;
DWORD ret;
if (unlikely(timeout <= 0))
return;
hTimer = CreateWaitableTimer(NULL, TRUE, NULL);
if (unlikely(!hTimer))
quit(1, "Failed to create hTimer in liSleep");
ret = SetWaitableTimer(hTimer, li, 0, NULL, NULL, 0);
if (unlikely(!ret))
quit(1, "Failed to SetWaitableTimer in liSleep");
/* We still use a timeout as a sanity check in case the system time
* is changed while we're running */
ret = WaitForSingleObject(hTimer, timeout);
if (unlikely(ret != WAIT_OBJECT_0 && ret != WAIT_TIMEOUT))
quit(1, "Failed to WaitForSingleObject in liSleep");
CloseHandle(hTimer);
}
void cgsleep_ms_r(cgtimer_t *ts_start, int ms)
{
LARGE_INTEGER li;
li.QuadPart = ts_start->QuadPart + (int64_t)ms * 10000LL;
liSleep(&li, ms);
}
void cgsleep_us_r(cgtimer_t *ts_start, int64_t us)
{
LARGE_INTEGER li;
int ms;
li.QuadPart = ts_start->QuadPart + us * 10LL;
ms = us / 1000;
if (!ms)
ms = 1;
liSleep(&li, ms);
}
#else /* WIN32 */
static void cgsleep_spec(struct timespec *ts_diff, const struct timespec *ts_start)
{
struct timespec now;
timeraddspec(ts_diff, ts_start);
cgtimer_time(&now);
timersubspec(ts_diff, &now);
if (unlikely(ts_diff->tv_sec < 0))
return;
nanosleep(ts_diff, NULL);
}
void cgsleep_ms_r(cgtimer_t *ts_start, int ms)
{
struct timespec ts_diff;
ms_to_timespec(&ts_diff, ms);
cgsleep_spec(&ts_diff, ts_start);
}
void cgsleep_us_r(cgtimer_t *ts_start, int64_t us)
{
struct timespec ts_diff;
us_to_timespec(&ts_diff, us);
cgsleep_spec(&ts_diff, ts_start);
}
#endif /* WIN32 */
#endif /* CLOCK_MONOTONIC */
void cgsleep_ms(int ms)
{
cgtimer_t ts_start;
cgsleep_prepare_r(&ts_start);
cgsleep_ms_r(&ts_start, ms);
}
void cgsleep_us(int64_t us)
{
cgtimer_t ts_start;
cgsleep_prepare_r(&ts_start);
cgsleep_us_r(&ts_start, us);
}
/* Returns the microseconds difference between end and start times as a double */
double us_tdiff(struct timeval *end, struct timeval *start)
{
/* Sanity check. We should only be using this for small differences so
* limit the max to 60 seconds. */
if (unlikely(end->tv_sec - start->tv_sec > 60))
return 60000000;
return (end->tv_sec - start->tv_sec) * 1000000 + (end->tv_usec - start->tv_usec);
}
/* Returns the milliseconds difference between end and start times */
int ms_tdiff(struct timeval *end, struct timeval *start)
{
/* Like us_tdiff, limit to 1 hour. */
if (unlikely(end->tv_sec - start->tv_sec > 3600))
return 3600000;
return (end->tv_sec - start->tv_sec) * 1000 + (end->tv_usec - start->tv_usec) / 1000;
}
/* Returns the seconds difference between end and start times as a double */
double tdiff(struct timeval *end, struct timeval *start)
{
return end->tv_sec - start->tv_sec + (end->tv_usec - start->tv_usec) / 1000000.0;
}
bool extract_sockaddr(char *url, char **sockaddr_url, char **sockaddr_port)
{
char *url_begin, *url_end, *ipv6_begin, *ipv6_end, *port_start = NULL;
char url_address[256], port[6];
12 years ago
int url_len, port_len = 0;
*sockaddr_url = url;
url_begin = strstr(url, "//");
if (!url_begin)
url_begin = url;
else
url_begin += 2;
/* Look for numeric ipv6 entries */
ipv6_begin = strstr(url_begin, "[");
ipv6_end = strstr(url_begin, "]");
if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin)
url_end = strstr(ipv6_end, ":");
else
url_end = strstr(url_begin, ":");
if (url_end) {
url_len = url_end - url_begin;
port_len = strlen(url_begin) - url_len - 1;
if (port_len < 1)
return false;
port_start = url_end + 1;
} else
url_len = strlen(url_begin);
if (url_len < 1)
return false;
sprintf(url_address, "%.*s", url_len, url_begin);
if (port_len) {
char *slash;
12 years ago
snprintf(port, 6, "%.*s", port_len, port_start);
slash = strchr(port, '/');
if (slash)
*slash = '\0';
} else
strcpy(port, "80");
*sockaddr_port = strdup(port);
*sockaddr_url = strdup(url_address);
return true;
}
enum send_ret {
SEND_OK,
SEND_SELECTFAIL,
SEND_SENDFAIL,
SEND_INACTIVE
};
/* Send a single command across a socket, appending \n to it. This should all
* be done under stratum lock except when first establishing the socket */
static enum send_ret __stratum_send(struct pool *pool, char *s, ssize_t len)
{
SOCKETTYPE sock = pool->sock;
ssize_t ssent = 0;
strcat(s, "\n");
len++;
while (len > 0 ) {
struct timeval timeout = {1, 0};
ssize_t sent;
fd_set wd;
FD_ZERO(&wd);
FD_SET(sock, &wd);
if (select(sock + 1, NULL, &wd, NULL, &timeout) < 1)
return SEND_SELECTFAIL;
#ifdef __APPLE__
sent = send(pool->sock, s + ssent, len, SO_NOSIGPIPE);
#elif WIN32
