2014-02-19 22:06:29 +00:00
|
|
|
/* $Id: simd.c 227 2010-06-16 17:28:38Z tp $ */
|
|
|
|
/*
|
|
|
|
* SIMD implementation.
|
|
|
|
*
|
|
|
|
* ==========================(LICENSE BEGIN)============================
|
|
|
|
*
|
|
|
|
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
* a copy of this software and associated documentation files (the
|
|
|
|
* "Software"), to deal in the Software without restriction, including
|
|
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
* the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be
|
|
|
|
* included in all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
* ===========================(LICENSE END)=============================
|
|
|
|
*
|
|
|
|
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef sph_u32 u32;
|
|
|
|
typedef sph_s32 s32;
|
|
|
|
#define C32 SPH_C32
|
|
|
|
#define T32 SPH_T32
|
|
|
|
#define ROL32 SPH_ROTL32
|
|
|
|
|
|
|
|
#define XCAT(x, y) XCAT_(x, y)
|
|
|
|
#define XCAT_(x, y) x ## y
|
|
|
|
|
|
|
|
__constant static const s32 SIMD_Q[] = {
|
2014-07-01 14:36:46 +00:00
|
|
|
4, 28, -80, -120, -47, -126, 45, -123, -92, -127, -70, 23, -23, -24, 40, -125, 101, 122, 34, -24, -119, 110, -121, -112, 32, 24, 51, 73, -117, -64, -21, 42, -60, 16, 5, 85, 107, 52, -44, -96, 42, 127, -18, -108, -47, 26, 91, 117, 112, 46, 87, 79, 126, -120, 65, -24, 121, 29, 118, -7, -53, 85, -98, -117, 32, 115, -47, -116, 63, 16, -108, 49, -119, 57, -110, 4, -76, -76, -42, -86, 58, 115, 4, 4, -83, -51, -37, 116, 32, 15, 36, -42, 73, -99, 94, 87, 60, -20, 67, 12, -76, 55, 117, -68, -82, -80, 93, -20, 92, -21, -128, -91, -11, 84, -28, 76, 94, -124, 37, 93, 17, -78, -106, -29, 88, -15, -47, 102, -4, -28, 80, 120, 47, 126, -45, 123, 92, 127, 70, -23, 23, 24, -40, 125, -101, -122, -34, 24, 119, -110, 121, 112, -32, -24, -51, -73, 117, 64, 21, -42, 60, -16, -5, -85, -107, -52, 44, 96, -42, -127, 18, 108, 47, -26, -91, -117, -112, -46, -87, -79, -126, 120, -65, 24, -121, -29, -118, 7, 53, -85, 98, 117, -32, -115, 47, 116, -63, -16, 108, -49, 119, -57, 110, -4, 76, 76, 42, 86, -58, -115, -4, -4, 83, 51, 37, -116, -32, -15, -36, 42, -73, 99, -94, -87, -60, 20, -67, -12, 76, -55, -117, 68, 82, 80, -93, 20, -92, 21, 128, 91, 11, -84, 28, -76, -94, 124, -37, -93, -17, 78, 106, 29, -88, 15, 47, -102
|
2014-02-19 22:06:29 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The powers of 41 modulo 257. We use exponents from 0 to 255, inclusive.
|
|
|
|
*/
|
|
|
|
__constant static const s32 alpha_tab[] = {
|
2014-07-01 14:36:46 +00:00
|
|
|
1, 41, 139, 45, 46, 87, 226, 14, 60, 147, 116, 130,
|
|
|
|
190, 80, 196, 69, 2, 82, 21, 90, 92, 174, 195, 28,
|
|
|
|
120, 37, 232, 3, 123, 160, 135, 138, 4, 164, 42, 180,
|
|
|
|
184, 91, 133, 56, 240, 74, 207, 6, 246, 63, 13, 19,
|
|
|
|
8, 71, 84, 103, 111, 182, 9, 112, 223, 148, 157, 12,
|
|
|
|
235, 126, 26, 38, 16, 142, 168, 206, 222, 107, 18, 224,
|
|
|
|
189, 39, 57, 24, 213, 252, 52, 76, 32, 27, 79, 155,
|
|
|
|
187, 214, 36, 191, 121, 78, 114, 48, 169, 247, 104, 152,
|
|
|
|
64, 54, 158, 53, 117, 171, 72, 125, 242, 156, 228, 96,
|
|
|
|
81, 237, 208, 47, 128, 108, 59, 106, 234, 85, 144, 250,
|
|
|
|
227, 55, 199, 192, 162, 217, 159, 94, 256, 216, 118, 212,
|
|
|
|
211, 170, 31, 243, 197, 110, 141, 127, 67, 177, 61, 188,
|
|
|
|
255, 175, 236, 167, 165, 83, 62, 229, 137, 220, 25, 254,
|
|
|
|
134, 97, 122, 119, 253, 93, 215, 77, 73, 166, 124, 201,
|
|
|
|
17, 183, 50, 251, 11, 194, 244, 238, 249, 186, 173, 154,
|
|
|
|
146, 75, 248, 145, 34, 109, 100, 245, 22, 131, 231, 219,
|
|
|
|
241, 115, 89, 51, 35, 150, 239, 33, 68, 218, 200, 233,
|
|
|
|
44, 5, 205, 181, 225, 230, 178, 102, 70, 43, 221, 66,
|
|
|
|
136, 179, 143, 209, 88, 10, 153, 105, 193, 203, 99, 204,
|
|
|
|
140, 86, 185, 132, 15, 101, 29, 161, 176, 20, 49, 210,
|
|
|
|
129, 149, 198, 151, 23, 172, 113, 7, 30, 202, 58, 65,
|
|
|
|
95, 40, 98, 163
|
2014-02-19 22:06:29 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ranges:
|
|
|
|
* REDS1: from -32768..98302 to -383..383
|
|
|
|
* REDS2: from -2^31..2^31-1 to -32768..98302
|
|
|
|
*/
|
|
|
|
#define REDS1(x) (((x) & 0xFF) - ((x) >> 8))
|
|
|
|
#define REDS2(x) (((x) & 0xFFFF) + ((x) >> 16))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If, upon entry, the values of q[] are all in the -N..N range (where
|
|
|
|
* N >= 98302) then the new values of q[] are in the -2N..2N range.
|
|
|
|
*
|
|
|
|
* Since alpha_tab[v] <= 256, maximum allowed range is for N = 8388608.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define FFT_LOOP_16_8(rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 m = q[(rb)]; \
|
|
|
|
s32 n = q[(rb) + 16]; \
|
|
|
|
q[(rb)] = m + n; \
|
|
|
|
q[(rb) + 16] = m - n; \
|
|
|
|
s32 t; \
|
|
|
|
m = q[(rb) + 0 + 1]; \
|
|
|
|
n = q[(rb) + 0 + 1 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 1 * 8]); \
|
|
|
|
q[(rb) + 0 + 1] = m + t; \
|
|
|
|
q[(rb) + 0 + 1 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 2]; \
|
|
|
|
n = q[(rb) + 0 + 2 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 2 * 8]); \
|
|
|
|
q[(rb) + 0 + 2] = m + t; \
|
|
|
|
q[(rb) + 0 + 2 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 3]; \
|
|
|
|
n = q[(rb) + 0 + 3 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 3 * 8]); \
|
|
|
|
q[(rb) + 0 + 3] = m + t; \
|
|
|
|
q[(rb) + 0 + 3 + 16] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 4 + 0]; \
|
|
|
|
n = q[(rb) + 4 + 0 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 0 * 8]); \
|
|
|
|
q[(rb) + 4 + 0] = m + t; \
|
|
|
|
q[(rb) + 4 + 0 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 1]; \
|
|
|
|
n = q[(rb) + 4 + 1 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 1 * 8]); \
|
|
|
|
q[(rb) + 4 + 1] = m + t; \
|
|
|
|
q[(rb) + 4 + 1 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 2]; \
|
|
|
|
n = q[(rb) + 4 + 2 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 2 * 8]); \
|
|
|
|
q[(rb) + 4 + 2] = m + t; \
|
|
|
|
q[(rb) + 4 + 2 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 3]; \
|
|
|
|
n = q[(rb) + 4 + 3 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 3 * 8]); \
|
|
|
|
q[(rb) + 4 + 3] = m + t; \
|
|
|
|
q[(rb) + 4 + 3 + 16] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 8 + 0]; \
|
|
|
|
n = q[(rb) + 8 + 0 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 0 * 8]); \
|
|
|
|
q[(rb) + 8 + 0] = m + t; \
|
|
|
|
q[(rb) + 8 + 0 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 1]; \
|
|
|
|
n = q[(rb) + 8 + 1 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 1 * 8]); \
|
|
|
|
q[(rb) + 8 + 1] = m + t; \
|
|
|
|
q[(rb) + 8 + 1 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 2]; \
|
|
|
|
n = q[(rb) + 8 + 2 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 2 * 8]); \
|
|
|
|
q[(rb) + 8 + 2] = m + t; \
|
|
|
|
q[(rb) + 8 + 2 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 3]; \
|
|
|
|
n = q[(rb) + 8 + 3 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 3 * 8]); \
|
|
|
|
q[(rb) + 8 + 3] = m + t; \
|
|
|
|
q[(rb) + 8 + 3 + 16] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 12 + 0]; \
|
|
|
|
n = q[(rb) + 12 + 0 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 0 * 8]); \
|
|
|
|
q[(rb) + 12 + 0] = m + t; \
|
|
|
|
q[(rb) + 12 + 0 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 1]; \
|
|
|
|
n = q[(rb) + 12 + 1 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 1 * 8]); \
|
|
|
|
q[(rb) + 12 + 1] = m + t; \
|
|
|
|
q[(rb) + 12 + 1 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 2]; \
|
|
|
|
n = q[(rb) + 12 + 2 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 2 * 8]); \
|
|
|
|
q[(rb) + 12 + 2] = m + t; \
|
|
|
|
q[(rb) + 12 + 2 + 16] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 3]; \
|
|
|
|
n = q[(rb) + 12 + 3 + 16]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 3 * 8]); \
|
|
|
|
q[(rb) + 12 + 3] = m + t; \
|
|
|
|
q[(rb) + 12 + 3 + 16] = m - t; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define FFT_LOOP_32_4(rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 m = q[(rb)]; \
|
|
|
|
s32 n = q[(rb) + 32]; \
|
|
|
|
q[(rb)] = m + n; \
|
|
|
|
q[(rb) + 32] = m - n; \
|
|
|
|
s32 t; \
|
|
|
|
m = q[(rb) + 0 + 1]; \
|
|
|
|
n = q[(rb) + 0 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 1 * 4]); \
|
|
|
|
q[(rb) + 0 + 1] = m + t; \
|
|
|
|
q[(rb) + 0 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 2]; \
|
|
|
|
n = q[(rb) + 0 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 2 * 4]); \
|
|
|
|
q[(rb) + 0 + 2] = m + t; \
|
|
|
|
q[(rb) + 0 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 3]; \
|
|
|
|
n = q[(rb) + 0 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 3 * 4]); \
|
|
|
|
q[(rb) + 0 + 3] = m + t; \
|
|
|
|
q[(rb) + 0 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 4 + 0]; \
|
|
|
|
n = q[(rb) + 4 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 0 * 4]); \
|
|
|
|
q[(rb) + 4 + 0] = m + t; \
|
|
|
|
q[(rb) + 4 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 1]; \
|
|
|
|
n = q[(rb) + 4 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 1 * 4]); \
|
|
|
|
q[(rb) + 4 + 1] = m + t; \
|
|
|
|
q[(rb) + 4 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 2]; \
|
|
|
|
n = q[(rb) + 4 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 2 * 4]); \
|
|
|
|
q[(rb) + 4 + 2] = m + t; \
|
|
|
|
q[(rb) + 4 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 3]; \
