# define rotr ( x, n ) rotate ( x, ( uint ) ( 32 - n ) )
# define WGS __attribute__ ( ( reqd_work_group_size ( 128 , 1 , 1 ) ) )
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
} ;
typedef struct {
uint ctx_a ; uint ctx_b; uint ctx_c; uint ctx_d;
uint ctx_e ; uint ctx_f; uint ctx_g; uint ctx_h;
uint cty_a ; uint cty_b; uint cty_c; uint cty_d;
uint cty_e ; uint cty_f; uint cty_g; uint cty_h;
uint merkle ; uint ntime; uint nbits; uint nonce;
uint fW0 ; uint fW1; uint fW2; uint fW3; uint fW15;
uint fW01r ; uint fcty_e; uint fcty_e2;
} dev_blk_ctx ;
__kernel __attribute__ ( ( vec_type_hint ( uint ) ) ) WGS void oclminer (
__constant dev_blk_ctx *ctx, __global uint *output )
{
const uint fW0 = ctx->fW0 ;
const uint fW1 = ctx->fW1 ;
const uint fW2 = ctx->fW2 ;
const uint fW3 = ctx->fW3 ;
const uint fW15 = ctx->fW15 ;
const uint fW01r = ctx->fW01r ;
const uint fcty_e = ctx->fcty_e ;
const uint fcty_e2 = ctx->fcty_e2 ;
const uint state0 = ctx->ctx_a ;
const uint state1 = ctx->ctx_b ;
const uint state2 = ctx->ctx_c ;
const uint state3 = ctx->ctx_d ;
const uint state4 = ctx->ctx_e ;
const uint state5 = ctx->ctx_f ;
const uint state6 = ctx->ctx_g ;
const uint state7 = ctx->ctx_h ;
const uint B1 = ctx->cty_b ;
const uint C1 = ctx->cty_c ;
const uint D1 = ctx->cty_d ;
const uint F1 = ctx->cty_f ;
const uint G1 = ctx->cty_g ;
const uint H1 = ctx->cty_h ;
uint A, B, C, D, E, F, G, H ;
uint W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15 ;
uint it, res = 0 ;
const uint myid = get_global_id ( 0 ) ;
const uint tnonce = ( ctx->nonce + myid ) <<10 ;
for ( it = 0 ; it != 1024; it++) {
W3 = it ^ tnonce ;
E = fcty_e + W3 ; A = state0 + E; E = E + fcty_e2;
D = D1 + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C1 ^ ( A & ( B1 ^ C1 ) ) ) + K[ 4] + 0x80000000 ; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
C = C1 + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B1 ^ ( H & ( A ^ B1 ) ) ) + K[ 5] ; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
B = B1 + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] ; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000280 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + fW0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + fW1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + fW2 ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + fW3 ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) + 0x80000000 ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) + 0x00000280 ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) + fW0 ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) + fW1 ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = 0x00a00055 + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = fW15 + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = fW01r + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = fW1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[61] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[62] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[63] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = A + state0 ; W1 = B + state1;
W2 = C + state2 ; W3 = D + state3;
W4 = E + state4 ; W5 = F + state5;
W6 = G + state6 ; W7 = H + state7;
H = 0xb0edbdd0 + K[ 0] + W0 ; D = 0xa54ff53a + H; H = H + 0x08909ae5;
G = 0x1f83d9ab + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( 0x9b05688c ^ ( D & 0xca0b3af3 ) ) + K[ 1] + W1 ; C = 0x3c6ef372 + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
F = 0x9b05688c + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( 0x510e527f ^ ( C & ( D ^ 0x510e527f ) ) ) + K[ 2] + W2 ; B = 0xbb67ae85 + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
E = 0x510e527f + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[ 3] + W3 ; A = 0x6a09e667 + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[ 4] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[ 5] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] + 0x80000000 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000100 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + 0x00a00000 ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + 0x00000100 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + 0x11002000 + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = 0x80000000 + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = 0x00400022 + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = 0x00000100 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ; C = C + G;
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ; B = B + F;
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ; A = A + E;
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ; H = H + D;
res | = ( H==0xa41f32e7 ) ;
}
output[myid] = res ;
}