sent = send(pool->sock, s + ssent, len, 0);
#else
sent = send(pool->sock, s + ssent, len, MSG_NOSIGNAL);
#endif
if (sent < 0) {
if (!sock_blocks())
return SEND_SENDFAIL;
sent = 0;
}
ssent += sent;
len -= sent;
}
pool->sgminer_pool_stats.times_sent++;
pool->sgminer_pool_stats.bytes_sent += ssent;
pool->sgminer_pool_stats.net_bytes_sent += ssent;
return SEND_OK;
}
bool stratum_send(struct pool *pool, char *s, ssize_t len)
{
enum send_ret ret = SEND_INACTIVE;
if (opt_protocol)
applog(LOG_DEBUG, "SEND: %s", s);
mutex_lock(&pool->stratum_lock);
if (pool->stratum_active)
ret = __stratum_send(pool, s, len);
mutex_unlock(&pool->stratum_lock);
/* This is to avoid doing applog under stratum_lock */
switch (ret) {
default:
case SEND_OK:
break;
case SEND_SELECTFAIL:
applog(LOG_DEBUG, "Write select failed on %s sock", pool->poolname);
suspend_stratum(pool);
break;
case SEND_SENDFAIL:
applog(LOG_DEBUG, "Failed to send in stratum_send");
suspend_stratum(pool);
break;
case SEND_INACTIVE:
applog(LOG_DEBUG, "Stratum send failed due to no pool stratum_active");
break;
}
return (ret == SEND_OK);
}
static bool socket_full(struct pool *pool, int wait)
{
SOCKETTYPE sock = pool->sock;
struct timeval timeout;
fd_set rd;
if (unlikely(wait < 0))
wait = 0;
FD_ZERO(&rd);
FD_SET(sock, &rd);
timeout.tv_usec = 0;
timeout.tv_sec = wait;
if (select(sock + 1, &rd, NULL, NULL, &timeout) > 0)
return true;
return false;
}
/* Check to see if Santa's been good to you */
bool sock_full(struct pool *pool)
{
if (strlen(pool->sockbuf))
return true;
return (socket_full(pool, 0));
}
static void clear_sockbuf(struct pool *pool)
{
strcpy(pool->sockbuf, "");
}
static void clear_sock(struct pool *pool)
{
ssize_t n;
mutex_lock(&pool->stratum_lock);
do {
if (pool->sock)
n = recv(pool->sock, pool->sockbuf, RECVSIZE, 0);
else
n = 0;
} while (n > 0);
mutex_unlock(&pool->stratum_lock);
clear_sockbuf(pool);
}
/* Make sure the pool sockbuf is large enough to cope with any coinbase size
* by reallocing it to a large enough size rounded up to a multiple of RBUFSIZE
* and zeroing the new memory */
static void recalloc_sock(struct pool *pool, size_t len)
{
size_t old, new;
old = strlen(pool->sockbuf);
new = old + len + 1;
if (new < pool->sockbuf_size)
return;
new = new + (RBUFSIZE - (new % RBUFSIZE));
// Avoid potentially recursive locking
// applog(LOG_DEBUG, "Recallocing pool sockbuf to %d", new);
pool->sockbuf = realloc(pool->sockbuf, new);
if (!pool->sockbuf)
quithere(1, "Failed to realloc pool sockbuf");
memset(pool->sockbuf + old, 0, new - old);
pool->sockbuf_size = new;
}
/* Peeks at a socket to find the first end of line and then reads just that
* from the socket and returns that as a malloced char */
char *recv_line(struct pool *pool)
{
char *tok, *sret = NULL;
ssize_t len, buflen;
int waited = 0;
if (!strstr(pool->sockbuf, "\n")) {
struct timeval rstart, now;
cgtime(&rstart);
if (!socket_full(pool, DEFAULT_SOCKWAIT)) {
applog(LOG_DEBUG, "Timed out waiting for data on socket_full");
goto out;
}
do {
char s[RBUFSIZE];
size_t slen;
ssize_t n;
memset(s, 0, RBUFSIZE);
n = recv(pool->sock, s, RECVSIZE, 0);
if (!n) {
applog(LOG_DEBUG, "Socket closed waiting in recv_line");
suspend_stratum(pool);
break;
}
cgtime(&now);
waited = tdiff(&now, &rstart);
if (n < 0) {
if (!sock_blocks() || !socket_full(pool, DEFAULT_SOCKWAIT - waited)) {
applog(LOG_DEBUG, "Failed to recv sock in recv_line");
suspend_stratum(pool);
break;
}
} else {
slen = strlen(s);
recalloc_sock(pool, slen);
strcat(pool->sockbuf, s);
}
} while (waited < DEFAULT_SOCKWAIT && !strstr(pool->sockbuf, "\n"));
}
buflen = strlen(pool->sockbuf);
tok = strtok(pool->sockbuf, "\n");
if (!tok) {
applog(LOG_DEBUG, "Failed to parse a \\n terminated string in recv_line");
goto out;
}
sret = strdup(tok);
len = strlen(sret);
/* Copy what's left in the buffer after the \n, including the
* terminating \0 */
if (buflen > len + 1)
memmove(pool->sockbuf, pool->sockbuf + len + 1, buflen - len + 1);
else
strcpy(pool->sockbuf, "");
pool->sgminer_pool_stats.times_received++;
pool->sgminer_pool_stats.bytes_received += len;
pool->sgminer_pool_stats.net_bytes_received += len;
out:
if (!sret)
clear_sock(pool);
else if (opt_protocol)
applog(LOG_DEBUG, "RECVD: %s", sret);
return sret;
}
/* Extracts a string value from a json array with error checking. To be used
* when the value of the string returned is only examined and not to be stored.