|
|
|
|
n = q[(rb) + 4 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 3 * 4]); \
|
|
|
|
q[(rb) + 4 + 3] = m + t; \
|
|
|
|
q[(rb) + 4 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 8 + 0]; \
|
|
|
|
n = q[(rb) + 8 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 0 * 4]); \
|
|
|
|
q[(rb) + 8 + 0] = m + t; \
|
|
|
|
q[(rb) + 8 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 1]; \
|
|
|
|
n = q[(rb) + 8 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 1 * 4]); \
|
|
|
|
q[(rb) + 8 + 1] = m + t; \
|
|
|
|
q[(rb) + 8 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 2]; \
|
|
|
|
n = q[(rb) + 8 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 2 * 4]); \
|
|
|
|
q[(rb) + 8 + 2] = m + t; \
|
|
|
|
q[(rb) + 8 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 3]; \
|
|
|
|
n = q[(rb) + 8 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 3 * 4]); \
|
|
|
|
q[(rb) + 8 + 3] = m + t; \
|
|
|
|
q[(rb) + 8 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 12 + 0]; \
|
|
|
|
n = q[(rb) + 12 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 0 * 4]); \
|
|
|
|
q[(rb) + 12 + 0] = m + t; \
|
|
|
|
q[(rb) + 12 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 1]; \
|
|
|
|
n = q[(rb) + 12 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 1 * 4]); \
|
|
|
|
q[(rb) + 12 + 1] = m + t; \
|
|
|
|
q[(rb) + 12 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 2]; \
|
|
|
|
n = q[(rb) + 12 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 2 * 4]); \
|
|
|
|
q[(rb) + 12 + 2] = m + t; \
|
|
|
|
q[(rb) + 12 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 3]; \
|
|
|
|
n = q[(rb) + 12 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 3 * 4]); \
|
|
|
|
q[(rb) + 12 + 3] = m + t; \
|
|
|
|
q[(rb) + 12 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 16 + 0]; \
|
|
|
|
n = q[(rb) + 16 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 0 * 4]); \
|
|
|
|
q[(rb) + 16 + 0] = m + t; \
|
|
|
|
q[(rb) + 16 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 1]; \
|
|
|
|
n = q[(rb) + 16 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 1 * 4]); \
|
|
|
|
q[(rb) + 16 + 1] = m + t; \
|
|
|
|
q[(rb) + 16 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 2]; \
|
|
|
|
n = q[(rb) + 16 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 2 * 4]); \
|
|
|
|
q[(rb) + 16 + 2] = m + t; \
|
|
|
|
q[(rb) + 16 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 3]; \
|
|
|
|
n = q[(rb) + 16 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 3 * 4]); \
|
|
|
|
q[(rb) + 16 + 3] = m + t; \
|
|
|
|
q[(rb) + 16 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 20 + 0]; \
|
|
|
|
n = q[(rb) + 20 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 0 * 4]); \
|
|
|
|
q[(rb) + 20 + 0] = m + t; \
|
|
|
|
q[(rb) + 20 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 1]; \
|
|
|
|
n = q[(rb) + 20 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 1 * 4]); \
|
|
|
|
q[(rb) + 20 + 1] = m + t; \
|
|
|
|
q[(rb) + 20 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 2]; \
|
|
|
|
n = q[(rb) + 20 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 2 * 4]); \
|
|
|
|
q[(rb) + 20 + 2] = m + t; \
|
|
|
|
q[(rb) + 20 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 3]; \
|
|
|
|
n = q[(rb) + 20 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 3 * 4]); \
|
|
|
|
q[(rb) + 20 + 3] = m + t; \
|
|
|
|
q[(rb) + 20 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 24 + 0]; \
|
|
|
|
n = q[(rb) + 24 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 0 * 4]); \
|
|
|
|
q[(rb) + 24 + 0] = m + t; \
|
|
|
|
q[(rb) + 24 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 1]; \
|
|
|
|
n = q[(rb) + 24 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 1 * 4]); \
|
|
|
|
q[(rb) + 24 + 1] = m + t; \
|
|
|
|
q[(rb) + 24 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 2]; \
|
|
|
|
n = q[(rb) + 24 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 2 * 4]); \
|
|
|
|
q[(rb) + 24 + 2] = m + t; \
|
|
|
|
q[(rb) + 24 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 3]; \
|
|
|
|
n = q[(rb) + 24 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 3 * 4]); \
|
|
|
|
q[(rb) + 24 + 3] = m + t; \
|
|
|
|
q[(rb) + 24 + 3 + 32] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 28 + 0]; \
|
|
|
|
n = q[(rb) + 28 + 0 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 0 * 4]); \
|
|
|
|
q[(rb) + 28 + 0] = m + t; \
|
|
|
|
q[(rb) + 28 + 0 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 1]; \
|
|
|
|
n = q[(rb) + 28 + 1 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 1 * 4]); \
|
|
|
|
q[(rb) + 28 + 1] = m + t; \
|
|
|
|
q[(rb) + 28 + 1 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 2]; \
|
|
|
|
n = q[(rb) + 28 + 2 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 2 * 4]); \
|
|
|
|
q[(rb) + 28 + 2] = m + t; \
|
|
|
|
q[(rb) + 28 + 2 + 32] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 3]; \
|
|
|
|
n = q[(rb) + 28 + 3 + 32]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 3 * 4]); \
|
|
|
|
q[(rb) + 28 + 3] = m + t; \
|
|
|
|
q[(rb) + 28 + 3 + 32] = m - t; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define FFT_LOOP_64_2(rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 m = q[(rb)]; \
|
|
|
|
s32 n = q[(rb) + 64]; \
|
|
|
|
q[(rb)] = m + n; \
|
|
|
|
q[(rb) + 64] = m - n; \
|
|
|
|
s32 t; \
|
|
|
|
m = q[(rb) + 0 + 1]; \
|
|
|
|
n = q[(rb) + 0 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 1 * 2]); \
|
|
|
|
q[(rb) + 0 + 1] = m + t; \
|
|
|
|
q[(rb) + 0 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 2]; \
|
|
|
|
n = q[(rb) + 0 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 2 * 2]); \
|
|
|
|
q[(rb) + 0 + 2] = m + t; \
|
|
|
|
q[(rb) + 0 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 3]; \
|
|
|
|
n = q[(rb) + 0 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 3 * 2]); \
|
|
|
|
q[(rb) + 0 + 3] = m + t; \
|
|
|
|
q[(rb) + 0 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 4 + 0]; \
|
|
|
|
n = q[(rb) + 4 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 0 * 2]); \
|
|
|
|
q[(rb) + 4 + 0] = m + t; \
|
|
|
|
q[(rb) + 4 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 1]; \
|
|
|
|
n = q[(rb) + 4 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 1 * 2]); \
|
|
|
|
q[(rb) + 4 + 1] = m + t; \
|
|
|
|
q[(rb) + 4 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 2]; \
|
|
|
|
n = q[(rb) + 4 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 2 * 2]); \
|
|
|
|
q[(rb) + 4 + 2] = m + t; \
|
|
|
|
q[(rb) + 4 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 3]; \
|
|
|
|
n = q[(rb) + 4 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 3 * 2]); \
|
|
|
|
q[(rb) + 4 + 3] = m + t; \
|
|
|
|
q[(rb) + 4 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 8 + 0]; \
|
|
|
|
n = q[(rb) + 8 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 0 * 2]); \
|
|
|
|
q[(rb) + 8 + 0] = m + t; \
|
|
|
|
q[(rb) + 8 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 1]; \
|
|
|
|
n = q[(rb) + 8 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 1 * 2]); \
|
|
|
|
q[(rb) + 8 + 1] = m + t; \
|
|
|
|
q[(rb) + 8 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 2]; \
|
|
|
|
n = q[(rb) + 8 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 2 * 2]); \
|
|
|
|
q[(rb) + 8 + 2] = m + t; \
|
|
|
|
q[(rb) + 8 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 3]; \
|
|
|
|
n = q[(rb) + 8 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 3 * 2]); \
|
|
|
|
q[(rb) + 8 + 3] = m + t; \
|
|
|
|
q[(rb) + 8 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 12 + 0]; \
|
|
|
|
n = q[(rb) + 12 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 0 * 2]); \
|
|
|
|
q[(rb) + 12 + 0] = m + t; \
|
|
|
|
q[(rb) + 12 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 1]; \
|
|
|
|
n = q[(rb) + 12 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 1 * 2]); \
|
|
|
|
q[(rb) + 12 + 1] = m + t; \
|
|
|
|
q[(rb) + 12 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 2]; \
|
|
|
|
n = q[(rb) + 12 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 2 * 2]); \
|
|
|
|
q[(rb) + 12 + 2] = m + t; \
|
|
|
|
q[(rb) + 12 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 3]; \
|
|
|
|
n = q[(rb) + 12 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 3 * 2]); \
|
|
|
|
q[(rb) + 12 + 3] = m + t; \
|
|
|
|
q[(rb) + 12 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 16 + 0]; \
|
|
|
|
n = q[(rb) + 16 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 0 * 2]); \
|
|
|
|
q[(rb) + 16 + 0] = m + t; \
|
|
|
|
q[(rb) + 16 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 1]; \
|
|
|
|
n = q[(rb) + 16 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 1 * 2]); \
|
|
|
|
q[(rb) + 16 + 1] = m + t; \
|
|
|
|
q[(rb) + 16 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 2]; \
|
|
|
|
n = q[(rb) + 16 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 2 * 2]); \
|
|
|
|
q[(rb) + 16 + 2] = m + t; \
|
|
|
|
q[(rb) + 16 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 3]; \
|
|
|
|
n = q[(rb) + 16 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 3 * 2]); \
|
|
|
|
q[(rb) + 16 + 3] = m + t; \
|
|
|
|
q[(rb) + 16 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 20 + 0]; \
|
|
|
|
