1
0
mirror of https://github.com/GOSTSec/gostcoin synced 2025-01-15 17:19:57 +00:00
gostcoin/src/main.cpp
2017-04-02 14:14:51 -04:00

4907 lines
170 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "alert.h"
#include "checkpoints.h"
#include "db.h"
#include "txdb.h"
#include "net.h"
#include "init.h"
#include "ui_interface.h"
#include "checkqueue.h"
#include "Gost.h" // i2pd
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
using namespace std;
using namespace boost;
//
// Global state
//
CCriticalSection cs_setpwalletRegistered;
set<CWallet*> setpwalletRegistered;
CCriticalSection cs_main;
CTxMemPool mempool;
unsigned int nTransactionsUpdated = 0;
map<uint256, CBlockIndex*> mapBlockIndex;
uint256 hashGenesisBlock("0x00000dd00df9728558f339d2e034e2c862329d509018b56d699aec5b6fa6ba1f");
static CBigNum bnProofOfWorkLimit( CBigNum().SetCompact(0x1e0ffff0) );
CBlockIndex* pindexGenesisBlock = NULL;
int nBestHeight = -1;
uint256 nBestChainWork = 0;
uint256 nBestInvalidWork = 0;
uint256 hashBestChain = 0;
CBlockIndex* pindexBest = NULL;
set<CBlockIndex*, CBlockIndexWorkComparator> setBlockIndexValid; // may contain all CBlockIndex*'s that have validness >=BLOCK_VALID_TRANSACTIONS, and must contain those who aren't failed
int64 nTimeBestReceived = 0;
int nScriptCheckThreads = 0;
bool fImporting = false;
bool fReindex = false;
bool fBenchmark = false;
bool fTxIndex = false;
unsigned int nCoinCacheSize = 5000;
/** Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) */
int64 CTransaction::nMinTxFee = 200000;
/** Fees smaller than this (in satoshi) are considered zero fee (for relaying) */
int64 CTransaction::nMinRelayTxFee = 200000;
CMedianFilter<int> cPeerBlockCounts(8, 0); // Amount of blocks that other nodes claim to have
map<uint256, CBlock*> mapOrphanBlocks;
multimap<uint256, CBlock*> mapOrphanBlocksByPrev;
map<uint256, CTransaction> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "Anoncoin Signed Message:\n";
double dHashesPerSec = 0.0;
int64 nHPSTimerStart = 0;
// Settings
int64 nTransactionFee = 0;
int64 nMinimumInputValue = DUST_HARD_LIMIT;
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
void RegisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.insert(pwalletIn);
}
}
void UnregisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.erase(pwalletIn);
}
}
// get the wallet transaction with the given hash (if it exists)
bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->GetTransaction(hashTx,wtx))
return true;
return false;
}
// erases transaction with the given hash from all wallets
void static EraseFromWallets(uint256 hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->EraseFromWallet(hash);
}
// make sure all wallets know about the given transaction, in the given block
void SyncWithWallets(const uint256 &hash, const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->AddToWalletIfInvolvingMe(hash, tx, pblock, fUpdate);
}
// notify wallets about a new best chain
void static SetBestChain(const CBlockLocator& loc)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->SetBestChain(loc);
}
// notify wallets about an updated transaction
void static UpdatedTransaction(const uint256& hashTx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->UpdatedTransaction(hashTx);
}
// dump all wallets
void static PrintWallets(const CBlock& block)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->PrintWallet(block);
}
// notify wallets about an incoming inventory (for request counts)
void static Inventory(const uint256& hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->Inventory(hash);
}
// ask wallets to resend their transactions
void static ResendWalletTransactions()
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->ResendWalletTransactions();
}
//////////////////////////////////////////////////////////////////////////////
//
// CCoinsView implementations
//
bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) { return false; }
bool CCoinsView::SetCoins(const uint256 &txid, const CCoins &coins) { return false; }
bool CCoinsView::HaveCoins(const uint256 &txid) { return false; }
CBlockIndex *CCoinsView::GetBestBlock() { return NULL; }
bool CCoinsView::SetBestBlock(CBlockIndex *pindex) { return false; }
bool CCoinsView::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) { return false; }
bool CCoinsView::GetStats(CCoinsStats &stats) { return false; }
CCoinsViewBacked::CCoinsViewBacked(CCoinsView &viewIn) : base(&viewIn) { }
bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) { return base->GetCoins(txid, coins); }
bool CCoinsViewBacked::SetCoins(const uint256 &txid, const CCoins &coins) { return base->SetCoins(txid, coins); }
bool CCoinsViewBacked::HaveCoins(const uint256 &txid) { return base->HaveCoins(txid); }
CBlockIndex *CCoinsViewBacked::GetBestBlock() { return base->GetBestBlock(); }
bool CCoinsViewBacked::SetBestBlock(CBlockIndex *pindex) { return base->SetBestBlock(pindex); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) { return base->BatchWrite(mapCoins, pindex); }
bool CCoinsViewBacked::GetStats(CCoinsStats &stats) { return base->GetStats(stats); }
CCoinsViewCache::CCoinsViewCache(CCoinsView &baseIn, bool fDummy) : CCoinsViewBacked(baseIn), pindexTip(NULL) { }
bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) {
if (cacheCoins.count(txid)) {
coins = cacheCoins[txid];
return true;
}
if (base->GetCoins(txid, coins)) {
cacheCoins[txid] = coins;
return true;
}
return false;
}
std::map<uint256,CCoins>::iterator CCoinsViewCache::FetchCoins(const uint256 &txid) {
std::map<uint256,CCoins>::iterator it = cacheCoins.lower_bound(txid);
if (it != cacheCoins.end() && it->first == txid)
return it;
CCoins tmp;
if (!base->GetCoins(txid,tmp))
return cacheCoins.end();
std::map<uint256,CCoins>::iterator ret = cacheCoins.insert(it, std::make_pair(txid, CCoins()));
tmp.swap(ret->second);
return ret;
}
CCoins &CCoinsViewCache::GetCoins(const uint256 &txid) {
std::map<uint256,CCoins>::iterator it = FetchCoins(txid);
assert(it != cacheCoins.end());
return it->second;
}
bool CCoinsViewCache::SetCoins(const uint256 &txid, const CCoins &coins) {
cacheCoins[txid] = coins;
return true;
}
bool CCoinsViewCache::HaveCoins(const uint256 &txid) {
return FetchCoins(txid) != cacheCoins.end();
}
CBlockIndex *CCoinsViewCache::GetBestBlock() {
if (pindexTip == NULL)
pindexTip = base->GetBestBlock();
return pindexTip;
}
bool CCoinsViewCache::SetBestBlock(CBlockIndex *pindex) {
pindexTip = pindex;
return true;
}
bool CCoinsViewCache::BatchWrite(const std::map<uint256, CCoins> &mapCoins, CBlockIndex *pindex) {
for (std::map<uint256, CCoins>::const_iterator it = mapCoins.begin(); it != mapCoins.end(); it++)
cacheCoins[it->first] = it->second;
pindexTip = pindex;
return true;
}
bool CCoinsViewCache::Flush() {
bool fOk = base->BatchWrite(cacheCoins, pindexTip);
if (fOk)
cacheCoins.clear();
return fOk;
}
unsigned int CCoinsViewCache::GetCacheSize() {
return cacheCoins.size();
}
/** CCoinsView that brings transactions from a memorypool into view.
