From c1bbf987d69ace5c4adb743a08f245f90f46753d Mon Sep 17 00:00:00 2001 From: orignal Date: Mon, 9 Oct 2017 15:15:11 -0400 Subject: [PATCH] some cleanup --- Makefile.osx | 20 ---- findnonce.c | 190 ---------------------------------- findnonce.h | 35 ------- oclminer.cl | 284 --------------------------------------------------- 4 files changed, 529 deletions(-) delete mode 100644 Makefile.osx delete mode 100644 findnonce.c delete mode 100644 findnonce.h delete mode 100644 oclminer.cl diff --git a/Makefile.osx b/Makefile.osx deleted file mode 100644 index 06df68f..0000000 --- a/Makefile.osx +++ /dev/null @@ -1,20 +0,0 @@ -LIBS=-ljansson -lcurl - -DEFS= -DEBUGFLAGS= -CFLAGS=-I/usr/local/include -O3 -Wformat $(DEBUGFLAGS) $(DEFS) -LDFLAGS=-framework OpenCL -L/usr/local/lib -HEADERS= - -OBJS=miner.o ocl.o findnonce.o util.o - -all: oclminer - -%.o: %.c $(HEADERS) - gcc -c $(CFLAGS) -o $@ $< - -oclminer: $(OBJS) - gcc $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS) - -clean: - -rm *.o oclminer diff --git a/findnonce.c b/findnonce.c deleted file mode 100644 index 2ed954a..0000000 --- a/findnonce.c +++ /dev/null @@ -1,190 +0,0 @@ -/* - * Copyright 2011 Nils Schneider - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the Free - * Software Foundation; either version 2 of the License, or (at your option) - * any later version. See COPYING for more details. - */ - -#include -#include - -#include "ocl.h" -#include "findnonce.h" - -const uint32_t SHA256_K[64] = { - 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, - 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, - 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, - 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, - 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, - 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, - 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, - 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, - 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, - 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, - 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, - 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, - 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, - 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, - 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, - 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 -}; - -inline uint32_t ByteReverse(uint32_t value) -{ - __asm__ ("bswap %0" : "=r" (value) : "0" (value)); - return value; -} - -#define rotate(x,y) ((x<>(sizeof(x)*8-y))) -#define rotr(x,y) ((x>>y) | (x<<(sizeof(x)*8-y))) - -#define R(a, b, c, d, e, f, g, h, w, k) \ - h = h + (rotate(e, 26) ^ rotate(e, 21) ^ rotate(e, 7)) + (g ^ (e & (f ^ g))) + k + w; \ - d = d + h; \ - h = h + (rotate(a, 30) ^ rotate(a, 19) ^ rotate(a, 10)) + ((a & b) | (c & (a | b))) - -void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data) { - cl_uint A, B, C, D, E, F, G, H; - cl_uint W[16]; - - A = state[0]; - B = state[1]; - C = state[2]; - D = state[3]; - E = state[4]; - F = state[5]; - G = state[6]; - H = state[7]; - - R(A, B, C, D, E, F, G, H, data[0], SHA256_K[0]); - R(H, A, B, C, D, E, F, G, data[1], SHA256_K[1]); - R(G, H, A, B, C, D, E, F, data[2], SHA256_K[2]); - - blk->cty_a = A; - blk->cty_b = B; - blk->cty_c = C; - blk->cty_d = D; - blk->cty_e = E; - blk->cty_f = F; - blk->cty_g = G; - blk->cty_h = H; - - blk->ctx_a = state[0]; - blk->ctx_b = state[1]; - blk->ctx_c = state[2]; - blk->ctx_d = state[3]; - blk->ctx_e = state[4]; - blk->ctx_f = state[5]; - blk->ctx_g = state[6]; - blk->ctx_h = state[7]; - - blk->merkle = data[0]; - blk->ntime = data[1]; - blk->nbits = data[2]; - - blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3)); - blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000; - blk->fW2 = data[2] + (rotr(blk->fW0, 17) ^ rotr(blk->fW0, 19) ^ (blk->fW0 >> 10)); - blk->fW3 = 0x11002000 + (rotr(blk->fW1, 17) ^ rotr(blk->fW1, 19) ^ (blk->fW1 >> 10)); - blk->fW15 = 0x00000280 + (rotr(blk->fW0, 7) ^ rotr(blk->fW0, 18) ^ (blk->fW0 >> 3)); - blk->fW01r = blk->fW0 + (rotr(blk->fW1, 7) ^ rotr(blk->fW1, 18) ^ (blk->fW1 >> 3)); - - blk->fcty_e = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5; - blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); -} - -#define P(t) (W[(t)&0xF] = W[(t-16)&0xF] + (rotate(W[(t-15)&0xF], 25) ^ rotate(W[(t-15)&0xF], 14) ^ (W[(t-15)&0xF] >> 3)) + W[(t-7)&0xF] + (rotate(W[(t-2)&0xF], 15) ^ rotate(W[(t-2)&0xF], 13) ^ (W[(t-2)&0xF] >> 10))) - -#define IR(u) \ - R(A, B, C, D, E, F, G, H, W[u+0], SHA256_K[u+0]); \ - R(H, A, B, C, D, E, F, G, W[u+1], SHA256_K[u+1]); \ - R(G, H, A, B, C, D, E, F, W[u+2], SHA256_K[u+2]); \ - R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \ - R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \ - R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \ - R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \ - R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7]) -#define FR(u) \ - R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \ - R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \ - R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \ - R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \ - R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \ - R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]); \ - R(C, D, E, F, G, H, A, B, P(u+6), SHA256_K[u+6]); \ - R(B, C, D, E, F, G, H, A, P(u+7), SHA256_K[u+7]) - -#define PIR(u) \ - R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \ - R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \ - R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \ - R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \ - R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7]) - -#define PFR(u) \ - R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \ - R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \ - R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \ - R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \ - R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \ - R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]) - -uint32_t postcalc_hash(dev_blk_ctx *blk, struct work_t *work, uint32_t start, uint32_t end, uint32_t *best_nonce, int pool_mode, unsigned int *h0count) { - cl_uint A, B, C, D, E, F, G, H; - cl_uint W[16]; - cl_uint nonce; - cl_uint best_g = ~0; - - for(nonce = start; nonce != end; nonce+=1) { - A = blk->cty_a; B = blk->cty_b; - C = blk->cty_c; D = blk->cty_d; - E = blk->cty_e; F = blk->cty_f; - G = blk->cty_g; H = blk->cty_h; - W[0] = blk->merkle; W[1] = blk->ntime; - W[2] = blk->nbits; W[3] = nonce;; - W[4] = 0x80000000; W[5] = 0x00000000; W[6] = 0x00000000; W[7] = 0x00000000; - W[8] = 0x00000000; W[9] = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000; - W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x00000280; - PIR(0); IR(8); - FR(16); FR(24); - FR(32); FR(40); - FR(48); FR(56); - - W[0] = A + blk->ctx_a; W[1] = B + blk->ctx_b; - W[2] = C + blk->ctx_c; W[3] = D + blk->ctx_d; - W[4] = E + blk->ctx_e; W[5] = F + blk->ctx_f; - W[6] = G + blk->ctx_g; W[7] = H + blk->ctx_h; - W[8] = 0x80000000; W[9] = 0x00000000; W[10] = 0x00000000; W[11] = 0x00000000; - W[12] = 0x00000000; W[13] = 0x00000000; W[14] = 0x00000000; W[15] = 0x00000100; - A = 0x6a09e667; B = 0xbb67ae85; - C = 0x3c6ef372; D = 0xa54ff53a; - E = 0x510e527f; F = 0x9b05688c; - G = 0x1f83d9ab; H = 0x5be0cd19; - IR(0); IR(8); - FR(16); FR(24); - FR(32); FR(40); - FR(48); PFR(56); - - if(H == 0xA41F32E7) { - (*h0count)++; - - if (pool_mode) - submit_nonce(work, nonce); - - G += 0x1f83d9ab; - G = ByteReverse(G); - - if(G < best_g) { - *best_nonce = nonce; - best_g = G; - } - } - } - - if(best_g == ~0) printf("No best_g found! Error in OpenCL code?\n"); - - return best_g; -} diff --git a/findnonce.h b/findnonce.h deleted file mode 100644 index eda8de5..0000000 --- a/findnonce.h +++ /dev/null @@ -1,35 +0,0 @@ -#define MAXTHREADS 2000000 - -#ifdef __APPLE_CC__ -#include -#else -#include -#endif - -typedef struct { - cl_uint ctx_a; cl_uint ctx_b; cl_uint ctx_c; cl_uint ctx_d; - cl_uint ctx_e; cl_uint ctx_f; cl_uint ctx_g; cl_uint ctx_h; - cl_uint cty_a; cl_uint cty_b; cl_uint cty_c; cl_uint cty_d; - cl_uint cty_e; cl_uint cty_f; cl_uint cty_g; cl_uint cty_h; - cl_uint merkle; cl_uint ntime; cl_uint nbits; cl_uint nonce; - cl_uint fW0; cl_uint fW1; cl_uint fW2; cl_uint fW3; cl_uint fW15; - cl_uint fW01r; cl_uint fcty_e; cl_uint fcty_e2; -} dev_blk_ctx; - -struct work_t { - unsigned char data[128]; - unsigned char hash1[64]; - unsigned char midstate[32]; - unsigned char target[32]; - - unsigned char hash[32]; - uint32_t output[MAXTHREADS]; - uint32_t res_nonce; - uint32_t valid; - uint32_t ready; - dev_blk_ctx blk; -}; - -extern void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data); -extern uint32_t postcalc_hash(dev_blk_ctx *blk, struct work_t *work, uint32_t start, uint32_t end, uint32_t *best_nonce, int pool_mode, unsigned int *h0count); -extern void submit_nonce(struct work_t *work, uint32_t nonce); diff --git a/oclminer.cl b/oclminer.cl deleted file mode 100644 index 1cd6f57..0000000 --- a/oclminer.cl +++ /dev/null @@ -1,284 +0,0 @@ -#define rotr(x, n) rotate(x, (uint)(32 - n)) - -#define WGS __attribute__((reqd_work_group_size(128, 1, 1))) - -__constant uint K[64] = { - 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, - 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, - 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, - 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, - 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, - 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, - 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, - 