n = q[(rb) + 20 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 0 * 2]); \
|
|
|
|
q[(rb) + 20 + 0] = m + t; \
|
|
|
|
q[(rb) + 20 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 1]; \
|
|
|
|
n = q[(rb) + 20 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 1 * 2]); \
|
|
|
|
q[(rb) + 20 + 1] = m + t; \
|
|
|
|
q[(rb) + 20 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 2]; \
|
|
|
|
n = q[(rb) + 20 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 2 * 2]); \
|
|
|
|
q[(rb) + 20 + 2] = m + t; \
|
|
|
|
q[(rb) + 20 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 3]; \
|
|
|
|
n = q[(rb) + 20 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 3 * 2]); \
|
|
|
|
q[(rb) + 20 + 3] = m + t; \
|
|
|
|
q[(rb) + 20 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 24 + 0]; \
|
|
|
|
n = q[(rb) + 24 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 0 * 2]); \
|
|
|
|
q[(rb) + 24 + 0] = m + t; \
|
|
|
|
q[(rb) + 24 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 1]; \
|
|
|
|
n = q[(rb) + 24 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 1 * 2]); \
|
|
|
|
q[(rb) + 24 + 1] = m + t; \
|
|
|
|
q[(rb) + 24 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 2]; \
|
|
|
|
n = q[(rb) + 24 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 2 * 2]); \
|
|
|
|
q[(rb) + 24 + 2] = m + t; \
|
|
|
|
q[(rb) + 24 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 3]; \
|
|
|
|
n = q[(rb) + 24 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 3 * 2]); \
|
|
|
|
q[(rb) + 24 + 3] = m + t; \
|
|
|
|
q[(rb) + 24 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 28 + 0]; \
|
|
|
|
n = q[(rb) + 28 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 0 * 2]); \
|
|
|
|
q[(rb) + 28 + 0] = m + t; \
|
|
|
|
q[(rb) + 28 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 1]; \
|
|
|
|
n = q[(rb) + 28 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 1 * 2]); \
|
|
|
|
q[(rb) + 28 + 1] = m + t; \
|
|
|
|
q[(rb) + 28 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 2]; \
|
|
|
|
n = q[(rb) + 28 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 2 * 2]); \
|
|
|
|
q[(rb) + 28 + 2] = m + t; \
|
|
|
|
q[(rb) + 28 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 3]; \
|
|
|
|
n = q[(rb) + 28 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 3 * 2]); \
|
|
|
|
q[(rb) + 28 + 3] = m + t; \
|
|
|
|
q[(rb) + 28 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 32 + 0]; \
|
|
|
|
n = q[(rb) + 32 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 0 * 2]); \
|
|
|
|
q[(rb) + 32 + 0] = m + t; \
|
|
|
|
q[(rb) + 32 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 1]; \
|
|
|
|
n = q[(rb) + 32 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 1 * 2]); \
|
|
|
|
q[(rb) + 32 + 1] = m + t; \
|
|
|
|
q[(rb) + 32 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 2]; \
|
|
|
|
n = q[(rb) + 32 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 2 * 2]); \
|
|
|
|
q[(rb) + 32 + 2] = m + t; \
|
|
|
|
q[(rb) + 32 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 3]; \
|
|
|
|
n = q[(rb) + 32 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 3 * 2]); \
|
|
|
|
q[(rb) + 32 + 3] = m + t; \
|
|
|
|
q[(rb) + 32 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 36 + 0]; \
|
|
|
|
n = q[(rb) + 36 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 0 * 2]); \
|
|
|
|
q[(rb) + 36 + 0] = m + t; \
|
|
|
|
q[(rb) + 36 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 1]; \
|
|
|
|
n = q[(rb) + 36 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 1 * 2]); \
|
|
|
|
q[(rb) + 36 + 1] = m + t; \
|
|
|
|
q[(rb) + 36 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 2]; \
|
|
|
|
n = q[(rb) + 36 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 2 * 2]); \
|
|
|
|
q[(rb) + 36 + 2] = m + t; \
|
|
|
|
q[(rb) + 36 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 3]; \
|
|
|
|
n = q[(rb) + 36 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 3 * 2]); \
|
|
|
|
q[(rb) + 36 + 3] = m + t; \
|
|
|
|
q[(rb) + 36 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 40 + 0]; \
|
|
|
|
n = q[(rb) + 40 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 0 * 2]); \
|
|
|
|
q[(rb) + 40 + 0] = m + t; \
|
|
|
|
q[(rb) + 40 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 1]; \
|
|
|
|
n = q[(rb) + 40 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 1 * 2]); \
|
|
|
|
q[(rb) + 40 + 1] = m + t; \
|
|
|
|
q[(rb) + 40 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 2]; \
|
|
|
|
n = q[(rb) + 40 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 2 * 2]); \
|
|
|
|
q[(rb) + 40 + 2] = m + t; \
|
|
|
|
q[(rb) + 40 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 3]; \
|
|
|
|
n = q[(rb) + 40 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 3 * 2]); \
|
|
|
|
q[(rb) + 40 + 3] = m + t; \
|
|
|
|
q[(rb) + 40 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 44 + 0]; \
|
|
|
|
n = q[(rb) + 44 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 0 * 2]); \
|
|
|
|
q[(rb) + 44 + 0] = m + t; \
|
|
|
|
q[(rb) + 44 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 1]; \
|
|
|
|
n = q[(rb) + 44 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 1 * 2]); \
|
|
|
|
q[(rb) + 44 + 1] = m + t; \
|
|
|
|
q[(rb) + 44 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 2]; \
|
|
|
|
n = q[(rb) + 44 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 2 * 2]); \
|
|
|
|
q[(rb) + 44 + 2] = m + t; \
|
|
|
|
q[(rb) + 44 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 3]; \
|
|
|
|
n = q[(rb) + 44 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 3 * 2]); \
|
|
|
|
q[(rb) + 44 + 3] = m + t; \
|
|
|
|
q[(rb) + 44 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 48 + 0]; \
|
|
|
|
n = q[(rb) + 48 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 0 * 2]); \
|
|
|
|
q[(rb) + 48 + 0] = m + t; \
|
|
|
|
q[(rb) + 48 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 1]; \
|
|
|
|
n = q[(rb) + 48 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 1 * 2]); \
|
|
|
|
q[(rb) + 48 + 1] = m + t; \
|
|
|
|
q[(rb) + 48 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 2]; \
|
|
|
|
n = q[(rb) + 48 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 2 * 2]); \
|
|
|
|
q[(rb) + 48 + 2] = m + t; \
|
|
|
|
q[(rb) + 48 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 3]; \
|
|
|
|
n = q[(rb) + 48 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 3 * 2]); \
|
|
|
|
q[(rb) + 48 + 3] = m + t; \
|
|
|
|
q[(rb) + 48 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 52 + 0]; \
|
|
|
|
n = q[(rb) + 52 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 0 * 2]); \
|
|
|
|
q[(rb) + 52 + 0] = m + t; \
|
|
|
|
q[(rb) + 52 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 1]; \
|
|
|
|
n = q[(rb) + 52 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 1 * 2]); \
|
|
|
|
q[(rb) + 52 + 1] = m + t; \
|
|
|
|
q[(rb) + 52 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 2]; \
|
|
|
|
n = q[(rb) + 52 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 2 * 2]); \
|
|
|
|
q[(rb) + 52 + 2] = m + t; \
|
|
|
|
q[(rb) + 52 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 3]; \
|
|
|
|
n = q[(rb) + 52 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 3 * 2]); \
|
|
|
|
q[(rb) + 52 + 3] = m + t; \
|
|
|
|
q[(rb) + 52 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 56 + 0]; \
|
|
|
|
n = q[(rb) + 56 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 0 * 2]); \
|
|
|
|
q[(rb) + 56 + 0] = m + t; \
|
|
|
|
q[(rb) + 56 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 1]; \
|
|
|
|
n = q[(rb) + 56 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 1 * 2]); \
|
|
|
|
q[(rb) + 56 + 1] = m + t; \
|
|
|
|
q[(rb) + 56 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 2]; \
|
|
|
|
n = q[(rb) + 56 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 2 * 2]); \
|
|
|
|
q[(rb) + 56 + 2] = m + t; \
|
|
|
|
q[(rb) + 56 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 3]; \
|
|
|
|
n = q[(rb) + 56 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 3 * 2]); \
|
|
|
|
q[(rb) + 56 + 3] = m + t; \
|
|
|
|
q[(rb) + 56 + 3 + 64] = m - t; \
|
|
|
|
\
|
|
|
|
m = q[(rb) + 60 + 0]; \
|
|
|
|
n = q[(rb) + 60 + 0 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 0 * 2]); \
|
|
|
|
q[(rb) + 60 + 0] = m + t; \
|
|
|
|
q[(rb) + 60 + 0 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 1]; \
|
|
|
|
n = q[(rb) + 60 + 1 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 1 * 2]); \
|
|
|
|
q[(rb) + 60 + 1] = m + t; \
|
|
|
|
q[(rb) + 60 + 1 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 2]; \
|
|
|
|
n = q[(rb) + 60 + 2 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 2 * 2]); \
|
|
|
|
q[(rb) + 60 + 2] = m + t; \
|
|
|
|
q[(rb) + 60 + 2 + 64] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 3]; \
|
|
|
|
n = q[(rb) + 60 + 3 + 64]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 3 * 2]); \
|
|
|
|
q[(rb) + 60 + 3] = m + t; \
|
|
|
|
q[(rb) + 60 + 3 + 64] = m - t; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define FFT_LOOP_128_1(rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 m = q[(rb)]; \
|
|
|
|
s32 n = q[(rb) + 128]; \
|
|
|
|
q[(rb)] = m + n; \
|
|
|
|
q[(rb) + 128] = m - n; \
|
|
|
|
s32 t; \
|
|
|
|
m = q[(rb) + 0 + 1]; \
|
|
|
|