* See json_array_string below */
static char *__json_array_string(json_t *val, unsigned int entry)
{
json_t *arr_entry;
if (json_is_null(val))
return NULL;
if (!json_is_array(val))
return NULL;
if (entry > json_array_size(val))
return NULL;
arr_entry = json_array_get(val, entry);
if (!json_is_string(arr_entry))
return NULL;
return (char *)json_string_value(arr_entry);
}
/* Creates a freshly malloced dup of __json_array_string */
static char *json_array_string(json_t *val, unsigned int entry)
{
char *buf = __json_array_string(val, entry);
if (buf)
return strdup(buf);
return NULL;
}
static char *blank_merkel = "0000000000000000000000000000000000000000000000000000000000000000";
static bool parse_notify(struct pool *pool, json_t *val)
{
char *job_id, *prev_hash, *coinbase1, *coinbase2, *bbversion, *nbit,
*ntime, *header;
size_t cb1_len, cb2_len, alloc_len;
unsigned char *cb1, *cb2;
bool clean, ret = false;
int merkles, i;
json_t *arr;
arr = json_array_get(val, 4);
if (!arr || !json_is_array(arr))
goto out;
merkles = json_array_size(arr);
job_id = json_array_string(val, 0);
prev_hash = json_array_string(val, 1);
coinbase1 = json_array_string(val, 2);
coinbase2 = json_array_string(val, 3);
bbversion = json_array_string(val, 5);
nbit = json_array_string(val, 6);
ntime = json_array_string(val, 7);
clean = json_is_true(json_array_get(val, 8));
if (!job_id || !prev_hash || !coinbase1 || !coinbase2 || !bbversion || !nbit || !ntime) {
/* Annoying but we must not leak memory */
if (job_id)
free(job_id);
if (prev_hash)
free(prev_hash);
if (coinbase1)
free(coinbase1);
if (coinbase2)
free(coinbase2);
if (bbversion)
free(bbversion);
if (nbit)
free(nbit);
if (ntime)
free(ntime);
goto out;
}
cg_wlock(&pool->data_lock);
free(pool->swork.job_id);
free(pool->swork.prev_hash);
free(pool->swork.bbversion);
free(pool->swork.nbit);
free(pool->swork.ntime);
pool->swork.job_id = job_id;
pool->swork.prev_hash = prev_hash;
cb1_len = strlen(coinbase1) / 2;
cb2_len = strlen(coinbase2) / 2;
pool->swork.bbversion = bbversion;
pool->swork.nbit = nbit;
pool->swork.ntime = ntime;
pool->swork.clean = clean;
alloc_len = pool->swork.cb_len = cb1_len + pool->n1_len + pool->n2size + cb2_len;
pool->nonce2_offset = cb1_len + pool->n1_len;
for (i = 0; i < pool->swork.merkles; i++)
free(pool->swork.merkle_bin[i]);
if (merkles) {
pool->swork.merkle_bin = realloc(pool->swork.merkle_bin,
sizeof(char *) * merkles + 1);
for (i = 0; i < merkles; i++) {
char *merkle = json_array_string(arr, i);
pool->swork.merkle_bin[i] = malloc(32);
if (unlikely(!pool->swork.merkle_bin[i]))
quit(1, "Failed to malloc pool swork merkle_bin");
hex2bin(pool->swork.merkle_bin[i], merkle, 32);
free(merkle);
}
}
pool->swork.merkles = merkles;
if (clean)
pool->nonce2 = 0;
pool->merkle_offset = strlen(pool->swork.bbversion) +
strlen(pool->swork.prev_hash);
pool->swork.header_len = pool->merkle_offset +
/* merkle_hash */ 32 +
strlen(pool->swork.ntime) +
strlen(pool->swork.nbit) +
/* nonce */ 8 +
/* workpadding */ 96;
pool->merkle_offset /= 2;
pool->swork.header_len = pool->swork.header_len * 2 + 1;
align_len(&pool->swork.header_len);
header = alloca(pool->swork.header_len);
snprintf(header, pool->swork.header_len,
"%s%s%s%s%s%s%s",
pool->swork.bbversion,
pool->swork.prev_hash,
blank_merkel,
pool->swork.ntime,
pool->swork.nbit,
"00000000", /* nonce */
workpadding);
if (unlikely(!hex2bin(pool->header_bin, header, 128)))
quit(1, "Failed to convert header to header_bin in parse_notify");
cb1 = calloc(cb1_len, 1);
if (unlikely(!cb1))
quithere(1, "Failed to calloc cb1 in parse_notify");
hex2bin(cb1, coinbase1, cb1_len);
cb2 = calloc(cb2_len, 1);
if (unlikely(!cb2))
quithere(1, "Failed to calloc cb2 in parse_notify");
hex2bin(cb2, coinbase2, cb2_len);
free(pool->coinbase);
align_len(&alloc_len);
pool->coinbase = calloc(alloc_len, 1);
if (unlikely(!pool->coinbase))
quit(1, "Failed to calloc pool coinbase in parse_notify");
memcpy(pool->coinbase, cb1, cb1_len);
memcpy(pool->coinbase + cb1_len, pool->nonce1bin, pool->n1_len);
memcpy(pool->coinbase + cb1_len + pool->n1_len + pool->n2size, cb2, cb2_len);
cg_wunlock(&pool->data_lock);
if (opt_protocol) {
applog(LOG_DEBUG, "job_id: %s", job_id);
applog(LOG_DEBUG, "prev_hash: %s", prev_hash);
applog(LOG_DEBUG, "coinbase1: %s", coinbase1);
applog(LOG_DEBUG, "coinbase2: %s", coinbase2);
applog(LOG_DEBUG, "bbversion: %s", bbversion);
applog(LOG_DEBUG, "nbit: %s", nbit);
applog(LOG_DEBUG, "ntime: %s", ntime);
applog(LOG_DEBUG, "clean: %s", clean ? "yes" : "no");
}
free(coinbase1);
free(coinbase2);
free(cb1);
free(cb2);
/* A notify message is the closest stratum gets to a getwork */
pool->getwork_requested++;
total_getworks++;
ret = true;
if (pool == current_pool())
opt_work_update = true;
out:
return ret;
}
static bool parse_diff(struct pool *pool, json_t *val)
{
double old_diff, diff;
diff = json_number_value(json_array_get(val, 0));
if (diff == 0)