It does not check for spendings by memory pool transactions. */
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) {
if (base->GetCoins(txid, coins))
return true;
if (mempool.exists(txid)) {
const CTransaction &tx = mempool.lookup(txid);
coins = CCoins(tx, MEMPOOL_HEIGHT);
return true;
}
return false;
}
bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) {
return mempool.exists(txid) || base->HaveCoins(txid);
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz > 5000)
{
printf("ignoring large orphan tx (size: %u, hash: %s)\n", sz, hash.ToString().c_str());
return false;
}
mapOrphanTransactions[hash] = tx;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
printf("stored orphan tx %s (mapsz %" PRIszu ")\n", hash.ToString().c_str(),
mapOrphanTransactions.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
if (!mapOrphanTransactions.count(hash))
return;
const CTransaction& tx = mapOrphanTransactions[hash];
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash);
if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty())
mapOrphanTransactionsByPrev.erase(txin.prevout.hash);
}
mapOrphanTransactions.erase(hash);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, CTransaction>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
//////////////////////////////////////////////////////////////////////////////
//
// CTransaction / CTxOut
//
bool CTxOut::IsDust() const
{
// Litecoin: IsDust() detection disabled, allows any valid dust to be relayed.
// The fees imposed on each dust txo is considered sufficient spam deterrant.
return false;
}
bool CTransaction::IsStandard(string& strReason) const
{
if (nVersion > CTransaction::CURRENT_VERSION || nVersion < 1) {
strReason = "version";
return false;
}
if (!IsFinal()) {
strReason = "not-final";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
unsigned int sz = this->GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz >= MAX_STANDARD_TX_SIZE) {
strReason = "tx-size";
return false;
}
BOOST_FOREACH(const CTxIn& txin, vin)
{
// Biggest 'standard' txin is a 3-signature 3-of-3 CHECKMULTISIG
// pay-to-script-hash, which is 3 ~80-byte signatures, 3
// ~65-byte public keys, plus a few script ops.
if (txin.scriptSig.size() > 500) {
strReason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
strReason = "scriptsig-not-pushonly";
return false;
}
}
BOOST_FOREACH(const CTxOut& txout, vout) {
if (!::IsStandard(txout.scriptPubKey)) {
strReason = "scriptpubkey";
return false;
}
if (txout.IsDust()) {
strReason = "dust";
return false;
}
}
return true;
}
//
// Check transaction inputs, and make sure any
// pay-to-script-hash transactions are evaluating IsStandard scripts
//
// Why bother? To avoid denial-of-service attacks; an attacker
// can submit a standard HASH... OP_EQUAL transaction,
// which will get accepted into blocks. The redemption
// script can be anything; an attacker could use a very
// expensive-to-check-upon-redemption script like:
// DUP CHECKSIG DROP ... repeated 100 times... OP_1
//
bool CTransaction::AreInputsStandard(CCoinsViewCache& mapInputs) const
{
if (IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prev = GetOutputFor(vin[i], mapInputs);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig the
// IsStandard() call returns false
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, vin[i].scriptSig, *this, i, false, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (!Solver(subscript, whichType2, vSolutions2))
return false;
if (whichType2 == TX_SCRIPTHASH)
return false;
int tmpExpected;
tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int CTransaction::GetLegacySigOpCount() const
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
CBlock blockTmp;
if (pblock == NULL) {
CCoins coins;
if (pcoinsTip->GetCoins(GetHash(), coins)) {
CBlockIndex *pindex = FindBlockByHeight(coins.nHeight);
if (pindex) {
if (!blockTmp.ReadFromDisk(pindex))
return 0;
pblock = &blockTmp;
}
}
}
if (pblock) {
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
}
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return pindexBest->nHeight - pindex->nHeight + 1;
}
bool CTransaction::CheckTransaction(CValidationState &state) const
{
// Basic checks that don't depend on any context
if (vin.empty())
return state.DoS(10, error("CTransaction::CheckTransaction() : vin empty"));
if (vout.empty())
return state.DoS(10, error("CTransaction::CheckTransaction() : vout empty"));
// Size limits
if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CTransaction::CheckTransaction() : size limits failed"));
// Check for negative or overflow output values
int64 nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, vout)
{
if (txout.nValue < 0)
return state.DoS(100, error("CTransaction::CheckTransaction() : txout.nValue negative"));
if (txout.nValue > MAX_MONEY)
return state.DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high"));
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, error("CTransaction::CheckTransaction() : txout total out of range"));
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, vin)
{
if (vInOutPoints.count(txin.prevout))
return state.DoS(100, error("CTransaction::CheckTransaction() : duplicate inputs"));
vInOutPoints.insert(txin.prevout);
}
/*if (IsCoinBase())
{
if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100)
return state.DoS(100, error("CTransaction::CheckTransaction() : coinbase script size"));
}
else
{
BOOST_FOREACH(const CTxIn& txin, vin)
if (txin.prevout.IsNull())
return state.DoS(10, error("CTransaction::CheckTransaction() : prevout is null"));
}*/
return true;
}
int64 CTransaction::GetMinFee(unsigned int nBlockSize, bool fAllowFree,
enum GetMinFee_mode mode) const
{
// Base fee is either nMinTxFee or nMinRelayTxFee
int64 nBaseFee = (mode == GMF_RELAY) ? nMinRelayTxFee : nMinTxFee;
unsigned int nBytes = ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION);
unsigned int nNewBlockSize = nBlockSize + nBytes;
int64 nMinFee = (1 + (int64)nBytes / 1000) * nBaseFee;
if (fAllowFree)
{
if (nBlockSize == 1)
{
// Transactions under 10K are free
// (about 4500 BTC if made of 50 BTC inputs)
if (nBytes < 10000)
nMinFee = 0;
}
else
{
// Free transaction area
if (nNewBlockSize < 27000)
nMinFee = 0;
}
}
// Litecoin
// To limit dust spam, add nBaseFee for each output less than DUST_SOFT_LIMIT
BOOST_FOREACH(const CTxOut& txout, vout)
if (txout.nValue < DUST_SOFT_LIMIT)
nMinFee += nBaseFee;
// Raise the price as the block approaches full
if (nBlockSize != 1 && nNewBlockSize >= MAX_BLOCK_SIZE_GEN/2)
{
if (nNewBlockSize >= MAX_BLOCK_SIZE_GEN)
return MAX_MONEY;
nMinFee *= MAX_BLOCK_SIZE_GEN / (MAX_BLOCK_SIZE_GEN - nNewBlockSize);
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins)
{
LOCK(cs);
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0));
// iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx
while (it != mapNextTx.end() && it->first.hash == hashTx) {
coins.Spend(it->first.n); // and remove those outputs from coins
it++;
}
}
bool CTxMemPool::accept(CValidationState &state, CTransaction &tx, bool fCheckInputs, bool fLimitFree,
bool* pfMissingInputs)
{
if (pfMissingInputs)
*pfMissingInputs = false;
if (!tx.CheckTransaction(state))
return error("CTxMemPool::accept() : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return state.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx"));
// To help v0.1.5 clients who would see it as a negative number
if ((int64)tx.nLockTime > std::numeric_limits<int>::max())
return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet");
// Rather not work on nonstandard transactions (unless -testnet)
string strNonStd;
if (!fTestNet && !tx.IsStandard(strNonStd))
return error("CTxMemPool::accept() : nonstandard transaction (%s)",
strNonStd.c_str());
// is it already in the memory pool?