n = q[(rb) + 0 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 1 * 1]); \
|
|
|
|
q[(rb) + 0 + 1] = m + t; \
|
|
|
|
q[(rb) + 0 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 2]; \
|
|
|
|
n = q[(rb) + 0 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 2 * 1]); \
|
|
|
|
q[(rb) + 0 + 2] = m + t; \
|
|
|
|
q[(rb) + 0 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 0 + 3]; \
|
|
|
|
n = q[(rb) + 0 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[0 + 3 * 1]); \
|
|
|
|
q[(rb) + 0 + 3] = m + t; \
|
|
|
|
q[(rb) + 0 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 0]; \
|
|
|
|
n = q[(rb) + 4 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[4 + 0 * 1]); \
|
|
|
|
q[(rb) + 4 + 0] = m + t; \
|
|
|
|
q[(rb) + 4 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 1]; \
|
|
|
|
n = q[(rb) + 4 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[4 + 1 * 1]); \
|
|
|
|
q[(rb) + 4 + 1] = m + t; \
|
|
|
|
q[(rb) + 4 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 2]; \
|
|
|
|
n = q[(rb) + 4 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[4 + 2 * 1]); \
|
|
|
|
q[(rb) + 4 + 2] = m + t; \
|
|
|
|
q[(rb) + 4 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 4 + 3]; \
|
|
|
|
n = q[(rb) + 4 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[4 + 3 * 1]); \
|
|
|
|
q[(rb) + 4 + 3] = m + t; \
|
|
|
|
q[(rb) + 4 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 0]; \
|
|
|
|
n = q[(rb) + 8 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 0 * 1]); \
|
|
|
|
q[(rb) + 8 + 0] = m + t; \
|
|
|
|
q[(rb) + 8 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 1]; \
|
|
|
|
n = q[(rb) + 8 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 1 * 1]); \
|
|
|
|
q[(rb) + 8 + 1] = m + t; \
|
|
|
|
q[(rb) + 8 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 2]; \
|
|
|
|
n = q[(rb) + 8 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 2 * 1]); \
|
|
|
|
q[(rb) + 8 + 2] = m + t; \
|
|
|
|
q[(rb) + 8 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 8 + 3]; \
|
|
|
|
n = q[(rb) + 8 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[8 + 3 * 1]); \
|
|
|
|
q[(rb) + 8 + 3] = m + t; \
|
|
|
|
q[(rb) + 8 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 0]; \
|
|
|
|
n = q[(rb) + 12 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[12 + 0 * 1]); \
|
|
|
|
q[(rb) + 12 + 0] = m + t; \
|
|
|
|
q[(rb) + 12 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 1]; \
|
|
|
|
n = q[(rb) + 12 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[12 + 1 * 1]); \
|
|
|
|
q[(rb) + 12 + 1] = m + t; \
|
|
|
|
q[(rb) + 12 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 2]; \
|
|
|
|
n = q[(rb) + 12 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[12 + 2 * 1]); \
|
|
|
|
q[(rb) + 12 + 2] = m + t; \
|
|
|
|
q[(rb) + 12 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 12 + 3]; \
|
|
|
|
n = q[(rb) + 12 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[12 + 3 * 1]); \
|
|
|
|
q[(rb) + 12 + 3] = m + t; \
|
|
|
|
q[(rb) + 12 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 0]; \
|
|
|
|
n = q[(rb) + 16 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 0 * 1]); \
|
|
|
|
q[(rb) + 16 + 0] = m + t; \
|
|
|
|
q[(rb) + 16 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 1]; \
|
|
|
|
n = q[(rb) + 16 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 1 * 1]); \
|
|
|
|
q[(rb) + 16 + 1] = m + t; \
|
|
|
|
q[(rb) + 16 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 2]; \
|
|
|
|
n = q[(rb) + 16 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 2 * 1]); \
|
|
|
|
q[(rb) + 16 + 2] = m + t; \
|
|
|
|
q[(rb) + 16 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 16 + 3]; \
|
|
|
|
n = q[(rb) + 16 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[16 + 3 * 1]); \
|
|
|
|
q[(rb) + 16 + 3] = m + t; \
|
|
|
|
q[(rb) + 16 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 0]; \
|
|
|
|
n = q[(rb) + 20 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[20 + 0 * 1]); \
|
|
|
|
q[(rb) + 20 + 0] = m + t; \
|
|
|
|
q[(rb) + 20 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 1]; \
|
|
|
|
n = q[(rb) + 20 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[20 + 1 * 1]); \
|
|
|
|
q[(rb) + 20 + 1] = m + t; \
|
|
|
|
q[(rb) + 20 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 2]; \
|
|
|
|
n = q[(rb) + 20 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[20 + 2 * 1]); \
|
|
|
|
q[(rb) + 20 + 2] = m + t; \
|
|
|
|
q[(rb) + 20 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 20 + 3]; \
|
|
|
|
n = q[(rb) + 20 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[20 + 3 * 1]); \
|
|
|
|
q[(rb) + 20 + 3] = m + t; \
|
|
|
|
q[(rb) + 20 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 0]; \
|
|
|
|
n = q[(rb) + 24 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 0 * 1]); \
|
|
|
|
q[(rb) + 24 + 0] = m + t; \
|
|
|
|
q[(rb) + 24 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 1]; \
|
|
|
|
n = q[(rb) + 24 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 1 * 1]); \
|
|
|
|
q[(rb) + 24 + 1] = m + t; \
|
|
|
|
q[(rb) + 24 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 2]; \
|
|
|
|
n = q[(rb) + 24 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 2 * 1]); \
|
|
|
|
q[(rb) + 24 + 2] = m + t; \
|
|
|
|
q[(rb) + 24 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 24 + 3]; \
|
|
|
|
n = q[(rb) + 24 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[24 + 3 * 1]); \
|
|
|
|
q[(rb) + 24 + 3] = m + t; \
|
|
|
|
q[(rb) + 24 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 0]; \
|
|
|
|
n = q[(rb) + 28 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[28 + 0 * 1]); \
|
|
|
|
q[(rb) + 28 + 0] = m + t; \
|
|
|
|
q[(rb) + 28 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 1]; \
|
|
|
|
n = q[(rb) + 28 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[28 + 1 * 1]); \
|
|
|
|
q[(rb) + 28 + 1] = m + t; \
|
|
|
|
q[(rb) + 28 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 2]; \
|
|
|
|
n = q[(rb) + 28 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[28 + 2 * 1]); \
|
|
|
|
q[(rb) + 28 + 2] = m + t; \
|
|
|
|
q[(rb) + 28 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 28 + 3]; \
|
|
|
|
n = q[(rb) + 28 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[28 + 3 * 1]); \
|
|
|
|
q[(rb) + 28 + 3] = m + t; \
|
|
|
|
q[(rb) + 28 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 0]; \
|
|
|
|
n = q[(rb) + 32 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 0 * 1]); \
|
|
|
|
q[(rb) + 32 + 0] = m + t; \
|
|
|
|
q[(rb) + 32 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 1]; \
|
|
|
|
n = q[(rb) + 32 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 1 * 1]); \
|
|
|
|
q[(rb) + 32 + 1] = m + t; \
|
|
|
|
q[(rb) + 32 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 2]; \
|
|
|
|
n = q[(rb) + 32 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 2 * 1]); \
|
|
|
|
q[(rb) + 32 + 2] = m + t; \
|
|
|
|
q[(rb) + 32 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 32 + 3]; \
|
|
|
|
n = q[(rb) + 32 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[32 + 3 * 1]); \
|
|
|
|
q[(rb) + 32 + 3] = m + t; \
|
|
|
|
q[(rb) + 32 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 0]; \
|
|
|
|
n = q[(rb) + 36 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[36 + 0 * 1]); \
|
|
|
|
q[(rb) + 36 + 0] = m + t; \
|
|
|
|
q[(rb) + 36 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 1]; \
|
|
|
|
n = q[(rb) + 36 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[36 + 1 * 1]); \
|
|
|
|
q[(rb) + 36 + 1] = m + t; \
|
|
|
|
q[(rb) + 36 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 2]; \
|
|
|
|
n = q[(rb) + 36 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[36 + 2 * 1]); \
|
|
|
|
q[(rb) + 36 + 2] = m + t; \
|
|
|
|
q[(rb) + 36 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 36 + 3]; \
|
|
|
|
n = q[(rb) + 36 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[36 + 3 * 1]); \
|
|
|
|
q[(rb) + 36 + 3] = m + t; \
|
|
|
|
q[(rb) + 36 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 0]; \
|
|
|
|
n = q[(rb) + 40 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 0 * 1]); \
|
|
|
|
q[(rb) + 40 + 0] = m + t; \
|
|
|
|
q[(rb) + 40 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 1]; \
|
|
|
|
n = q[(rb) + 40 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 1 * 1]); \
|
|
|
|
q[(rb) + 40 + 1] = m + t; \
|
|
|
|
q[(rb) + 40 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 2]; \
|
|
|
|
n = q[(rb) + 40 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 2 * 1]); \
|
|
|
|
q[(rb) + 40 + 2] = m + t; \
|
|
|
|
q[(rb) + 40 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 40 + 3]; \
|
|
|
|
n = q[(rb) + 40 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[40 + 3 * 1]); \
|
|
|
|
q[(rb) + 40 + 3] = m + t; \
|
|
|
|
q[(rb) + 40 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 0]; \
|
|
|
|
n = q[(rb) + 44 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[44 + 0 * 1]); \
|
|
|
|
q[(rb) + 44 + 0] = m + t; \
|
|
|
|
q[(rb) + 44 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 1]; \
|
|
|
|
n = q[(rb) + 44 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[44 + 1 * 1]); \
|
|
|
|
q[(rb) + 44 + 1] = m + t; \
|
|
|
|
q[(rb) + 44 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 2]; \
|
|
|
|