return false;
cg_wlock(&pool->data_lock);
old_diff = pool->swork.diff;
pool->swork.diff = diff;
cg_wunlock(&pool->data_lock);
if (old_diff != diff) {
int idiff = diff;
if ((double)idiff == diff)
applog(LOG_NOTICE, "%s difficulty changed to %d", pool->poolname ,idiff);
else
applog(LOG_NOTICE, "%s difficulty changed to %f", pool->poolname, diff);
} else
applog(LOG_DEBUG, "%s difficulty set to %f", pool->poolname, diff);
return true;
}
static bool parse_reconnect(struct pool *pool, json_t *val)
{
char *url, *port, address[256];
memset(address, 0, 255);
url = (char *)json_string_value(json_array_get(val, 0));
if (!url)
url = pool->sockaddr_url;
port = (char *)json_string_value(json_array_get(val, 1));
if (!port)
port = pool->stratum_port;
sprintf(address, "%s:%s", url, port);
if (!extract_sockaddr(address, &pool->sockaddr_url, &pool->stratum_port))
return false;
pool->stratum_url = pool->sockaddr_url;
applog(LOG_NOTICE, "Reconnect requested from %s to %s", pool->poolname, address);
if (!restart_stratum(pool))
return false;
return true;
}
static bool send_version(struct pool *pool, json_t *val)
{
char s[RBUFSIZE];
int id = json_integer_value(json_object_get(val, "id"));
if (!id)
return false;
sprintf(s, "{\"id\": %d, \"result\": \""PACKAGE"/"VERSION"\", \"error\": null}", id);
if (!stratum_send(pool, s, strlen(s)))
return false;
return true;
}
static bool show_message(struct pool *pool, json_t *val)
{
char *msg;
if (!json_is_array(val))
return false;
msg = (char *)json_string_value(json_array_get(val, 0));
if (!msg)
return false;
applog(LOG_NOTICE, "%s message: %s", pool->poolname, msg);
return true;
}
bool parse_method(struct pool *pool, char *s)
{
json_t *val = NULL, *method, *err_val, *params;
json_error_t err;
bool ret = false;
char *buf;
if (!s)
return ret;
val = JSON_LOADS(s, &err);
if (!val) {
applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text);
return ret;
}
method = json_object_get(val, "method");
if (!method) {
json_decref(val);
return ret;
}
err_val = json_object_get(val, "error");
params = json_object_get(val, "params");
if (err_val && !json_is_null(err_val)) {
char *ss;
if (err_val)
ss = json_dumps(err_val, JSON_INDENT(3));
else
ss = strdup("(unknown reason)");
applog(LOG_INFO, "JSON-RPC method decode failed: %s", ss);
json_decref(val);
free(ss);
return ret;
}
buf = (char *)json_string_value(method);
if (!buf) {
json_decref(val);
return ret;
}
if (!strncasecmp(buf, "mining.notify", 13)) {
if (parse_notify(pool, params))
pool->stratum_notify = ret = true;
else
pool->stratum_notify = ret = false;
json_decref(val);
return ret;
}
if (!strncasecmp(buf, "mining.set_difficulty", 21) && parse_diff(pool, params)) {
ret = true;
json_decref(val);
return ret;
}
if (!strncasecmp(buf, "client.reconnect", 16) && parse_reconnect(pool, params)) {
ret = true;
json_decref(val);
return ret;
}
if (!strncasecmp(buf, "client.get_version", 18) && send_version(pool, val)) {
ret = true;
json_decref(val);
return ret;
}
if (!strncasecmp(buf, "client.show_message", 19) && show_message(pool, params)) {
ret = true;
json_decref(val);
return ret;
}
json_decref(val);
return ret;
}
bool auth_stratum(struct pool *pool)
{
json_t *val = NULL, *res_val, *err_val;
char s[RBUFSIZE], *sret = NULL;
json_error_t err;
bool ret = false;
sprintf(s, "{\"id\": %d, \"method\": \"mining.authorize\", \"params\": [\"%s\", \"%s\"]}",
swork_id++, pool->rpc_user, pool->rpc_pass);
if (!stratum_send(pool, s, strlen(s)))
return ret;
/* Parse all data in the queue and anything left should be auth */
while (42) {
sret = recv_line(pool);
if (!sret)
return ret;
if (parse_method(pool, sret))
free(sret);
else
break;
}
val = JSON_LOADS(sret, &err);
free(sret);
res_val = json_object_get(val, "result");
err_val = json_object_get(val, "error");
if (!res_val || json_is_false(res_val) || (err_val && !json_is_null(err_val))) {
char *ss;
if (err_val)
ss = json_dumps(err_val, JSON_INDENT(3));
else
ss = strdup("(unknown reason)");
applog(LOG_INFO, "%s JSON stratum auth failed: %s", pool->poolname, ss);
free(ss);
goto out;
}
ret = true;
applog(LOG_INFO, "Stratum authorisation success for %s", pool->poolname);
pool->probed = true;
successful_connect = true;
out:
json_decref(val);
return ret;
}
static int recv_byte(int sockd)
{
char c;
if (recv(sockd, &c, 1, 0) != -1)
return c;
return -1;
}
static bool http_negotiate(struct pool *pool, int sockd, bool http0)
{
char buf[1024];
int i, len;
if (http0) {
snprintf(buf, 1024, "CONNECT %s:%s HTTP/1.0\r\n\r\n",
pool->sockaddr_url, pool->stratum_port);
} else {
snprintf(buf, 1024, "CONNECT %s:%s HTTP/1.1\r\nHost: %s:%s\r\n\r\n",
pool->sockaddr_url, pool->stratum_port, pool->sockaddr_url,
pool->stratum_port);
}
applog(LOG_DEBUG, "Sending proxy %s:%s - %s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf);
send(sockd, buf, strlen(buf), 0);
len = recv(sockd, buf, 12, 0);
if (len <= 0) {