uint256 hash = tx.GetHash();
{
LOCK(cs);
if (mapTx.count(hash))
return false;
}
// Check for conflicts with in-memory transactions
CTransaction* ptxOld = NULL;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
// Allow replacing with a newer version of the same transaction
if (i != 0)
return false;
ptxOld = mapNextTx[outpoint].ptx;
if (ptxOld->IsFinal())
return false;
if (!tx.IsNewerThan(*ptxOld))
return false;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld)
return false;
}
break;
}
}
if (fCheckInputs)
{
CCoinsView dummy;
CCoinsViewCache view(dummy);
{
LOCK(cs);
CCoinsViewMemPool viewMemPool(*pcoinsTip, *this);
view.SetBackend(viewMemPool);
// do we already have it?
if (view.HaveCoins(hash))
return false;
// do all inputs exist?
// Note that this does not check for the presence of actual outputs (see the next check for that),
// only helps filling in pfMissingInputs (to determine missing vs spent).
BOOST_FOREACH(const CTxIn txin, tx.vin) {
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
}
// are the actual inputs available?
if (!tx.HaveInputs(view))
return state.Invalid(error("CTxMemPool::accept() : inputs already spent"));
// Bring the best block into scope
view.GetBestBlock();
// we have all inputs cached now, so switch back to dummy, so we don't need to keep lock on mempool
view.SetBackend(dummy);
}
// Check for non-standard pay-to-script-hash in inputs
if (!tx.AreInputsStandard(view) && !fTestNet)
return error("CTxMemPool::accept() : nonstandard transaction input");
// Note: if you modify this code to accept non-standard transactions, then
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
int64 nFees = tx.GetValueIn(view)-tx.GetValueOut();
unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
// Don't accept it if it can't get into a block
int64 txMinFee = tx.GetMinFee(1000, true, GMF_RELAY);
if (fLimitFree && nFees < txMinFee)
return error("CTxMemPool::accept() : not enough fees %s, %" PRI64d " < %" PRI64d,
hash.ToString().c_str(),
nFees, txMinFee);
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nFees < CTransaction::nMinRelayTxFee)
{
static double dFreeCount;
static int64 nLastTime;
int64 nNow = GetTime();
LOCK(cs);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount >= GetArg("-limitfreerelay", 15)*10*1000)
return error("CTxMemPool::accept() : free transaction rejected by rate limiter");
if (fDebug)
printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!tx.CheckInputs(state, view, true, SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC))
{
return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().c_str());
}
}
// Store transaction in memory
{
LOCK(cs);
if (ptxOld)
{
printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str());
remove(*ptxOld);
}
addUnchecked(hash, tx);
}
///// are we sure this is ok when loading transactions or restoring block txes
// If updated, erase old tx from wallet
if (ptxOld)
EraseFromWallets(ptxOld->GetHash());
SyncWithWallets(hash, tx, NULL, true);
return true;
}
bool CTransaction::AcceptToMemoryPool(CValidationState &state, bool fCheckInputs, bool fLimitFree, bool* pfMissingInputs)
{
try {
return mempool.accept(state, *this, fCheckInputs, fLimitFree, pfMissingInputs);
} catch(std::runtime_error &e) {
return state.Abort(_("System error: ") + e.what());
}
}
bool CTxMemPool::addUnchecked(const uint256& hash, const CTransaction &tx)
{
// Add to memory pool without checking anything. Don't call this directly,
// call CTxMemPool::accept to properly check the transaction first.
{
mapTx[hash] = tx;
for (unsigned int i = 0; i < tx.vin.size(); i++)
mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i);
nTransactionsUpdated++;
}
return true;
}
bool CTxMemPool::remove(const CTransaction &tx, bool fRecursive)
{
// Remove transaction from memory pool
{
LOCK(cs);
uint256 hash = tx.GetHash();
if (fRecursive) {
for (unsigned int i = 0; i < tx.vout.size(); i++) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(COutPoint(hash, i));
if (it != mapNextTx.end())
remove(*it->second.ptx, true);
}
}
if (mapTx.count(hash))
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapNextTx.erase(txin.prevout);
mapTx.erase(hash);
nTransactionsUpdated++;
}
}
return true;
}
bool CTxMemPool::removeConflicts(const CTransaction &tx)
{
// Remove transactions which depend on inputs of tx, recursively
LOCK(cs);
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(txin.prevout);
if (it != mapNextTx.end()) {
const CTransaction &txConflict = *it->second.ptx;
if (txConflict != tx)
remove(txConflict, true);
}
}
return true;
}
void CTxMemPool::clear()
{
LOCK(cs);
mapTx.clear();
mapNextTx.clear();
++nTransactionsUpdated;
}
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back((*mi).first);
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return pindexBest->nHeight - pindex->nHeight + 1;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(bool fCheckInputs, bool fLimitFree)
{
CValidationState state;
return CTransaction::AcceptToMemoryPool(state, fCheckInputs, fLimitFree);
}
bool CWalletTx::AcceptWalletTransaction(bool fCheckInputs)
{
{
LOCK(mempool.cs);
// Add previous supporting transactions first
BOOST_FOREACH(CMerkleTx& tx, vtxPrev)
{
if (!tx.IsCoinBase())
{
uint256 hash = tx.GetHash();
if (!mempool.exists(hash) && pcoinsTip->HaveCoins(hash))
tx.AcceptToMemoryPool(fCheckInputs, false);
}
}
return AcceptToMemoryPool(fCheckInputs, false);
}
return false;
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &txOut, uint256 &hashBlock, bool fAllowSlow)
{
CBlockIndex *pindexSlow = NULL;
{
LOCK(cs_main);
{
LOCK(mempool.cs);
if (mempool.exists(hash))
{
txOut = mempool.lookup(hash);
return true;
}
}
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(hash, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