n = q[(rb) + 44 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[44 + 2 * 1]); \
|
|
|
|
q[(rb) + 44 + 2] = m + t; \
|
|
|
|
q[(rb) + 44 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 44 + 3]; \
|
|
|
|
n = q[(rb) + 44 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[44 + 3 * 1]); \
|
|
|
|
q[(rb) + 44 + 3] = m + t; \
|
|
|
|
q[(rb) + 44 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 0]; \
|
|
|
|
n = q[(rb) + 48 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 0 * 1]); \
|
|
|
|
q[(rb) + 48 + 0] = m + t; \
|
|
|
|
q[(rb) + 48 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 1]; \
|
|
|
|
n = q[(rb) + 48 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 1 * 1]); \
|
|
|
|
q[(rb) + 48 + 1] = m + t; \
|
|
|
|
q[(rb) + 48 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 2]; \
|
|
|
|
n = q[(rb) + 48 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 2 * 1]); \
|
|
|
|
q[(rb) + 48 + 2] = m + t; \
|
|
|
|
q[(rb) + 48 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 48 + 3]; \
|
|
|
|
n = q[(rb) + 48 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[48 + 3 * 1]); \
|
|
|
|
q[(rb) + 48 + 3] = m + t; \
|
|
|
|
q[(rb) + 48 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 0]; \
|
|
|
|
n = q[(rb) + 52 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[52 + 0 * 1]); \
|
|
|
|
q[(rb) + 52 + 0] = m + t; \
|
|
|
|
q[(rb) + 52 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 1]; \
|
|
|
|
n = q[(rb) + 52 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[52 + 1 * 1]); \
|
|
|
|
q[(rb) + 52 + 1] = m + t; \
|
|
|
|
q[(rb) + 52 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 2]; \
|
|
|
|
n = q[(rb) + 52 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[52 + 2 * 1]); \
|
|
|
|
q[(rb) + 52 + 2] = m + t; \
|
|
|
|
q[(rb) + 52 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 52 + 3]; \
|
|
|
|
n = q[(rb) + 52 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[52 + 3 * 1]); \
|
|
|
|
q[(rb) + 52 + 3] = m + t; \
|
|
|
|
q[(rb) + 52 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 0]; \
|
|
|
|
n = q[(rb) + 56 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 0 * 1]); \
|
|
|
|
q[(rb) + 56 + 0] = m + t; \
|
|
|
|
q[(rb) + 56 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 1]; \
|
|
|
|
n = q[(rb) + 56 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 1 * 1]); \
|
|
|
|
q[(rb) + 56 + 1] = m + t; \
|
|
|
|
q[(rb) + 56 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 2]; \
|
|
|
|
n = q[(rb) + 56 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 2 * 1]); \
|
|
|
|
q[(rb) + 56 + 2] = m + t; \
|
|
|
|
q[(rb) + 56 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 56 + 3]; \
|
|
|
|
n = q[(rb) + 56 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[56 + 3 * 1]); \
|
|
|
|
q[(rb) + 56 + 3] = m + t; \
|
|
|
|
q[(rb) + 56 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 0]; \
|
|
|
|
n = q[(rb) + 60 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[60 + 0 * 1]); \
|
|
|
|
q[(rb) + 60 + 0] = m + t; \
|
|
|
|
q[(rb) + 60 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 1]; \
|
|
|
|
n = q[(rb) + 60 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[60 + 1 * 1]); \
|
|
|
|
q[(rb) + 60 + 1] = m + t; \
|
|
|
|
q[(rb) + 60 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 2]; \
|
|
|
|
n = q[(rb) + 60 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[60 + 2 * 1]); \
|
|
|
|
q[(rb) + 60 + 2] = m + t; \
|
|
|
|
q[(rb) + 60 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 60 + 3]; \
|
|
|
|
n = q[(rb) + 60 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[60 + 3 * 1]); \
|
|
|
|
q[(rb) + 60 + 3] = m + t; \
|
|
|
|
q[(rb) + 60 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 64 + 0]; \
|
|
|
|
n = q[(rb) + 64 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 0 * 1]); \
|
|
|
|
q[(rb) + 64 + 0] = m + t; \
|
|
|
|
q[(rb) + 64 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 64 + 1]; \
|
|
|
|
n = q[(rb) + 64 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 1 * 1]); \
|
|
|
|
q[(rb) + 64 + 1] = m + t; \
|
|
|
|
q[(rb) + 64 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 64 + 2]; \
|
|
|
|
n = q[(rb) + 64 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 2 * 1]); \
|
|
|
|
q[(rb) + 64 + 2] = m + t; \
|
|
|
|
q[(rb) + 64 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 64 + 3]; \
|
|
|
|
n = q[(rb) + 64 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[64 + 3 * 1]); \
|
|
|
|
q[(rb) + 64 + 3] = m + t; \
|
|
|
|
q[(rb) + 64 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 68 + 0]; \
|
|
|
|
n = q[(rb) + 68 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[68 + 0 * 1]); \
|
|
|
|
q[(rb) + 68 + 0] = m + t; \
|
|
|
|
q[(rb) + 68 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 68 + 1]; \
|
|
|
|
n = q[(rb) + 68 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[68 + 1 * 1]); \
|
|
|
|
q[(rb) + 68 + 1] = m + t; \
|
|
|
|
q[(rb) + 68 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 68 + 2]; \
|
|
|
|
n = q[(rb) + 68 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[68 + 2 * 1]); \
|
|
|
|
q[(rb) + 68 + 2] = m + t; \
|
|
|
|
q[(rb) + 68 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 68 + 3]; \
|
|
|
|
n = q[(rb) + 68 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[68 + 3 * 1]); \
|
|
|
|
q[(rb) + 68 + 3] = m + t; \
|
|
|
|
q[(rb) + 68 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 72 + 0]; \
|
|
|
|
n = q[(rb) + 72 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 0 * 1]); \
|
|
|
|
q[(rb) + 72 + 0] = m + t; \
|
|
|
|
q[(rb) + 72 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 72 + 1]; \
|
|
|
|
n = q[(rb) + 72 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 1 * 1]); \
|
|
|
|
q[(rb) + 72 + 1] = m + t; \
|
|
|
|
q[(rb) + 72 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 72 + 2]; \
|
|
|
|
n = q[(rb) + 72 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 2 * 1]); \
|
|
|
|
q[(rb) + 72 + 2] = m + t; \
|
|
|
|
q[(rb) + 72 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 72 + 3]; \
|
|
|
|
n = q[(rb) + 72 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[72 + 3 * 1]); \
|
|
|
|
q[(rb) + 72 + 3] = m + t; \
|
|
|
|
q[(rb) + 72 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 76 + 0]; \
|
|
|
|
n = q[(rb) + 76 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[76 + 0 * 1]); \
|
|
|
|
q[(rb) + 76 + 0] = m + t; \
|
|
|
|
q[(rb) + 76 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 76 + 1]; \
|
|
|
|
n = q[(rb) + 76 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[76 + 1 * 1]); \
|
|
|
|
q[(rb) + 76 + 1] = m + t; \
|
|
|
|
q[(rb) + 76 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 76 + 2]; \
|
|
|
|
n = q[(rb) + 76 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[76 + 2 * 1]); \
|
|
|
|
q[(rb) + 76 + 2] = m + t; \
|
|
|
|
q[(rb) + 76 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 76 + 3]; \
|
|
|
|
n = q[(rb) + 76 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[76 + 3 * 1]); \
|
|
|
|
q[(rb) + 76 + 3] = m + t; \
|
|
|
|
q[(rb) + 76 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 80 + 0]; \
|
|
|
|
n = q[(rb) + 80 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 0 * 1]); \
|
|
|
|
q[(rb) + 80 + 0] = m + t; \
|
|
|
|
q[(rb) + 80 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 80 + 1]; \
|
|
|
|
n = q[(rb) + 80 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 1 * 1]); \
|
|
|
|
q[(rb) + 80 + 1] = m + t; \
|
|
|
|
q[(rb) + 80 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 80 + 2]; \
|
|
|
|
n = q[(rb) + 80 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 2 * 1]); \
|
|
|
|
q[(rb) + 80 + 2] = m + t; \
|
|
|
|
q[(rb) + 80 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 80 + 3]; \
|
|
|
|
n = q[(rb) + 80 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[80 + 3 * 1]); \
|
|
|
|
q[(rb) + 80 + 3] = m + t; \
|
|
|
|
q[(rb) + 80 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 84 + 0]; \
|
|
|
|
n = q[(rb) + 84 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[84 + 0 * 1]); \
|
|
|
|
q[(rb) + 84 + 0] = m + t; \
|
|
|
|
q[(rb) + 84 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 84 + 1]; \
|
|
|
|
n = q[(rb) + 84 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[84 + 1 * 1]); \
|
|
|
|
q[(rb) + 84 + 1] = m + t; \
|
|
|
|
q[(rb) + 84 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 84 + 2]; \
|
|
|
|
n = q[(rb) + 84 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[84 + 2 * 1]); \
|
|
|
|
q[(rb) + 84 + 2] = m + t; \
|
|
|
|
q[(rb) + 84 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 84 + 3]; \
|
|
|
|
n = q[(rb) + 84 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[84 + 3 * 1]); \
|
|
|
|
q[(rb) + 84 + 3] = m + t; \
|
|
|
|
q[(rb) + 84 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 88 + 0]; \
|
|
|
|
n = q[(rb) + 88 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 0 * 1]); \
|
|
|
|
q[(rb) + 88 + 0] = m + t; \
|
|
|
|
q[(rb) + 88 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 88 + 1]; \
|
|
|
|
n = q[(rb) + 88 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 1 * 1]); \
|
|
|
|
q[(rb) + 88 + 1] = m + t; \
|
|
|
|
q[(rb) + 88 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 88 + 2]; \
|
|
|
|
n = q[(rb) + 88 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 2 * 1]); \
