OpenCL gostcoin miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

284 lines
32 KiB

#define rotr(x, n) rotate(x, (uint)(32 - n))
#define WGS __attribute__((reqd_work_group_size(128, 1, 1)))
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
typedef struct {
uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d;
uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h;
uint cty_a; uint cty_b; uint cty_c; uint cty_d;
uint cty_e; uint cty_f; uint cty_g; uint cty_h;
uint merkle; uint ntime; uint nbits; uint nonce;
uint fW0; uint fW1; uint fW2; uint fW3; uint fW15;
uint fW01r; uint fcty_e; uint fcty_e2;
} dev_blk_ctx;
__kernel __attribute__((vec_type_hint(uint))) WGS void oclminer(
__constant dev_blk_ctx *ctx, __global uint *output)
{
const uint fW0 = ctx->fW0;
const uint fW1 = ctx->fW1;
const uint fW2 = ctx->fW2;
const uint fW3 = ctx->fW3;
const uint fW15 = ctx->fW15;
const uint fW01r = ctx->fW01r;
const uint fcty_e = ctx->fcty_e;
const uint fcty_e2 = ctx->fcty_e2;
const uint state0 = ctx->ctx_a;
const uint state1 = ctx->ctx_b;
const uint state2 = ctx->ctx_c;
const uint state3 = ctx->ctx_d;
const uint state4 = ctx->ctx_e;
const uint state5 = ctx->ctx_f;
const uint state6 = ctx->ctx_g;
const uint state7 = ctx->ctx_h;
const uint B1 = ctx->cty_b;
const uint C1 = ctx->cty_c;
const uint D1 = ctx->cty_d;
const uint F1 = ctx->cty_f;
const uint G1 = ctx->cty_g;
const uint H1 = ctx->cty_h;
uint A, B, C, D, E, F, G, H;
uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15;
uint it, res = 0;
const uint myid = get_global_id(0);
const uint tnonce = (ctx->nonce + myid)<<10;
for(it = 0; it != 1024; it++) {
W3 = it ^ tnonce;
E = fcty_e + W3; A = state0 + E; E = E + fcty_e2;
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C1 ^ (A & (B1 ^ C1))) + K[ 4] + 0x80000000; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B1 ^ (H & (A ^ B1))) + K[ 5]; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6]; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000280; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + fW0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + fW1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2;
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + fW3;
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000;
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280;
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0;
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1;
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[61] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[62] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[63] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = A + state0; W1 = B + state1;
W2 = C + state2; W3 = D + state3;
W4 = E + state4; W5 = F + state5;
W6 = G + state6; W7 = H + state7;
H = 0xb0edbdd0 + K[ 0] + W0; D = 0xa54ff53a + H; H = H + 0x08909ae5;
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; C = 0x3c6ef372 + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (0x510e527f ^ (C & (D ^ 0x510e527f))) + K[ 2] + W2; B = 0xbb67ae85 + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[ 3] + W3; A = 0x6a09e667 + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[ 4] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[ 5] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8] + 0x80000000; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000100; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000;
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10));
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10));
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10));
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10));
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10));
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; C = C + G;
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10));
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; B = B + F;
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10));
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; A = A + E;
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10));
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; H = H + D;
res |= (H==0xa41f32e7);
}
output[myid] = res;
}