CBlockHeader header;
try {
file >> header;
fseek(file, postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (std::exception &e) {
return error("%s() : deserialize or I/O error", __PRETTY_FUNCTION__);
}
hashBlock = header.GetHash();
if (txOut.GetHash() != hash)
return error("%s() : txid mismatch", __PRETTY_FUNCTION__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains transaction, and scan it
int nHeight = -1;
{
CCoinsViewCache &view = *pcoinsTip;
CCoins coins;
if (view.GetCoins(hash, coins))
nHeight = coins.nHeight;
}
if (nHeight > 0)
pindexSlow = FindBlockByHeight(nHeight);
}
}
if (pindexSlow) {
CBlock block;
if (block.ReadFromDisk(pindexSlow)) {
BOOST_FOREACH(const CTransaction &tx, block.vtx) {
if (tx.GetHash() == hash) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static CBlockIndex* pblockindexFBBHLast;
CBlockIndex* FindBlockByHeight(int nHeight)
{
CBlockIndex *pblockindex;
if (nHeight < nBestHeight / 2)
pblockindex = pindexGenesisBlock;
else
pblockindex = pindexBest;
if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight))
pblockindex = pblockindexFBBHLast;
while (pblockindex->nHeight > nHeight)
pblockindex = pblockindex->pprev;
while (pblockindex->nHeight < nHeight)
pblockindex = pblockindex->pnext;
pblockindexFBBHLast = pblockindex;
return pblockindex;
}
bool CBlock::ReadFromDisk(const CBlockIndex* pindex)
{
if (!ReadFromDisk(pindex->GetBlockPos()))
return false;
if (GetHash() != pindex->GetBlockHash())
return error("CBlock::ReadFromDisk() : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const CBlockHeader* pblock)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblock->hashPrevBlock))
pblock = mapOrphanBlocks[pblock->hashPrevBlock];
return pblock->GetHash();
}
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 5 * COIN;
// Some adjustments to the start of the lifetime to Anoncoin
if (nHeight < 42000) {
nSubsidy = 4.2 * COIN;
} else if (nHeight < 77777) { // All luck is seven ;)
nSubsidy = 7 * COIN;
} else if (nHeight == 77778) {
nSubsidy = 10 * COIN;
} else {
nSubsidy >>= (nHeight / 306600); // Anoncoin: 306600 blocks in ~2 years
}
return nSubsidy + nFees;
}
// Protocol 1 & 2
static const int64 nTargetTimespan = 86184; //420 * 205.2; = 86184 // Anoncoin: 420 blocks
static const int64 nTargetSpacing = 205;//3.42 * 60; // Anoncoin: 3.42 minutes
static const int64 nInterval = nTargetTimespan / nTargetSpacing;
static const int nDifficultySwitchHeight = 15420;
static const int nDifficultySwitchHeight2 = 77777;
// Protocol 3
static const int nDifficultyProtocol3 = 87777;
unsigned int static KimotoGravityWell(const CBlockIndex* pindexLast, const CBlockHeader *pblock, uint64 TargetBlocksSpacingSeconds, uint64 PastBlocksMin, uint64 PastBlocksMax) {
/* current difficulty formula, Anoncoin - kimoto gravity well */
const CBlockIndex *BlockLastSolved = pindexLast;
const CBlockIndex *BlockReading = pindexLast;
const CBlockHeader *BlockCreating = pblock;
BlockCreating = BlockCreating;
uint64 PastBlocksMass = 0;
int64 PastRateActualSeconds = 0;
int64 PastRateTargetSeconds = 0;
double PastRateAdjustmentRatio = double(1);
CBigNum PastDifficultyAverage;
CBigNum PastDifficultyAveragePrev;
double EventHorizonDeviation;
double EventHorizonDeviationFast;
double EventHorizonDeviationSlow;
if (BlockLastSolved == NULL || BlockLastSolved->nHeight == 0 || (uint64)BlockLastSolved->nHeight < PastBlocksMin) { return bnProofOfWorkLimit.GetCompact(); }
for (unsigned int i = 1; BlockReading && BlockReading->nHeight > 0; i++) {
if (PastBlocksMax > 0 && i > PastBlocksMax) { break; }
PastBlocksMass++;
if (i == 1) { PastDifficultyAverage.SetCompact(BlockReading->nBits); }
else { PastDifficultyAverage = ((CBigNum().SetCompact(BlockReading->nBits) - PastDifficultyAveragePrev) / i) + PastDifficultyAveragePrev; }
PastDifficultyAveragePrev = PastDifficultyAverage;
PastRateActualSeconds = BlockLastSolved->GetBlockTime() - BlockReading->GetBlockTime();
PastRateTargetSeconds = TargetBlocksSpacingSeconds * PastBlocksMass;
PastRateAdjustmentRatio = double(1);
if (PastRateActualSeconds < 0) { PastRateActualSeconds = 0; }
if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) {
PastRateAdjustmentRatio = double(PastRateTargetSeconds) / double(PastRateActualSeconds);
}
EventHorizonDeviation = 1 + (0.7084 * pow((double(PastBlocksMass)/double(144)), -1.228));
EventHorizonDeviationFast = EventHorizonDeviation;
EventHorizonDeviationSlow = 1 / EventHorizonDeviation;
if (PastBlocksMass >= PastBlocksMin) {
if ((PastRateAdjustmentRatio <= EventHorizonDeviationSlow) || (PastRateAdjustmentRatio >= EventHorizonDeviationFast)) { assert(BlockReading); break; }
}
if (BlockReading->pprev == NULL) { assert(BlockReading); break; }
BlockReading = BlockReading->pprev;
}
CBigNum bnNew(PastDifficultyAverage);
if (PastRateActualSeconds != 0 && PastRateTargetSeconds != 0) {
bnNew *= PastRateActualSeconds;
bnNew /= PastRateTargetSeconds;
}
if (bnNew > bnProofOfWorkLimit) { bnNew = bnProofOfWorkLimit; }
#ifdef _ANONDEBUG
/// debug print
printf("Difficulty Retarget - Kimoto Gravity Well\n");
printf("PastRateAdjustmentRatio = %g\n", PastRateAdjustmentRatio);
printf("Before: %08x %s\n", BlockLastSolved->nBits, CBigNum().SetCompact(BlockLastSolved->nBits).getuint256().ToString().c_str());
printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str());
#endif
return bnNew.GetCompact();
}
//
// minimum amount of work that could possibly be required nTime after
// minimum work required was nBase
//
unsigned int ComputeMinWork(unsigned int nBase, int64 nTime)
{
CBigNum bnResult;
bnResult.SetCompact(nBase);
while (nTime > 0 && bnResult < bnProofOfWorkLimit)
{
// Maximum 141% adjustment...