applog(LOG_WARNING, "Couldn't read from proxy %s:%s after sending CONNECT",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return false;
}
buf[len] = '\0';
applog(LOG_DEBUG, "Received from proxy %s:%s - %s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf);
if (strcmp(buf, "HTTP/1.1 200") && strcmp(buf, "HTTP/1.0 200")) {
applog(LOG_WARNING, "HTTP Error from proxy %s:%s - %s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port, buf);
return false;
}
/* Ignore unwanted headers till we get desired response */
for (i = 0; i < 4; i++) {
buf[i] = recv_byte(sockd);
if (buf[i] == (char)-1) {
applog(LOG_WARNING, "Couldn't read HTTP byte from proxy %s:%s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return false;
}
}
while (strncmp(buf, "\r\n\r\n", 4)) {
for (i = 0; i < 3; i++)
buf[i] = buf[i + 1];
buf[3] = recv_byte(sockd);
if (buf[3] == (char)-1) {
applog(LOG_WARNING, "Couldn't read HTTP byte from proxy %s:%s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return false;
}
}
applog(LOG_DEBUG, "Success negotiating with %s:%s HTTP proxy",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return true;
}
static bool socks5_negotiate(struct pool *pool, int sockd)
{
unsigned char atyp, uclen;
unsigned short port;
char buf[515];
int i, len;
buf[0] = 0x05;
buf[1] = 0x01;
buf[2] = 0x00;
applog(LOG_DEBUG, "Attempting to negotiate with %s:%s SOCKS5 proxy",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port );
send(sockd, buf, 3, 0);
if (recv_byte(sockd) != 0x05 || recv_byte(sockd) != buf[2]) {
applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port );
return false;
}
buf[0] = 0x05;
buf[1] = 0x01;
buf[2] = 0x00;
buf[3] = 0x03;
len = (strlen(pool->sockaddr_url));
if (len > 255)
len = 255;
uclen = len;
buf[4] = (uclen & 0xff);
memcpy(buf + 5, pool->sockaddr_url, len);
port = atoi(pool->stratum_port);
buf[5 + len] = (port >> 8);
buf[6 + len] = (port & 0xff);
send(sockd, buf, (7 + len), 0);
if (recv_byte(sockd) != 0x05 || recv_byte(sockd) != 0x00) {
applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port );
return false;
}
recv_byte(sockd);
atyp = recv_byte(sockd);
if (atyp == 0x01) {
for (i = 0; i < 4; i++)
recv_byte(sockd);
} else if (atyp == 0x03) {
len = recv_byte(sockd);
for (i = 0; i < len; i++)
recv_byte(sockd);
} else {
applog(LOG_WARNING, "Bad response from %s:%s SOCKS5 server",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port );
return false;
}
for (i = 0; i < 2; i++)
recv_byte(sockd);
applog(LOG_DEBUG, "Success negotiating with %s:%s SOCKS5 proxy",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return true;
}
static bool socks4_negotiate(struct pool *pool, int sockd, bool socks4a)
{
unsigned short port;
in_addr_t inp;
char buf[515];
int i, len;
buf[0] = 0x04;
buf[1] = 0x01;
port = atoi(pool->stratum_port);
buf[2] = port >> 8;
buf[3] = port & 0xff;
sprintf(&buf[8], "SGMINER");
/* See if we've been given an IP address directly to avoid needing to
* resolve it. */
inp = inet_addr(pool->sockaddr_url);
inp = ntohl(inp);
if ((int)inp != -1)
socks4a = false;
else {
/* Try to extract the IP address ourselves first */
struct addrinfo servinfobase, *servinfo, hints;
servinfo = &servinfobase;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET; /* IPV4 only */
if (!getaddrinfo(pool->sockaddr_url, NULL, &hints, &servinfo)) {
struct sockaddr_in *saddr_in = (struct sockaddr_in *)servinfo->ai_addr;
inp = ntohl(saddr_in->sin_addr.s_addr);
socks4a = false;
freeaddrinfo(servinfo);
}
}
if (!socks4a) {
if ((int)inp == -1) {
applog(LOG_WARNING, "Invalid IP address specified for socks4 proxy: %s",
pool->sockaddr_url);
return false;
}
buf[4] = (inp >> 24) & 0xFF;
buf[5] = (inp >> 16) & 0xFF;
buf[6] = (inp >> 8) & 0xFF;
buf[7] = (inp >> 0) & 0xFF;
send(sockd, buf, 16, 0);
} else {
/* This appears to not be working but hopefully most will be
* able to resolve IP addresses themselves. */
buf[4] = 0;
buf[5] = 0;
buf[6] = 0;
buf[7] = 1;
len = strlen(pool->sockaddr_url);
if (len > 255)
len = 255;
memcpy(&buf[16], pool->sockaddr_url, len);
len += 16;
buf[len++] = '\0';
send(sockd, buf, len, 0);
}
if (recv_byte(sockd) != 0x00 || recv_byte(sockd) != 0x5a) {
applog(LOG_WARNING, "Bad response from %s:%s SOCKS4 server",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return false;
}
for (i = 0; i < 6; i++)
recv_byte(sockd);
return true;
}
static void noblock_socket(SOCKETTYPE fd)
{
#ifndef WIN32
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, O_NONBLOCK | flags);
#else
u_long flags = 1;
ioctlsocket(fd, FIONBIO, &flags);
#endif
}
static void block_socket(SOCKETTYPE fd)
{
#ifndef WIN32
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, flags & ~O_NONBLOCK);
#else
u_long flags = 0;
ioctlsocket(fd, FIONBIO, &flags);
#endif
}
static bool sock_connecting(void)
{
#ifndef WIN32
return errno == EINPROGRESS;
#else
return WSAGetLastError() == WSAEWOULDBLOCK;
#endif
}
static bool setup_stratum_socket(struct pool *pool)
{