|
|
|
|
q[(rb) + 88 + 2] = m + t; \
|
|
|
|
q[(rb) + 88 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 88 + 3]; \
|
|
|
|
n = q[(rb) + 88 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[88 + 3 * 1]); \
|
|
|
|
q[(rb) + 88 + 3] = m + t; \
|
|
|
|
q[(rb) + 88 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 92 + 0]; \
|
|
|
|
n = q[(rb) + 92 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[92 + 0 * 1]); \
|
|
|
|
q[(rb) + 92 + 0] = m + t; \
|
|
|
|
q[(rb) + 92 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 92 + 1]; \
|
|
|
|
n = q[(rb) + 92 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[92 + 1 * 1]); \
|
|
|
|
q[(rb) + 92 + 1] = m + t; \
|
|
|
|
q[(rb) + 92 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 92 + 2]; \
|
|
|
|
n = q[(rb) + 92 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[92 + 2 * 1]); \
|
|
|
|
q[(rb) + 92 + 2] = m + t; \
|
|
|
|
q[(rb) + 92 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 92 + 3]; \
|
|
|
|
n = q[(rb) + 92 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[92 + 3 * 1]); \
|
|
|
|
q[(rb) + 92 + 3] = m + t; \
|
|
|
|
q[(rb) + 92 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 96 + 0]; \
|
|
|
|
n = q[(rb) + 96 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 0 * 1]); \
|
|
|
|
q[(rb) + 96 + 0] = m + t; \
|
|
|
|
q[(rb) + 96 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 96 + 1]; \
|
|
|
|
n = q[(rb) + 96 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 1 * 1]); \
|
|
|
|
q[(rb) + 96 + 1] = m + t; \
|
|
|
|
q[(rb) + 96 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 96 + 2]; \
|
|
|
|
n = q[(rb) + 96 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 2 * 1]); \
|
|
|
|
q[(rb) + 96 + 2] = m + t; \
|
|
|
|
q[(rb) + 96 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 96 + 3]; \
|
|
|
|
n = q[(rb) + 96 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[96 + 3 * 1]); \
|
|
|
|
q[(rb) + 96 + 3] = m + t; \
|
|
|
|
q[(rb) + 96 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 100 + 0]; \
|
|
|
|
n = q[(rb) + 100 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[100 + 0 * 1]); \
|
|
|
|
q[(rb) + 100 + 0] = m + t; \
|
|
|
|
q[(rb) + 100 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 100 + 1]; \
|
|
|
|
n = q[(rb) + 100 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[100 + 1 * 1]); \
|
|
|
|
q[(rb) + 100 + 1] = m + t; \
|
|
|
|
q[(rb) + 100 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 100 + 2]; \
|
|
|
|
n = q[(rb) + 100 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[100 + 2 * 1]); \
|
|
|
|
q[(rb) + 100 + 2] = m + t; \
|
|
|
|
q[(rb) + 100 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 100 + 3]; \
|
|
|
|
n = q[(rb) + 100 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[100 + 3 * 1]); \
|
|
|
|
q[(rb) + 100 + 3] = m + t; \
|
|
|
|
q[(rb) + 100 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 104 + 0]; \
|
|
|
|
n = q[(rb) + 104 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 0 * 1]); \
|
|
|
|
q[(rb) + 104 + 0] = m + t; \
|
|
|
|
q[(rb) + 104 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 104 + 1]; \
|
|
|
|
n = q[(rb) + 104 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 1 * 1]); \
|
|
|
|
q[(rb) + 104 + 1] = m + t; \
|
|
|
|
q[(rb) + 104 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 104 + 2]; \
|
|
|
|
n = q[(rb) + 104 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 2 * 1]); \
|
|
|
|
q[(rb) + 104 + 2] = m + t; \
|
|
|
|
q[(rb) + 104 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 104 + 3]; \
|
|
|
|
n = q[(rb) + 104 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[104 + 3 * 1]); \
|
|
|
|
q[(rb) + 104 + 3] = m + t; \
|
|
|
|
q[(rb) + 104 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 108 + 0]; \
|
|
|
|
n = q[(rb) + 108 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[108 + 0 * 1]); \
|
|
|
|
q[(rb) + 108 + 0] = m + t; \
|
|
|
|
q[(rb) + 108 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 108 + 1]; \
|
|
|
|
n = q[(rb) + 108 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[108 + 1 * 1]); \
|
|
|
|
q[(rb) + 108 + 1] = m + t; \
|
|
|
|
q[(rb) + 108 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 108 + 2]; \
|
|
|
|
n = q[(rb) + 108 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[108 + 2 * 1]); \
|
|
|
|
q[(rb) + 108 + 2] = m + t; \
|
|
|
|
q[(rb) + 108 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 108 + 3]; \
|
|
|
|
n = q[(rb) + 108 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[108 + 3 * 1]); \
|
|
|
|
q[(rb) + 108 + 3] = m + t; \
|
|
|
|
q[(rb) + 108 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 112 + 0]; \
|
|
|
|
n = q[(rb) + 112 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 0 * 1]); \
|
|
|
|
q[(rb) + 112 + 0] = m + t; \
|
|
|
|
q[(rb) + 112 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 112 + 1]; \
|
|
|
|
n = q[(rb) + 112 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 1 * 1]); \
|
|
|
|
q[(rb) + 112 + 1] = m + t; \
|
|
|
|
q[(rb) + 112 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 112 + 2]; \
|
|
|
|
n = q[(rb) + 112 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 2 * 1]); \
|
|
|
|
q[(rb) + 112 + 2] = m + t; \
|
|
|
|
q[(rb) + 112 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 112 + 3]; \
|
|
|
|
n = q[(rb) + 112 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[112 + 3 * 1]); \
|
|
|
|
q[(rb) + 112 + 3] = m + t; \
|
|
|
|
q[(rb) + 112 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 116 + 0]; \
|
|
|
|
n = q[(rb) + 116 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[116 + 0 * 1]); \
|
|
|
|
q[(rb) + 116 + 0] = m + t; \
|
|
|
|
q[(rb) + 116 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 116 + 1]; \
|
|
|
|
n = q[(rb) + 116 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[116 + 1 * 1]); \
|
|
|
|
q[(rb) + 116 + 1] = m + t; \
|
|
|
|
q[(rb) + 116 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 116 + 2]; \
|
|
|
|
n = q[(rb) + 116 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[116 + 2 * 1]); \
|
|
|
|
q[(rb) + 116 + 2] = m + t; \
|
|
|
|
q[(rb) + 116 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 116 + 3]; \
|
|
|
|
n = q[(rb) + 116 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[116 + 3 * 1]); \
|
|
|
|
q[(rb) + 116 + 3] = m + t; \
|
|
|
|
q[(rb) + 116 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 120 + 0]; \
|
|
|
|
n = q[(rb) + 120 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 0 * 1]); \
|
|
|
|
q[(rb) + 120 + 0] = m + t; \
|
|
|
|
q[(rb) + 120 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 120 + 1]; \
|
|
|
|
n = q[(rb) + 120 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 1 * 1]); \
|
|
|
|
q[(rb) + 120 + 1] = m + t; \
|
|
|
|
q[(rb) + 120 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 120 + 2]; \
|
|
|
|
n = q[(rb) + 120 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 2 * 1]); \
|
|
|
|
q[(rb) + 120 + 2] = m + t; \
|
|
|
|
q[(rb) + 120 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 120 + 3]; \
|
|
|
|
n = q[(rb) + 120 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[120 + 3 * 1]); \
|
|
|
|
q[(rb) + 120 + 3] = m + t; \
|
|
|
|
q[(rb) + 120 + 3 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 124 + 0]; \
|
|
|
|
n = q[(rb) + 124 + 0 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[124 + 0 * 1]); \
|
|
|
|
q[(rb) + 124 + 0] = m + t; \
|
|
|
|
q[(rb) + 124 + 0 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 124 + 1]; \
|
|
|
|
n = q[(rb) + 124 + 1 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[124 + 1 * 1]); \
|
|
|
|
q[(rb) + 124 + 1] = m + t; \
|
|
|
|
q[(rb) + 124 + 1 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 124 + 2]; \
|
|
|
|
n = q[(rb) + 124 + 2 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[124 + 2 * 1]); \
|
|
|
|
q[(rb) + 124 + 2] = m + t; \
|
|
|
|
q[(rb) + 124 + 2 + 128] = m - t; \
|
|
|
|
m = q[(rb) + 124 + 3]; \
|
|
|
|
n = q[(rb) + 124 + 3 + 128]; \
|
|
|
|
t = REDS2(n * alpha_tab[124 + 3 * 1]); \
|
|
|
|
q[(rb) + 124 + 3] = m + t; \
|
|
|
|
q[(rb) + 124 + 3 + 128] = m - t; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Output ranges:
|
|
|
|
* d0: min= 0 max= 1020
|
|
|
|
* d1: min= -67 max= 4587
|
|
|
|
* d2: min=-4335 max= 4335
|
|
|
|
* d3: min=-4147 max= 507
|
|
|
|
* d4: min= -510 max= 510
|
|
|
|
* d5: min= -252 max= 4402
|
|
|
|
* d6: min=-4335 max= 4335
|
|
|
|
* d7: min=-4332 max= 322
|
|
|
|
*/
|
|
|
|
#define FFT8(xb, xs, d) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 x0 = x[(xb)]; \
|
|
|
|
s32 x1 = x[(xb) + (xs)]; \
|
|
|
|
s32 x2 = x[(xb) + 2 * (xs)]; \
|
|
|
|
s32 x3 = x[(xb) + 3 * (xs)]; \
|
|
|
|
s32 a0 = x0 + x2; \
|
|
|
|
s32 a1 = x0 + (x2 << 4); \
|
|
|
|
s32 a2 = x0 - x2; \
|
|
|
|
s32 a3 = x0 - (x2 << 4); \
|
|
|
|
s32 b0 = x1 + x3; \
|
|
|
|
s32 b1 = REDS1((x1 << 2) + (x3 << 6)); \
|
|
|
|
s32 b2 = (x1 << 4) - (x3 << 4); \
|
|
|
|
s32 b3 = REDS1((x1 << 6) + (x3 << 2)); \
|
|
|
|
d ## 0 = a0 + b0; \
|
|
|
|
d ## 1 = a1 + b1; \
|
|
|
|
d ## 2 = a2 + b2; \
|
|
|
|
d ## 3 = a3 + b3; \
|
|
|
|
d ## 4 = a0 - b0; \
|
|
|
|
d ## 5 = a1 - b1; \
|
|
|
|
d ## 6 = a2 - b2; \
|
|
|
|
d ## 7 = a3 - b3; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* When k=16, we have alpha=2. Multiplication by alpha^i is then reduced
|
|
|
|
* to some shifting.