bnResult = (bnResult * 99) / 70;
// ... in best-case exactly 4-times-normal target time
nTime -= nTargetTimespan*4;
}
if (bnResult > bnProofOfWorkLimit)
bnResult = bnProofOfWorkLimit;
return bnResult.GetCompact();
}
unsigned int static NeoGetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock)
{
static const int64 BlocksTargetSpacing = 3 * 60; // 3 minutes
unsigned int TimeDaySeconds = 60 * 60 * 24;
int64 PastSecondsMin = TimeDaySeconds * 0.25;
int64 PastSecondsMax = TimeDaySeconds * 7;
uint64 PastBlocksMin = PastSecondsMin / BlocksTargetSpacing;
uint64 PastBlocksMax = PastSecondsMax / BlocksTargetSpacing;
return KimotoGravityWell(pindexLast, pblock, BlocksTargetSpacing, PastBlocksMin, PastBlocksMax);
}
unsigned int static OldGetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock)
{
unsigned int nProofOfWorkLimit = bnProofOfWorkLimit.GetCompact();
// Genesis block
if (pindexLast == NULL)
return nProofOfWorkLimit;
// Anoncoin difficulty adjustment protocol switch (Thanks to FeatherCoin for this idea)
static const int newTargetTimespan = 2050;
int nHeight = pindexLast->nHeight + 1;
bool fNewDifficultyProtocol = (nHeight >= nDifficultySwitchHeight || fTestNet);
bool fNewDifficultyProtocol2 = (nHeight >= nDifficultySwitchHeight2 || fTestNet);
if (fNewDifficultyProtocol2) {
// Jumping back to sqrt(2) as the factor of adjustment.
fNewDifficultyProtocol = false;
}
int64 nTargetTimespanCurrent = fNewDifficultyProtocol ? (nTargetTimespan*4) : nTargetTimespan;
if (fNewDifficultyProtocol2) {
nTargetTimespanCurrent = newTargetTimespan;
}
int64 nInterval = nTargetTimespanCurrent / nTargetSpacing;
if (fTestNet && nHeight < (newTargetTimespan/205)+1) {
return pindexLast->nBits;
}
// Only change once per interval, or at protocol switch height
if ((nHeight % nInterval != 0 && !fNewDifficultyProtocol2) &&
(nHeight != nDifficultySwitchHeight) && !fTestNet)
{
return pindexLast->nBits;
}
// Anoncoin: This fixes an issue where a 51% attack can change difficulty at will.
// Go back the full period unless it's the first retarget after genesis. Code courtesy of Art Forz
int blockstogoback = nInterval-1;
if ((pindexLast->nHeight+1) != nInterval)
blockstogoback = nInterval;
// Go back by what we want to be 14 days worth of blocks
const CBlockIndex* pindexFirst = pindexLast;
blockstogoback = fNewDifficultyProtocol2 ? (newTargetTimespan/205) : blockstogoback;
for (int i = 0; pindexFirst && i < blockstogoback; i++)
pindexFirst = pindexFirst->pprev;
assert(pindexFirst);
// Limit adjustment step
int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
int64 nActualTimespanMax = fNewDifficultyProtocol ? (nTargetTimespanCurrent*4) : ((nTargetTimespanCurrent*99)/70);
int64 nActualTimespanMin = fNewDifficultyProtocol ? (nTargetTimespanCurrent/4) : ((nTargetTimespanCurrent*70)/99);
#ifdef __DEBUG
printf(" nActualTimespan = %" PRI64d " before bounds\n", nActualTimespan);
#endif
if (pindexLast->nHeight+1 >= nDifficultySwitchHeight2) {
if (nActualTimespan < nActualTimespanMin)
nActualTimespan = nActualTimespanMin;
if (nActualTimespan > nActualTimespanMax)
nActualTimespan = nActualTimespanMax;
} else if (pindexLast->nHeight+1 > nDifficultySwitchHeight) {
if (nActualTimespan < nActualTimespanMin/4)
nActualTimespan = nActualTimespanMin/4;
if (nActualTimespan > nActualTimespanMax)
nActualTimespan = nActualTimespanMax;
} else {
if (nActualTimespan < nActualTimespanMin)
nActualTimespan = nActualTimespanMin;
if (nActualTimespan > nActualTimespanMax)
nActualTimespan = nActualTimespanMax;
}
// Retarget
CBigNum bnNew;
bnNew.SetCompact(pindexLast->nBits);
bnNew *= nActualTimespan;
if (fNewDifficultyProtocol2) {
bnNew /= nTargetTimespanCurrent;
} else {
bnNew /= nTargetTimespan;
}
if (bnNew > bnProofOfWorkLimit)
bnNew = bnProofOfWorkLimit;
/// debug print
#ifdef __DEBUG
printf("OldGetNextWorkRequired RETARGET\n");
printf("nTargetTimespan = %" PRI64d " nActualTimespan = %" PRI64d "\n", nTargetTimespan, nActualTimespan);
printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str());
printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str());
#endif
return bnNew.GetCompact();
}
unsigned int static GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock)
{
assert(pindexLast);
if (pindexLast->nHeight > nDifficultyProtocol3 || fTestNet) {
return NeoGetNextWorkRequired(pindexLast, pblock);
} else {
return OldGetNextWorkRequired(pindexLast, pblock);
}
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit)
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
// Return maximum amount of blocks that other nodes claim to have
int GetNumBlocksOfPeers()
{
return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate());
}
bool IsInitialBlockDownload()
{
if (pindexBest == NULL || fImporting || fReindex || nBestHeight < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64 nLastUpdate;
static CBlockIndex* pindexLastBest;
if (pindexBest != pindexLastBest)
{
pindexLastBest = pindexBest;
nLastUpdate = GetTime();
}
return (GetTime() - nLastUpdate < 10 &&
pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (pindexNew->nChainWork > nBestInvalidWork)
{
nBestInvalidWork = pindexNew->nChainWork;
pblocktree->WriteBestInvalidWork(CBigNum(nBestInvalidWork));
uiInterface.NotifyBlocksChanged();
}
printf("InvalidChainFound: invalid block=%s height=%d log2_work=%.8g date=%s\n",
pindexNew->GetBlockHash().ToString().c_str(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble())/log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
pindexNew->GetBlockTime()).c_str());
printf("InvalidChainFound: current best=%s height=%d log2_work=%.8g date=%s\n",
hashBestChain.ToString().c_str(), nBestHeight, log(nBestChainWork.getdouble())/log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str());
if (pindexBest && nBestInvalidWork > nBestChainWork + (pindexBest->GetBlockWork() * 6).getuint256())
printf("InvalidChainFound: Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n");
}
void static InvalidBlockFound(CBlockIndex *pindex) {
pindex->nStatus |= BLOCK_FAILED_VALID;
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindex));
setBlockIndexValid.erase(pindex);
InvalidChainFound(pindex);
if (pindex->pnext) {
CValidationState stateDummy;
ConnectBestBlock(stateDummy); // reorganise away from the failed block
}
}
bool ConnectBestBlock(CValidationState &state) {
do {
CBlockIndex *pindexNewBest;
{
std::set<CBlockIndex*,CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexValid.rbegin();
if (it == setBlockIndexValid.rend())
return true;
pindexNewBest = *it;
}
if (pindexNewBest == pindexBest || (pindexBest && pindexNewBest->nChainWork == pindexBest->nChainWork))