struct addrinfo servinfobase, *servinfo, *hints, *p;
char *sockaddr_url, *sockaddr_port;
int sockd;
mutex_lock(&pool->stratum_lock);
pool->stratum_active = false;
if (pool->sock)
CLOSESOCKET(pool->sock);
pool->sock = 0;
mutex_unlock(&pool->stratum_lock);
hints = &pool->stratum_hints;
memset(hints, 0, sizeof(struct addrinfo));
hints->ai_family = AF_UNSPEC;
hints->ai_socktype = SOCK_STREAM;
servinfo = &servinfobase;
if (!pool->rpc_proxy && opt_socks_proxy) {
pool->rpc_proxy = opt_socks_proxy;
extract_sockaddr(pool->rpc_proxy, &pool->sockaddr_proxy_url, &pool->sockaddr_proxy_port);
pool->rpc_proxytype = PROXY_SOCKS5;
}
if (pool->rpc_proxy) {
sockaddr_url = pool->sockaddr_proxy_url;
sockaddr_port = pool->sockaddr_proxy_port;
} else {
sockaddr_url = pool->sockaddr_url;
sockaddr_port = pool->stratum_port;
}
if (getaddrinfo(sockaddr_url, sockaddr_port, hints, &servinfo) != 0) {
if (!pool->probed) {
applog(LOG_WARNING, "Failed to resolve (?wrong URL) %s:%s",
sockaddr_url, sockaddr_port);
pool->probed = true;
} else {
applog(LOG_INFO, "Failed to getaddrinfo for %s:%s",
sockaddr_url, sockaddr_port);
}
return false;
}
for (p = servinfo; p != NULL; p = p->ai_next) {
sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (sockd == -1) {
applog(LOG_DEBUG, "Failed socket");
continue;
}
/* Iterate non blocking over entries returned by getaddrinfo
* to cope with round robin DNS entries, finding the first one
* we can connect to quickly. */
noblock_socket(sockd);
if (connect(sockd, p->ai_addr, p->ai_addrlen) == -1) {
struct timeval tv_timeout = {1, 0};
int selret;
fd_set rw;
if (!sock_connecting()) {
CLOSESOCKET(sockd);
applog(LOG_DEBUG, "Failed sock connect");
continue;
}
FD_ZERO(&rw);
FD_SET(sockd, &rw);
selret = select(sockd + 1, NULL, &rw, NULL, &tv_timeout);
if (selret > 0 && FD_ISSET(sockd, &rw)) {
socklen_t len;
int err, n;
len = sizeof(err);
n = getsockopt(sockd, SOL_SOCKET, SO_ERROR, (void *)&err, &len);
if (!n && !err) {
applog(LOG_DEBUG, "Succeeded delayed connect");
block_socket(sockd);
break;
}
}
CLOSESOCKET(sockd);
applog(LOG_DEBUG, "Select timeout/failed connect");
continue;
}
applog(LOG_WARNING, "Succeeded immediate connect");
block_socket(sockd);
break;
}
if (p == NULL) {
applog(LOG_INFO, "Failed to connect to stratum on %s:%s",
sockaddr_url, sockaddr_port);
freeaddrinfo(servinfo);
return false;
}
freeaddrinfo(servinfo);
if (pool->rpc_proxy) {
switch (pool->rpc_proxytype) {
case PROXY_HTTP_1_0:
if (!http_negotiate(pool, sockd, true))
return false;
break;
case PROXY_HTTP:
if (!http_negotiate(pool, sockd, false))
return false;
break;
case PROXY_SOCKS5:
case PROXY_SOCKS5H:
if (!socks5_negotiate(pool, sockd))
return false;
break;
case PROXY_SOCKS4:
if (!socks4_negotiate(pool, sockd, false))
return false;
break;
case PROXY_SOCKS4A:
if (!socks4_negotiate(pool, sockd, true))
return false;
break;
default:
applog(LOG_WARNING, "Unsupported proxy type for %s:%s",
pool->sockaddr_proxy_url, pool->sockaddr_proxy_port);
return false;
break;
}
}
if (!pool->sockbuf) {
pool->sockbuf = calloc(RBUFSIZE, 1);
if (!pool->sockbuf)
quithere(1, "Failed to calloc pool sockbuf");
pool->sockbuf_size = RBUFSIZE;
}
pool->sock = sockd;
keep_sockalive(sockd);
return true;
}
static char *get_sessionid(json_t *val)
{
char *ret = NULL;
json_t *arr_val;
int arrsize, i;
arr_val = json_array_get(val, 0);
if (!arr_val || !json_is_array(arr_val))
goto out;
arrsize = json_array_size(arr_val);
for (i = 0; i < arrsize; i++) {
json_t *arr = json_array_get(arr_val, i);
char *notify;
if (!arr | !json_is_array(arr))
break;
notify = __json_array_string(arr, 0);
if (!notify)
continue;
if (!strncasecmp(notify, "mining.notify", 13)) {
ret = json_array_string(arr, 1);
break;
}
}
out:
return ret;
}
void suspend_stratum(struct pool *pool)
{
clear_sockbuf(pool);
applog(LOG_INFO, "Closing socket for stratum %s", pool->poolname);
mutex_lock(&pool->stratum_lock);
pool->stratum_active = pool->stratum_notify = false;
if (pool->sock)
CLOSESOCKET(pool->sock);
pool->sock = 0;
mutex_unlock(&pool->stratum_lock);
}
bool initiate_stratum(struct pool *pool)
{
bool ret = false, recvd = false, noresume = false, sockd = false;
char s[RBUFSIZE], *sret = NULL, *nonce1, *sessionid;
json_t *val = NULL, *res_val, *err_val;
json_error_t err;
int n2size;
resend:
if (!setup_stratum_socket(pool)) {
sockd = false;
goto out;
}
sockd = true;
if (recvd) {
/* Get rid of any crap lying around if we're resending */
clear_sock(pool);
sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": []}", swork_id++);
} else {
if (pool->sessionid)
sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": [\""PACKAGE"/"VERSION"\", \"%s\"]}", swork_id++, pool->sessionid);
else
sprintf(s, "{\"id\": %d, \"method\": \"mining.subscribe\", \"params\": [\""PACKAGE"/"VERSION"\"]}", swork_id++);
}
if (__stratum_send(pool, s, strlen(s)) != SEND_OK) {
applog(LOG_DEBUG, "Failed to send s in initiate_stratum");
goto out;
}