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 -}; - -typedef struct { - uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d; - uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h; - uint cty_a; uint cty_b; uint cty_c; uint cty_d; - uint cty_e; uint cty_f; uint cty_g; uint cty_h; - uint merkle; uint ntime; uint nbits; uint nonce; - uint fW0; uint fW1; uint fW2; uint fW3; uint fW15; - uint fW01r; uint fcty_e; uint fcty_e2; -} dev_blk_ctx; - -__kernel __attribute__((vec_type_hint(uint))) WGS void oclminer( - __constant dev_blk_ctx *ctx, __global uint *output) -{ - const uint fW0 = ctx->fW0; - const uint fW1 = ctx->fW1; - const uint fW2 = ctx->fW2; - const uint fW3 = ctx->fW3; - const uint fW15 = ctx->fW15; - const uint fW01r = ctx->fW01r; - const uint fcty_e = ctx->fcty_e; - const uint fcty_e2 = ctx->fcty_e2; - const uint state0 = ctx->ctx_a; - const uint state1 = ctx->ctx_b; - const uint state2 = ctx->ctx_c; - const uint state3 = ctx->ctx_d; - const uint state4 = ctx->ctx_e; - const uint state5 = ctx->ctx_f; - const uint state6 = ctx->ctx_g; - const uint state7 = ctx->ctx_h; - const uint B1 = ctx->cty_b; - const uint C1 = ctx->cty_c; - const uint D1 = ctx->cty_d; - const uint F1 = ctx->cty_f; - const uint G1 = ctx->cty_g; - const uint H1 = ctx->cty_h; - - uint A, B, C, D, E, F, G, H; - uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; - uint it, res = 0; - const uint myid = get_global_id(0); - - const uint tnonce = (ctx->nonce + myid)<<10; - - for(it = 0; it != 1024; it++) { - W3 = it ^ tnonce; - E = fcty_e + W3; A = state0 + E; E = E + fcty_e2; - D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C1 ^ (A & (B1 ^ C1))) + K[ 4] + 0x80000000; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1))); - C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B1 ^ (H & (A ^ B1))) + K[ 5]; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E))); - B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6]; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000280; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + fW0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + fW1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2; - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + fW3; - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000; - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280; - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0; - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1; - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[61] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[62] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[63] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - - W0 = A + state0; W1 = B + state1; - W2 = C + state2; W3 = D + state3; - W4 = E + state4; W5 = F + state5; - W6 = G + state6; W7 = H + state7; - H = 0xb0edbdd0 + K[ 0] + W0; D = 0xa54ff53a + H; H = H + 0x08909ae5; - G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; C = 0x3c6ef372 + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667))); - F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (0x510e527f ^ (C & (D ^ 0x510e527f))) + K[ 2] + W2; B = 0xbb67ae85 + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H))); - E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[ 3] + W3; A = 0x6a09e667 + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[ 4] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[ 5] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8] + 0x80000000; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000100; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000; - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); - W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); - W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); - W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); - W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); - C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); - W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); - B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); - W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); - A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); - W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); - H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); - W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); - G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; C = C + G; - W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); - F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; B = B + F; - W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); - E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; A = A + E; - W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); - D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; H = H + D; - - res |= (H==0xa41f32e7); - } - - output[myid] = res; -}