return true; // nothing to do
// check ancestry
CBlockIndex *pindexTest = pindexNewBest;
std::vector<CBlockIndex*> vAttach;
do {
if (pindexTest->nStatus & BLOCK_FAILED_MASK) {
// mark descendants failed
CBlockIndex *pindexFailed = pindexNewBest;
while (pindexTest != pindexFailed) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
setBlockIndexValid.erase(pindexFailed);
pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexFailed));
pindexFailed = pindexFailed->pprev;
}
InvalidChainFound(pindexNewBest);
break;
}
if (pindexBest == NULL || pindexTest->nChainWork > pindexBest->nChainWork)
vAttach.push_back(pindexTest);
if (pindexTest->pprev == NULL || pindexTest->pnext != NULL) {
reverse(vAttach.begin(), vAttach.end());
BOOST_FOREACH(CBlockIndex *pindexSwitch, vAttach) {
boost::this_thread::interruption_point();
try {
if (!SetBestChain(state, pindexSwitch))
return false;
} catch(std::runtime_error &e) {
return state.Abort(_("System error: ") + e.what());
}
}
return true;
}
pindexTest = pindexTest->pprev;
} while(true);
} while(true);
}
void CBlockHeader::UpdateTime(const CBlockIndex* pindexPrev)
{
nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
// Updating time can change work required on testnet:
if (fTestNet)
nBits = GetNextWorkRequired(pindexPrev, this);
}
const CTxOut &CTransaction::GetOutputFor(const CTxIn& input, CCoinsViewCache& view)
{
const CCoins &coins = view.GetCoins(input.prevout.hash);
assert(coins.IsAvailable(input.prevout.n));
return coins.vout[input.prevout.n];
}
int64 CTransaction::GetValueIn(CCoinsViewCache& inputs) const
{
if (IsCoinBase())
return 0;
int64 nResult = 0;
for (unsigned int i = 0; i < vin.size(); i++)
nResult += GetOutputFor(vin[i], inputs).nValue;
return nResult;
}
unsigned int CTransaction::GetP2SHSigOpCount(CCoinsViewCache& inputs) const
{
if (IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut &prevout = GetOutputFor(vin[i], inputs);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig);
}
return nSigOps;
}
void CTransaction::UpdateCoins(CValidationState &state, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight, const uint256 &txhash) const
{
// mark inputs spent
if (!IsCoinBase()) {
BOOST_FOREACH(const CTxIn &txin, vin) {
CCoins &coins = inputs.GetCoins(txin.prevout.hash);
CTxInUndo undo;
assert(coins.Spend(txin.prevout, undo));
txundo.vprevout.push_back(undo);
}
}
// add outputs
assert(inputs.SetCoins(txhash, CCoins(*this, nHeight)));
}
bool CTransaction::HaveInputs(CCoinsViewCache &inputs) const
{
if (!IsCoinBase()) {
// first check whether information about the prevout hash is available
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
if (!inputs.HaveCoins(prevout.hash))
return false;
}
// then check whether the actual outputs are available
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
if (!coins.IsAvailable(prevout.n))
return false;
}
}
return true;
}
bool CScriptCheck::operator()() const {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType))
return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString().c_str());
return true;
}
bool VerifySignature(const CCoins& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType)
{
return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)();
}
bool CTransaction::CheckInputs(CValidationState &state, CCoinsViewCache &inputs, bool fScriptChecks, unsigned int flags, std::vector<CScriptCheck> *pvChecks) const
{
if (!IsCoinBase())
{
if (pvChecks)
pvChecks->reserve(vin.size());
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!HaveInputs(inputs))
return state.Invalid(error("CheckInputs() : %s inputs unavailable", GetHash().ToString().c_str()));
// While checking, GetBestBlock() refers to the parent block.
// This is also true for mempool checks.
int nSpendHeight = inputs.GetBestBlock()->nHeight + 1;
int64 nValueIn = 0;
int64 nFees = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// If prev is coinbase, check that it's matured
if (coins.IsCoinBase()) {
if (nSpendHeight - coins.nHeight < COINBASE_MATURITY)
return state.Invalid(error("CheckInputs() : tried to spend coinbase at depth %d", nSpendHeight - coins.nHeight));
}
// Check for negative or overflow input values
nValueIn += coins.vout[prevout.n].nValue;
if (!MoneyRange(coins.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, error("CheckInputs() : txin values out of range"));
}
if (nValueIn < GetValueOut())
return state.DoS(100, error("CheckInputs() : %s value in < value out", GetHash().ToString().c_str()));
// Tally transaction fees
int64 nTxFee = nValueIn - GetValueOut();
if (nTxFee < 0)
return state.DoS(100, error("CheckInputs() : %s nTxFee < 0", GetHash().ToString().c_str()));
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, error("CheckInputs() : nFees out of range"));
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
// Skip ECDSA signature verification when connecting blocks
// before the last block chain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (fScriptChecks) {
for (unsigned int i = 0; i < vin.size(); i++) {
const COutPoint &prevout = vin[i].prevout;
const CCoins &coins = inputs.GetCoins(prevout.hash);
// Verify signature
CScriptCheck check(coins, *this, i, flags, 0);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & SCRIPT_VERIFY_STRICTENC) {
// For now, check whether the failure was caused by non-canonical
// encodings or not; if so, don't trigger DoS protection.
CScriptCheck check(coins, *this, i, flags & (~SCRIPT_VERIFY_STRICTENC), 0);
if (check())
return state.Invalid();
}
return state.DoS(100,false);
}
}
}
}
return true;
}
bool CBlock::DisconnectBlock(CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &view, bool *pfClean)
{
assert(pindex == view.GetBestBlock());
if (pfClean)
*pfClean = false;
bool fClean = true;
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull())
return error("DisconnectBlock() : no undo data available");
if (!blockUndo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock() : failure reading undo data");
if (blockUndo.vtxundo.size() + 1 != vtx.size())
return error("DisconnectBlock() : block and undo data inconsistent");
// undo transactions in reverse order
for (int i = vtx.size() - 1; i >= 0; i--) {
const CTransaction &tx = vtx[i];
uint256 hash = tx.GetHash();
// check that all outputs are available
if (!view.HaveCoins(hash)) {
fClean = fClean && error("DisconnectBlock() : outputs still spent? database corrupted");
view.SetCoins(hash, CCoins());
}
CCoins &outs = view.GetCoins(hash);
CCoins outsBlock = CCoins(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers.