if (!socket_full(pool, DEFAULT_SOCKWAIT)) {
applog(LOG_DEBUG, "Timed out waiting for response in initiate_stratum");
goto out;
}
sret = recv_line(pool);
if (!sret)
goto out;
recvd = true;
val = JSON_LOADS(sret, &err);
free(sret);
if (!val) {
applog(LOG_INFO, "JSON decode failed(%d): %s", err.line, err.text);
goto out;
}
res_val = json_object_get(val, "result");
err_val = json_object_get(val, "error");
if (!res_val || json_is_null(res_val) ||
(err_val && !json_is_null(err_val))) {
char *ss;
if (err_val)
ss = json_dumps(err_val, JSON_INDENT(3));
else
ss = strdup("(unknown reason)");
applog(LOG_INFO, "JSON-RPC decode failed: %s", ss);
free(ss);
goto out;
}
sessionid = get_sessionid(res_val);
if (!sessionid)
applog(LOG_DEBUG, "Failed to get sessionid in initiate_stratum");
nonce1 = json_array_string(res_val, 1);
if (!nonce1) {
applog(LOG_INFO, "Failed to get nonce1 in initiate_stratum");
free(sessionid);
goto out;
}
n2size = json_integer_value(json_array_get(res_val, 2));
if (!n2size) {
applog(LOG_INFO, "Failed to get n2size in initiate_stratum");
free(sessionid);
free(nonce1);
goto out;
}
cg_wlock(&pool->data_lock);
pool->sessionid = sessionid;
pool->nonce1 = nonce1;
pool->n1_len = strlen(nonce1) / 2;
free(pool->nonce1bin);
pool->nonce1bin = calloc(pool->n1_len, 1);
if (unlikely(!pool->nonce1bin))
quithere(1, "Failed to calloc pool->nonce1bin");
hex2bin(pool->nonce1bin, pool->nonce1, pool->n1_len);
pool->n2size = n2size;
cg_wunlock(&pool->data_lock);
if (sessionid)
applog(LOG_DEBUG, "%s stratum session id: %s", pool->poolname, pool->sessionid);
ret = true;
out:
if (ret) {
if (!pool->stratum_url)
pool->stratum_url = pool->sockaddr_url;
pool->stratum_active = true;
pool->swork.diff = 1;
if (opt_protocol) {
applog(LOG_DEBUG, "%s confirmed mining.subscribe with extranonce1 %s extran2size %d",
pool->poolname, pool->nonce1, pool->n2size);
}
} else {
if (recvd && !noresume) {
/* Reset the sessionid used for stratum resuming in case the pool
* does not support it, or does not know how to respond to the
* presence of the sessionid parameter. */
cg_wlock(&pool->data_lock);
free(pool->sessionid);
free(pool->nonce1);
pool->sessionid = pool->nonce1 = NULL;
cg_wunlock(&pool->data_lock);
applog(LOG_DEBUG, "Failed to resume stratum, trying afresh");
noresume = true;
json_decref(val);
goto resend;
}
applog(LOG_DEBUG, "Initiate stratum failed");
if (sockd)
suspend_stratum(pool);
}
json_decref(val);
return ret;
}
bool restart_stratum(struct pool *pool)
{
if (pool->stratum_active)
suspend_stratum(pool);
if (!initiate_stratum(pool))
return false;
if (!auth_stratum(pool))
return false;
return true;
}
void dev_error(struct cgpu_info *dev, enum dev_reason reason)
{
dev->device_last_not_well = time(NULL);
dev->device_not_well_reason = reason;
12 years ago
switch (reason) {
case REASON_THREAD_FAIL_INIT:
dev->thread_fail_init_count++;
12 years ago
break;
case REASON_THREAD_ZERO_HASH:
dev->thread_zero_hash_count++;
12 years ago
break;
case REASON_THREAD_FAIL_QUEUE:
dev->thread_fail_queue_count++;
12 years ago
break;
case REASON_DEV_SICK_IDLE_60:
dev->dev_sick_idle_60_count++;
12 years ago
break;
case REASON_DEV_DEAD_IDLE_600:
dev->dev_dead_idle_600_count++;
12 years ago
break;
case REASON_DEV_NOSTART:
dev->dev_nostart_count++;
12 years ago
break;
case REASON_DEV_OVER_HEAT:
dev->dev_over_heat_count++;
12 years ago
break;
case REASON_DEV_THERMAL_CUTOFF:
dev->dev_thermal_cutoff_count++;
12 years ago
break;
case REASON_DEV_COMMS_ERROR:
dev->dev_comms_error_count++;
12 years ago
break;
case REASON_DEV_THROTTLE:
dev->dev_throttle_count++;
12 years ago
break;
}
}
/* Realloc an existing string to fit an extra string s, appending s to it. */
void *realloc_strcat(char *ptr, char *s)
{
size_t old = strlen(ptr), len = strlen(s);
char *ret;
if (!len)
return ptr;
len += old + 1;
align_len(&len);
ret = malloc(len);
if (unlikely(!ret))
quithere(1, "Failed to malloc");
sprintf(ret, "%s%s", ptr, s);
free(ptr);
return ret;
}
/* Make a text readable version of a string using 0xNN for < ' ' or > '~'
* Including 0x00 at the end
* You must free the result yourself */
void *str_text(char *ptr)
{
unsigned char *uptr;
char *ret, *txt;
if (ptr == NULL) {
ret = strdup("(null)");
if (unlikely(!ret))
quithere(1, "Failed to malloc null");
}
uptr = (unsigned char *)ptr;
ret = txt = malloc(strlen(ptr)*4+5); // Guaranteed >= needed
if (unlikely(!txt))
quithere(1, "Failed to malloc txt");
do {
if (*uptr < ' ' || *uptr > '~') {
sprintf(txt, "0x%02x", *uptr);
txt += 4;
} else
*(txt++) = *uptr;
} while (*(uptr++));
*txt = '\0';
return ret;
}
void RenameThread(const char* name)
{
#if defined(PR_SET_NAME)
// Only the first 15 characters are used (16 - NUL terminator)
prctl(PR_SET_NAME, name, 0, 0, 0);
#elif (defined(__FreeBSD__) || defined(__OpenBSD__))
pthread_set_name_np(pthread_self(), name);
#elif defined(MAC_OSX)
pthread_setname_np(name);
#else
// Prevent warnings for unused parameters...