|
|
|
|
*
|
|
|
|
* Output: within -591471..591723
|
|
|
|
*/
|
|
|
|
#define FFT16(xb, xs, rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
s32 d1_0, d1_1, d1_2, d1_3, d1_4, d1_5, d1_6, d1_7; \
|
|
|
|
s32 d2_0, d2_1, d2_2, d2_3, d2_4, d2_5, d2_6, d2_7; \
|
|
|
|
FFT8(xb, (xs) << 1, d1_); \
|
|
|
|
FFT8((xb) + (xs), (xs) << 1, d2_); \
|
|
|
|
q[(rb) + 0] = d1_0 + d2_0; \
|
|
|
|
q[(rb) + 1] = d1_1 + (d2_1 << 1); \
|
|
|
|
q[(rb) + 2] = d1_2 + (d2_2 << 2); \
|
|
|
|
q[(rb) + 3] = d1_3 + (d2_3 << 3); \
|
|
|
|
q[(rb) + 4] = d1_4 + (d2_4 << 4); \
|
|
|
|
q[(rb) + 5] = d1_5 + (d2_5 << 5); \
|
|
|
|
q[(rb) + 6] = d1_6 + (d2_6 << 6); \
|
|
|
|
q[(rb) + 7] = d1_7 + (d2_7 << 7); \
|
|
|
|
q[(rb) + 8] = d1_0 - d2_0; \
|
|
|
|
q[(rb) + 9] = d1_1 - (d2_1 << 1); \
|
|
|
|
q[(rb) + 10] = d1_2 - (d2_2 << 2); \
|
|
|
|
q[(rb) + 11] = d1_3 - (d2_3 << 3); \
|
|
|
|
q[(rb) + 12] = d1_4 - (d2_4 << 4); \
|
|
|
|
q[(rb) + 13] = d1_5 - (d2_5 << 5); \
|
|
|
|
q[(rb) + 14] = d1_6 - (d2_6 << 6); \
|
|
|
|
q[(rb) + 15] = d1_7 - (d2_7 << 7); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Output range: |q| <= 1183446
|
|
|
|
*/
|
|
|
|
#define FFT32(xb, xs, rb, id) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
FFT16(xb, (xs) << 1, rb); \
|
|
|
|
FFT16((xb) + (xs), (xs) << 1, (rb) + 16); \
|
|
|
|
FFT_LOOP_16_8(rb); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Output range: |q| <= 2366892
|
|
|
|
*/
|
|
|
|
#define FFT64(xb, xs, rb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
FFT32(xb, (xs) << 1, (rb), label_a); \
|
|
|
|
FFT32((xb) + (xs), (xs) << 1, (rb) + 32, label_b); \
|
|
|
|
FFT_LOOP_32_4(rb); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Output range: |q| <= 9467568
|
|
|
|
*/
|
|
|
|
#define FFT256(xb, xs, rb, id) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
FFT64((xb) + ((xs) * 0), (xs) << 2, (rb + 0)); \
|
|
|
|
FFT64((xb) + ((xs) * 2), (xs) << 2, (rb + 64)); \
|
|
|
|
FFT_LOOP_64_2(rb); \
|
|
|
|
FFT64((xb) + ((xs) * 1), (xs) << 2, (rb + 128)); \
|
|
|
|
FFT64((xb) + ((xs) * 3), (xs) << 2, (rb + 192)); \
|
|
|
|
FFT_LOOP_64_2((rb) + 128); \
|
|
|
|
FFT_LOOP_128_1(rb); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* beta^(255*i) mod 257
|
|
|
|
*/
|
|
|
|
__constant static const unsigned short yoff_b_n[] = {
|
2014-07-01 14:36:46 +00:00
|
|
|
1, 163, 98, 40, 95, 65, 58, 202, 30, 7, 113, 172,
|
|
|
|
23, 151, 198, 149, 129, 210, 49, 20, 176, 161, 29, 101,
|
|
|
|
15, 132, 185, 86, 140, 204, 99, 203, 193, 105, 153, 10,
|
|
|
|
88, 209, 143, 179, 136, 66, 221, 43, 70, 102, 178, 230,
|
|
|
|
225, 181, 205, 5, 44, 233, 200, 218, 68, 33, 239, 150,
|
|
|
|
35, 51, 89, 115, 241, 219, 231, 131, 22, 245, 100, 109,
|
|
|
|
34, 145, 248, 75, 146, 154, 173, 186, 249, 238, 244, 194,
|
|
|
|
11, 251, 50, 183, 17, 201, 124, 166, 73, 77, 215, 93,
|
|
|
|
253, 119, 122, 97, 134, 254, 25, 220, 137, 229, 62, 83,
|
|
|
|
165, 167, 236, 175, 255, 188, 61, 177, 67, 127, 141, 110,
|
|
|
|
197, 243, 31, 170, 211, 212, 118, 216, 256, 94, 159, 217,
|
|
|
|
162, 192, 199, 55, 227, 250, 144, 85, 234, 106, 59, 108,
|
|
|
|
128, 47, 208, 237, 81, 96, 228, 156, 242, 125, 72, 171,
|
|
|
|
117, 53, 158, 54, 64, 152, 104, 247, 169, 48, 114, 78,
|
|
|
|
121, 191, 36, 214, 187, 155, 79, 27, 32, 76, 52, 252,
|
|
|
|
213, 24, 57, 39, 189, 224, 18, 107, 222, 206, 168, 142,
|
|
|
|
16, 38, 26, 126, 235, 12, 157, 148, 223, 112, 9, 182,
|
|
|
|
111, 103, 84, 71, 8, 19, 13, 63, 246, 6, 207, 74,
|
|
|
|
240, 56, 133, 91, 184, 180, 42, 164, 4, 138, 135, 160,
|
|
|
|
123, 3, 232, 37, 120, 28, 195, 174, 92, 90, 21, 82,
|
|
|
|
2, 69, 196, 80, 190, 130, 116, 147, 60, 14, 226, 87,
|
|
|
|
46, 45, 139, 41
|
2014-02-19 22:06:29 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define INNER(l, h, mm) (((u32)((l) * (mm)) & 0xFFFFU) \
|
2014-07-01 14:36:46 +00:00
|
|
|
+ ((u32)((h) * (mm)) << 16))
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define W_BIG(sb, o1, o2, mm) \
|
2014-07-01 14:36:46 +00:00
|
|
|
(INNER(q[16 * (sb) + 2 * 0 + o1], q[16 * (sb) + 2 * 0 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 1 + o1], q[16 * (sb) + 2 * 1 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 2 + o1], q[16 * (sb) + 2 * 2 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 3 + o1], q[16 * (sb) + 2 * 3 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 4 + o1], q[16 * (sb) + 2 * 4 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 5 + o1], q[16 * (sb) + 2 * 5 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 6 + o1], q[16 * (sb) + 2 * 6 + o2], mm), \
|
|
|
|
INNER(q[16 * (sb) + 2 * 7 + o1], q[16 * (sb) + 2 * 7 + o2], mm)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define WB_0_0 W_BIG( 4, 0, 1, 185)
|
|
|
|
#define WB_0_1 W_BIG( 6, 0, 1, 185)
|
|
|
|
#define WB_0_2 W_BIG( 0, 0, 1, 185)
|
|
|
|
#define WB_0_3 W_BIG( 2, 0, 1, 185)
|
|
|
|
#define WB_0_4 W_BIG( 7, 0, 1, 185)
|
|
|
|
#define WB_0_5 W_BIG( 5, 0, 1, 185)
|
|
|
|
#define WB_0_6 W_BIG( 3, 0, 1, 185)
|
|
|
|
#define WB_0_7 W_BIG( 1, 0, 1, 185)
|
|
|
|
#define WB_1_0 W_BIG(15, 0, 1, 185)
|
|
|
|
#define WB_1_1 W_BIG(11, 0, 1, 185)
|
|
|
|
#define WB_1_2 W_BIG(12, 0, 1, 185)
|
|
|
|
#define WB_1_3 W_BIG( 8, 0, 1, 185)
|
|
|
|
#define WB_1_4 W_BIG( 9, 0, 1, 185)
|
|
|
|
#define WB_1_5 W_BIG(13, 0, 1, 185)
|
|
|
|
#define WB_1_6 W_BIG(10, 0, 1, 185)
|
|
|
|
#define WB_1_7 W_BIG(14, 0, 1, 185)
|
|
|
|
#define WB_2_0 W_BIG(17, -256, -128, 233)
|
|
|
|
#define WB_2_1 W_BIG(18, -256, -128, 233)
|
|
|
|
#define WB_2_2 W_BIG(23, -256, -128, 233)
|
|
|
|
#define WB_2_3 W_BIG(20, -256, -128, 233)
|
|
|
|
#define WB_2_4 W_BIG(22, -256, -128, 233)
|
|
|
|
#define WB_2_5 W_BIG(21, -256, -128, 233)
|
|
|
|
#define WB_2_6 W_BIG(16, -256, -128, 233)
|
|
|
|
#define WB_2_7 W_BIG(19, -256, -128, 233)
|
|
|
|
#define WB_3_0 W_BIG(30, -383, -255, 233)
|
|
|
|
#define WB_3_1 W_BIG(24, -383, -255, 233)
|
|
|
|
#define WB_3_2 W_BIG(25, -383, -255, 233)
|
|
|
|
#define WB_3_3 W_BIG(31, -383, -255, 233)
|
|
|
|
#define WB_3_4 W_BIG(27, -383, -255, 233)
|
|
|
|
#define WB_3_5 W_BIG(29, -383, -255, 233)
|
|
|
|
#define WB_3_6 W_BIG(28, -383, -255, 233)
|
|
|
|
#define WB_3_7 W_BIG(26, -383, -255, 233)
|
|
|
|
|
|
|
|
#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
|
|
|
|
#define MAJ(x, y, z) (((x) & (y)) | (((x) | (y)) & (z)))