// No network rules currently depend on the version here, so an inconsistency is harmless
// but it must be corrected before txout nversion ever influences a network rule.
if (outsBlock.nVersion < 0)
outs.nVersion = outsBlock.nVersion;
if (outs != outsBlock)
fClean = fClean && error("DisconnectBlock() : added transaction mismatch? database corrupted");
// remove outputs
outs = CCoins();
// restore inputs
if (i > 0) { // not coinbases
const CTxUndo &txundo = blockUndo.vtxundo[i-1];
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock() : transaction and undo data inconsistent");
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
CCoins coins;
view.GetCoins(out.hash, coins); // this can fail if the prevout was already entirely spent
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx being spent
if (!coins.IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing transaction");
coins = CCoins();
coins.fCoinBase = undo.fCoinBase;
coins.nHeight = undo.nHeight;
coins.nVersion = undo.nVersion;
} else {
if (coins.IsPruned())
fClean = fClean && error("DisconnectBlock() : undo data adding output to missing transaction");
}
if (coins.IsAvailable(out.n))
fClean = fClean && error("DisconnectBlock() : undo data overwriting existing output");
if (coins.vout.size() < out.n+1)
coins.vout.resize(out.n+1);
coins.vout[out.n] = undo.txout;
if (!view.SetCoins(out.hash, coins))
return error("DisconnectBlock() : cannot restore coin inputs");
}
}
}
// move best block pointer to prevout block
view.SetBestBlock(pindex->pprev);
if (pfClean) {
*pfClean = fClean;
return true;
} else {
return fClean;
}
}
void static FlushBlockFile(bool fFinalize = false)
{
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, infoLastBlockFile.nSize);
FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, infoLastBlockFile.nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
bool CBlock::ConnectBlock(CValidationState &state, CBlockIndex* pindex, CCoinsViewCache &view, bool fJustCheck)
{
// Check it again in case a previous version let a bad block in
if (!CheckBlock(state, !fJustCheck, !fJustCheck))
return false;
// verify that the view's current state corresponds to the previous block
assert(pindex->pprev == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its transactions
// (its coinbase is unspendable)
if (GetHash() == hashGenesisBlock) {
view.SetBestBlock(pindex);
pindexGenesisBlock = pindex;
return true;
}
bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate();
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after October 1, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks,
// this prevents exploiting the issue against nodes in their initial block download.
bool fEnforceBIP30 = true;
if (fEnforceBIP30) {
for (unsigned int i=0; i<vtx.size(); i++) {
uint256 hash = GetTxHash(i);
if (view.HaveCoins(hash) && !view.GetCoins(hash).IsPruned())
return state.DoS(100, error("ConnectBlock() : tried to overwrite transaction"));
}
}
// BIP16 didn't become active until Oct 1 2012
int64 nBIP16SwitchTime = 1349049600;
bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime);
unsigned int flags = SCRIPT_VERIFY_NOCACHE |
(fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
int64 nStart = GetTimeMicros();
int64 nFees = 0;
int64 nValueIn = 0;
int64 nValueOut = 0;
int nInputs = 0;
unsigned int nSigOps = 0;
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos> > vPos;
vPos.reserve(vtx.size());
for (unsigned int i=0; i<vtx.size(); i++)
{
const CTransaction &tx = vtx[i];
nInputs += tx.vin.size();
nSigOps += tx.GetLegacySigOpCount();
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"));
if (tx.IsCoinBase())
{
nValueOut += tx.GetValueOut();
}
else
{
if (!tx.HaveInputs(view))
return state.DoS(100, error("ConnectBlock() : inputs missing/spent"));
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += tx.GetP2SHSigOpCount(view);
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("ConnectBlock() : too many sigops"));
}
int64 nTxValueIn = tx.GetValueIn(view);
int64 nTxValueOut = tx.GetValueOut();
nValueIn += nTxValueIn;
nValueOut += nTxValueOut;
nFees += nTxValueIn-nTxValueOut;
std::vector<CScriptCheck> vChecks;
if (!tx.CheckInputs(state, view, fScriptChecks, flags, nScriptCheckThreads ? &vChecks : NULL))
return false;
control.Add(vChecks);
}
CTxUndo txundo;
tx.UpdateCoins(state, view, txundo, pindex->nHeight, GetTxHash(i));
if (!tx.IsCoinBase())
blockundo.vtxundo.push_back(txundo);
vPos.push_back(std::make_pair(GetTxHash(i), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
if (!fJustCheck)
{
pindex->nMoneySupply = (pindex->pprev? pindex->pprev->nMoneySupply : 0) + nValueOut - nValueIn;
CDiskBlockIndex blockindex(pindex);
if (!pblocktree->WriteBlockIndex(blockindex))
return state.Abort(_("Failed to write block index for moneysupply"));
}
int64 nTime = GetTimeMicros() - nStart;
if (fBenchmark)
printf("- Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin)\n", (unsigned)vtx.size(), 0.001 * nTime, 0.001 * nTime / vtx.size(), nInputs <= 1 ? 0 : 0.001 * nTime / (nInputs-1));
if (vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees))
return state.DoS(100, error("ConnectBlock() : coinbase pays too much (actual=%" PRI64d " vs limit=%" PRI64d ")", vtx[0].GetValueOut(), GetBlockValue(pindex->nHeight, nFees)));
if (!control.Wait())
return state.DoS(100, false);
int64 nTime2 = GetTimeMicros() - nStart;
if (fBenchmark)
printf("- Verify %u txins: %.2fms (%.3fms/txin)\n", nInputs - 1, 0.001 * nTime2, nInputs <= 1 ? 0 : 0.001 * nTime2 / (nInputs-1));
if (fJustCheck)
return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() || (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS)
{
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos pos;
if (!FindUndoPos(state, pindex->nFile, pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40))
return error("ConnectBlock() : FindUndoPos failed");
if (!blockundo.WriteToDisk(pos, pindex->pprev->GetBlockHash()))
return state.Abort(_("Failed to write undo data"));
// update nUndoPos in block index
pindex->nUndoPos = pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->nStatus = (pindex->nStatus & ~BLOCK_VALID_MASK) | BLOCK_VALID_SCRIPTS;
CDiskBlockIndex blockindex(pindex);
if (!pblocktree->WriteBlockIndex(blockindex))
return state.Abort(_("Failed to write block index"));
}
if (fTxIndex)
if (!pblocktree->WriteTxIndex(vPos))
return state.Abort(_("Failed to write transaction index"));
// add this block to the view's block chain
assert(view.SetBestBlock(pindex));
// Watch for transactions paying to me
for (unsigned int i=0; i<vtx.size(); i++)
SyncWithWallets(GetTxHash(i), vtx[i], this, true);
return true;
}
bool SetBestChain(CValidationState &state, CBlockIndex* pindexNew)
{
// All modifications to the coin state will be done in this cache.