(void)name;
#endif
}
/* sgminer specific wrappers for true unnamed semaphore usage on platforms
* that support them and for apple which does not. We use a single byte across
* a pipe to emulate semaphore behaviour there. */
#ifdef __APPLE__
void _cgsem_init(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
int flags, fd, i;
if (pipe(cgsem->pipefd) == -1)
quitfrom(1, file, func, line, "Failed pipe errno=%d", errno);
/* Make the pipes FD_CLOEXEC to allow them to close should we call
* execv on restart. */
for (i = 0; i < 2; i++) {
fd = cgsem->pipefd[i];
flags = fcntl(fd, F_GETFD, 0);
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1)
quitfrom(1, file, func, line, "Failed to fcntl errno=%d", errno);
}
}
void _cgsem_post(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
const char buf = 1;
int ret;
ret = write(cgsem->pipefd[1], &buf, 1);
if (unlikely(ret == 0))
applog(LOG_WARNING, "Failed to write errno=%d" IN_FMT_FFL, errno, file, func, line);
}
void _cgsem_wait(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
char buf;
int ret;
ret = read(cgsem->pipefd[0], &buf, 1);
if (unlikely(ret == 0))
applog(LOG_WARNING, "Failed to read errno=%d" IN_FMT_FFL, errno, file, func, line);
}
void cgsem_destroy(cgsem_t *cgsem)
{
close(cgsem->pipefd[1]);
close(cgsem->pipefd[0]);
}
/* This is similar to sem_timedwait but takes a millisecond value */
int _cgsem_mswait(cgsem_t *cgsem, int ms, const char *file, const char *func, const int line)
{
struct timeval timeout;
int ret, fd;
fd_set rd;
char buf;
fd = cgsem->pipefd[0];
FD_ZERO(&rd);
FD_SET(fd, &rd);
ms_to_timeval(&timeout, ms);
ret = select(fd + 1, &rd, NULL, NULL, &timeout);
if (ret > 0) {
ret = read(fd, &buf, 1);
return 0;
}
if (likely(!ret))
return ETIMEDOUT;
quitfrom(1, file, func, line, "Failed to sem_timedwait errno=%d cgsem=0x%p", errno, cgsem);
/* We don't reach here */
return 0;
}
/* Reset semaphore count back to zero */
void cgsem_reset(cgsem_t *cgsem)
{
int ret, fd;
fd_set rd;
char buf;
fd = cgsem->pipefd[0];
FD_ZERO(&rd);
FD_SET(fd, &rd);
do {
struct timeval timeout = {0, 0};
ret = select(fd + 1, &rd, NULL, NULL, &timeout);
if (ret > 0)
ret = read(fd, &buf, 1);
} while (ret > 0);
}
#else
void _cgsem_init(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
int ret;
if ((ret = sem_init(cgsem, 0, 0)))
quitfrom(1, file, func, line, "Failed to sem_init ret=%d errno=%d", ret, errno);
}
void _cgsem_post(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
if (unlikely(sem_post(cgsem)))
quitfrom(1, file, func, line, "Failed to sem_post errno=%d cgsem=0x%p", errno, cgsem);
}
void _cgsem_wait(cgsem_t *cgsem, const char *file, const char *func, const int line)
{
if (unlikely(sem_wait(cgsem)))
quitfrom(1, file, func, line, "Failed to sem_wait errno=%d cgsem=0x%p", errno, cgsem);
}
int _cgsem_mswait(cgsem_t *cgsem, int ms, const char *file, const char *func, const int line)
{
struct timespec abs_timeout, ts_now;
struct timeval tv_now;
int ret;
cgtime(&tv_now);
timeval_to_spec(&ts_now, &tv_now);
ms_to_timespec(&abs_timeout, ms);
timeraddspec(&abs_timeout, &ts_now);
ret = sem_timedwait(cgsem, &abs_timeout);
if (ret) {
if (likely(sock_timeout()))
return ETIMEDOUT;
quitfrom(1, file, func, line, "Failed to sem_timedwait errno=%d cgsem=0x%p", errno, cgsem);
}
return 0;
}
void cgsem_reset(cgsem_t *cgsem)
{
int ret;
do {
ret = sem_trywait(cgsem);
} while (!ret);
}
void cgsem_destroy(cgsem_t *cgsem)
{
sem_destroy(cgsem);
}
#endif
/* Provide a completion_timeout helper function for unreliable functions that
* may die due to driver issues etc that time out if the function fails and
* can then reliably return. */
struct cg_completion {
cgsem_t cgsem;
void (*fn)(void *fnarg);
void *fnarg;
};
void *completion_thread(void *arg)
{
struct cg_completion *cgc = (struct cg_completion *)arg;
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
cgc->fn(cgc->fnarg);
cgsem_post(&cgc->cgsem);
return NULL;
}
bool cg_completion_timeout(void *fn, void *fnarg, int timeout)
{
struct cg_completion *cgc;
pthread_t pthread;
bool ret = false;
cgc = malloc(sizeof(struct cg_completion));
if (unlikely(!cgc))
return ret;
cgsem_init(&cgc->cgsem);
cgc->fn = fn;
cgc->fnarg = fnarg;
pthread_create(&pthread, NULL, completion_thread, (void *)cgc);
ret = cgsem_mswait(&cgc->cgsem, timeout);
if (!ret) {
pthread_join(pthread, NULL);
free(cgc);
} else
pthread_cancel(pthread);
return !ret;
}