|
|
|
|
|
|
|
|
#define PP4_0_0 1
|
|
|
|
#define PP4_0_1 0
|
|
|
|
#define PP4_0_2 3
|
|
|
|
#define PP4_0_3 2
|
|
|
|
#define PP4_1_0 2
|
|
|
|
#define PP4_1_1 3
|
|
|
|
#define PP4_1_2 0
|
|
|
|
#define PP4_1_3 1
|
|
|
|
#define PP4_2_0 3
|
|
|
|
#define PP4_2_1 2
|
|
|
|
#define PP4_2_2 1
|
|
|
|
#define PP4_2_3 0
|
|
|
|
|
|
|
|
#define PP8_0_0 1
|
|
|
|
#define PP8_0_1 0
|
|
|
|
#define PP8_0_2 3
|
|
|
|
#define PP8_0_3 2
|
|
|
|
#define PP8_0_4 5
|
|
|
|
#define PP8_0_5 4
|
|
|
|
#define PP8_0_6 7
|
|
|
|
#define PP8_0_7 6
|
|
|
|
|
|
|
|
#define PP8_1_0 6
|
|
|
|
#define PP8_1_1 7
|
|
|
|
#define PP8_1_2 4
|
|
|
|
#define PP8_1_3 5
|
|
|
|
#define PP8_1_4 2
|
|
|
|
#define PP8_1_5 3
|
|
|
|
#define PP8_1_6 0
|
|
|
|
#define PP8_1_7 1
|
|
|
|
|
|
|
|
#define PP8_2_0 2
|
|
|
|
#define PP8_2_1 3
|
|
|
|
#define PP8_2_2 0
|
|
|
|
#define PP8_2_3 1
|
|
|
|
#define PP8_2_4 6
|
|
|
|
#define PP8_2_5 7
|
|
|
|
#define PP8_2_6 4
|
|
|
|
#define PP8_2_7 5
|
|
|
|
|
|
|
|
#define PP8_3_0 3
|
|
|
|
#define PP8_3_1 2
|
|
|
|
#define PP8_3_2 1
|
|
|
|
#define PP8_3_3 0
|
|
|
|
#define PP8_3_4 7
|
|
|
|
#define PP8_3_5 6
|
|
|
|
#define PP8_3_6 5
|
|
|
|
#define PP8_3_7 4
|
|
|
|
|
|
|
|
#define PP8_4_0 5
|
|
|
|
#define PP8_4_1 4
|
|
|
|
#define PP8_4_2 7
|
|
|
|
#define PP8_4_3 6
|
|
|
|
#define PP8_4_4 1
|
|
|
|
#define PP8_4_5 0
|
|
|
|
#define PP8_4_6 3
|
|
|
|
#define PP8_4_7 2
|
|
|
|
|
|
|
|
#define PP8_5_0 7
|
|
|
|
#define PP8_5_1 6
|
|
|
|
#define PP8_5_2 5
|
|
|
|
#define PP8_5_3 4
|
|
|
|
#define PP8_5_4 3
|
|
|
|
#define PP8_5_5 2
|
|
|
|
#define PP8_5_6 1
|
|
|
|
#define PP8_5_7 0
|
|
|
|
|
|
|
|
#define PP8_6_0 4
|
|
|
|
#define PP8_6_1 5
|
|
|
|
#define PP8_6_2 6
|
|
|
|
#define PP8_6_3 7
|
|
|
|
#define PP8_6_4 0
|
|
|
|
#define PP8_6_5 1
|
|
|
|
#define PP8_6_6 2
|
|
|
|
#define PP8_6_7 3
|
|
|
|
|
|
|
|
#define STEP_ELT(n, w, fun, s, ppb) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
u32 tt = T32(D ## n + (w) + fun(A ## n, B ## n, C ## n)); \
|
|
|
|
A ## n = T32(ROL32(tt, s) + XCAT(tA, XCAT(ppb, n))); \
|
|
|
|
D ## n = C ## n; \
|
|
|
|
C ## n = B ## n; \
|
|
|
|
B ## n = tA ## n; \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define STEP_BIG(w0, w1, w2, w3, w4, w5, w6, w7, fun, r, s, pp8b) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
u32 tA0 = ROL32(A0, r); \
|
|
|
|
u32 tA1 = ROL32(A1, r); \
|
|
|
|
u32 tA2 = ROL32(A2, r); \
|
|
|
|
u32 tA3 = ROL32(A3, r); \
|
|
|
|
u32 tA4 = ROL32(A4, r); \
|
|
|
|
u32 tA5 = ROL32(A5, r); \
|
|
|
|
u32 tA6 = ROL32(A6, r); \
|
|
|
|
u32 tA7 = ROL32(A7, r); \
|
|
|
|
STEP_ELT(0, w0, fun, s, pp8b); \
|
|
|
|
STEP_ELT(1, w1, fun, s, pp8b); \
|
|
|
|
STEP_ELT(2, w2, fun, s, pp8b); \
|
|
|
|
STEP_ELT(3, w3, fun, s, pp8b); \
|
|
|
|
STEP_ELT(4, w4, fun, s, pp8b); \
|
|
|
|
STEP_ELT(5, w5, fun, s, pp8b); \
|
|
|
|
STEP_ELT(6, w6, fun, s, pp8b); \
|
|
|
|
STEP_ELT(7, w7, fun, s, pp8b); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
#define SIMD_M3_0_0 0_
|
|
|
|
#define SIMD_M3_1_0 1_
|
|
|
|
#define SIMD_M3_2_0 2_
|
|
|
|
#define SIMD_M3_3_0 0_
|
|
|
|
#define SIMD_M3_4_0 1_
|
|
|
|
#define SIMD_M3_5_0 2_
|
|
|
|
#define SIMD_M3_6_0 0_
|
|
|
|
#define SIMD_M3_7_0 1_
|
|
|
|
|
|
|
|
#define SIMD_M3_0_1 1_
|
|
|
|
#define SIMD_M3_1_1 2_
|
|
|
|
#define SIMD_M3_2_1 0_
|
|
|
|
#define SIMD_M3_3_1 1_
|
|
|
|
#define SIMD_M3_4_1 2_
|
|
|
|
#define SIMD_M3_5_1 0_
|
|
|
|
#define SIMD_M3_6_1 1_
|
|
|
|
#define SIMD_M3_7_1 2_
|
|
|
|
|
|
|
|
#define SIMD_M3_0_2 2_
|
|
|
|
#define SIMD_M3_1_2 0_
|
|
|
|
#define SIMD_M3_2_2 1_
|
|
|
|
#define SIMD_M3_3_2 2_
|
|
|
|
#define SIMD_M3_4_2 0_
|
|
|
|
#define SIMD_M3_5_2 1_
|
|
|
|
#define SIMD_M3_6_2 2_
|
|
|
|
#define SIMD_M3_7_2 0_
|
|
|
|
|
|
|
|
#define M7_0_0 0_
|
|
|
|
#define M7_1_0 1_
|
|
|
|
#define M7_2_0 2_
|
|
|
|
#define M7_3_0 3_
|
|
|
|
#define M7_4_0 4_
|
|
|
|
#define M7_5_0 5_
|
|
|
|
#define M7_6_0 6_
|
|
|
|
#define M7_7_0 0_
|
|
|
|
|
|
|
|
#define M7_0_1 1_
|
|
|
|
#define M7_1_1 2_
|
|
|
|
#define M7_2_1 3_
|
|
|
|
#define M7_3_1 4_
|
|
|
|
#define M7_4_1 5_
|
|
|
|
#define M7_5_1 6_
|
|
|
|
#define M7_6_1 0_
|
|
|
|
#define M7_7_1 1_
|
|
|
|
|
|
|
|
#define M7_0_2 2_
|
|
|
|
#define M7_1_2 3_
|
|
|
|
#define M7_2_2 4_
|
|
|
|
#define M7_3_2 5_
|
|
|
|
#define M7_4_2 6_
|
|
|
|
#define M7_5_2 0_
|
|
|
|
#define M7_6_2 1_
|
|
|
|
#define M7_7_2 2_
|
|
|
|
|
|
|
|
#define M7_0_3 3_
|
|
|
|
#define M7_1_3 4_
|
|
|
|
#define M7_2_3 5_
|
|
|
|
#define M7_3_3 6_
|
|
|
|
#define M7_4_3 0_
|
|
|
|
#define M7_5_3 1_
|
|
|
|
#define M7_6_3 2_
|
|
|
|
#define M7_7_3 3_
|
|
|
|
|
|
|
|
#define STEP_BIG_(w, fun, r, s, pp8b) STEP_BIG w, fun, r, s, pp8b)
|
|
|
|
|
|
|
|
#define ONE_ROUND_BIG(ri, isp, p0, p1, p2, p3) do { \
|
2014-07-01 14:36:46 +00:00
|
|
|
STEP_BIG_(WB_ ## ri ## 0, \
|
|
|
|
IF, p0, p1, XCAT(PP8_, M7_0_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 1, \
|
|
|
|
IF, p1, p2, XCAT(PP8_, M7_1_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 2, \
|
|
|
|
IF, p2, p3, XCAT(PP8_, M7_2_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 3, \
|
|
|
|
IF, p3, p0, XCAT(PP8_, M7_3_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 4, \
|
|
|
|
MAJ, p0, p1, XCAT(PP8_, M7_4_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 5, \
|
|
|
|
MAJ, p1, p2, XCAT(PP8_, M7_5_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 6, \
|
|
|
|
MAJ, p2, p3, XCAT(PP8_, M7_6_ ## isp)); \
|
|
|
|
STEP_BIG_(WB_ ## ri ## 7, \
|
|
|
|
MAJ, p3, p0, XCAT(PP8_, M7_7_ ## isp)); \
|
|
|
|
} while (0)
|
2014-02-19 22:06:29 +00:00
|
|
|
|
|
|
|
__constant static const u32 SIMD_IV512[] = {
|
2014-07-01 14:36:46 +00:00
|
|
|
C32(0x0BA16B95), C32(0x72F999AD), C32(0x9FECC2AE), C32(0xBA3264FC),
|
|
|
|
C32(0x5E894929), C32(0x8E9F30E5), C32(0x2F1DAA37), C32(0xF0F2C558),
|
|
|
|
C32(0xAC506643), C32(0xA90635A5), C32(0xE25B878B), C32(0xAAB7878F),
|
|
|
|
C32(0x88817F7A), C32(0x0A02892B), C32(0x559A7550), C32(0x598F657E),
|
|
|
|
C32(0x7EEF60A1), C32(0x6B70E3E8), C32(0x9C1714D1), C32(0xB958E2A8),
|
|
|
|
C32(0xAB02675E), C32(0xED1C014F), C32(0xCD8D65BB), C32(0xFDB7A257),
|
|
|
|
C32(0x09254899), C32(0xD699C7BC), C32(0x9019B6DC), C32(0x2B9022E4),
|
|
|
|
C32(0x8FA14956), C32(0x21BF9BD3), C32(0xB94D0943), C32(0x6FFDDC22)
|
2014-02-19 22:06:29 +00:00
|
|
|
};
|
|
|
|
|