// Only when all have succeeded, we push it to pcoinsTip.
CCoinsViewCache view(*pcoinsTip, true);
// Find the fork (typically, there is none)
CBlockIndex* pfork = view.GetBestBlock();
CBlockIndex* plonger = pindexNew;
while (pfork && pfork != plonger)
{
while (plonger->nHeight > pfork->nHeight) {
plonger = plonger->pprev;
assert(plonger != NULL);
}
if (pfork == plonger)
break;
pfork = pfork->pprev;
assert(pfork != NULL);
}
// List of what to disconnect (typically nothing)
vector<CBlockIndex*> vDisconnect;
for (CBlockIndex* pindex = view.GetBestBlock(); pindex != pfork; pindex = pindex->pprev)
vDisconnect.push_back(pindex);
// List of what to connect (typically only pindexNew)
vector<CBlockIndex*> vConnect;
for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev)
vConnect.push_back(pindex);
reverse(vConnect.begin(), vConnect.end());
if (vDisconnect.size() > 0) {
printf("REORGANIZE: Disconnect %" PRIszu " blocks; %s..\n", vDisconnect.size(), pfork->GetBlockHash().ToString().c_str());
printf("REORGANIZE: Connect %" PRIszu " blocks; ..%s\n", vConnect.size(), pindexNew->GetBlockHash().ToString().c_str());
}
// Disconnect shorter branch
vector<CTransaction> vResurrect;
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) {
CBlock block;
if (!block.ReadFromDisk(pindex))
return state.Abort(_("Failed to read block"));
int64 nStart = GetTimeMicros();
if (!block.DisconnectBlock(state, pindex, view))
return error("SetBestBlock() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().c_str());
if (fBenchmark)
printf("- Disconnect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Queue memory transactions to resurrect.
// We only do this for blocks after the last checkpoint (reorganisation before that
// point should only happen with -reindex/-loadblock, or a misbehaving peer.
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!tx.IsCoinBase() && pindex->nHeight > Checkpoints::GetTotalBlocksEstimate())
vResurrect.push_back(tx);
}
// Connect longer branch
vector<CTransaction> vDelete;
BOOST_FOREACH(CBlockIndex *pindex, vConnect) {
CBlock block;
if (!block.ReadFromDisk(pindex))
return state.Abort(_("Failed to read block"));
int64 nStart = GetTimeMicros();
if (!block.ConnectBlock(state, pindex, view)) {
if (state.IsInvalid()) {
InvalidChainFound(pindexNew);
InvalidBlockFound(pindex);
}
return error("SetBestBlock() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().c_str());
}
if (fBenchmark)
printf("- Connect: %.2fms\n", (GetTimeMicros() - nStart) * 0.001);
// Queue memory transactions to delete
BOOST_FOREACH(const CTransaction& tx, block.vtx)
vDelete.push_back(tx);
}
// Flush changes to global coin state
int64 nStart = GetTimeMicros();
int nModified = view.GetCacheSize();
assert(view.Flush());
int64 nTime = GetTimeMicros() - nStart;
if (fBenchmark)
printf("- Flush %i transactions: %.2fms (%.4fms/tx)\n", nModified, 0.001 * nTime, 0.001 * nTime / nModified);
// Make sure it's successfully written to disk before changing memory structure
bool fIsInitialDownload = IsInitialBlockDownload();
if (!fIsInitialDownload || pcoinsTip->GetCacheSize() > nCoinCacheSize) {
// Typical CCoins structures on disk are around 100 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(100 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error();
FlushBlockFile();
pblocktree->Sync();
if (!pcoinsTip->Flush())
return state.Abort(_("Failed to write to coin database"));
}
// At this point, all changes have been done to the database.
// Proceed by updating the memory structures.
// Disconnect shorter branch
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
if (pindex->pprev)
pindex->pprev->pnext = NULL;
// Connect longer branch
BOOST_FOREACH(CBlockIndex* pindex, vConnect)
if (pindex->pprev)
pindex->pprev->pnext = pindex;
// Resurrect memory transactions that were in the disconnected branch
BOOST_FOREACH(CTransaction& tx, vResurrect) {
// ignore validation errors in resurrected transactions
CValidationState stateDummy;
if (!tx.AcceptToMemoryPool(stateDummy, true, false))
mempool.remove(tx, true);
}
// Delete redundant memory transactions that are in the connected branch
BOOST_FOREACH(CTransaction& tx, vDelete) {
mempool.remove(tx);
mempool.removeConflicts(tx);
}
// Update best block in wallet (so we can detect restored wallets)
if ((pindexNew->nHeight % 20160) == 0 || (!fIsInitialDownload && (pindexNew->nHeight % 144) == 0))
{
const CBlockLocator locator(pindexNew);
::SetBestChain(locator);
}
// New best block
hashBestChain = pindexNew->GetBlockHash();
pindexBest = pindexNew;
pblockindexFBBHLast = NULL;
nBestHeight = pindexBest->nHeight;
nBestChainWork = pindexNew->nChainWork;
nTimeBestReceived = GetTime();
nTransactionsUpdated++;
printf("SetBestChain: new best=%s height=%d log2_work=%.8g tx=%lu date=%s progress=%f\n",
hashBestChain.ToString().c_str(), nBestHeight, log(nBestChainWork.getdouble())/log(2.0), (unsigned long)pindexNew->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str(),
Checkpoints::GuessVerificationProgress(pindexBest));
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexBest;
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
std::string strCmd = GetArg("-blocknotify", "");
if (!fIsInitialDownload && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", hashBestChain.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
bool CBlock::AddToBlockIndex(CValidationState &state, const CDiskBlockPos &pos)
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("AddToBlockIndex() : %s already exists", hash.ToString().c_str()));
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(*this);
assert(pindexNew);
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
pindexNew->nTx = vtx.size();
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + pindexNew->GetBlockWork().getuint256();
pindexNew->nChainTx = (pindexNew->pprev ? pindexNew->pprev->nChainTx : 0) + pindexNew->nTx;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus = BLOCK_VALID_TRANSACTIONS | BLOCK_HAVE_DATA;
setBlockIndexValid.insert(pindexNew);
if (!pblocktree->WriteBlockIndex(CDiskBlockIndex(pindexNew)))
return state.Abort(_("Failed to write block index"));
// New best?
if (!ConnectBestBlock(state))
return false;
if (pindexNew == pindexBest)
{
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = GetTxHash(0);
}
if (!pblocktree->Flush())
return state.Abort(_("Failed to sync block index"));
uiInterface.NotifyBlocksChanged();
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64 nTime, bool fKnown = false)
{
bool fUpdatedLast = false;
LOCK(cs_LastBlockFile);
if (fKnown) {
if (nLastBlockFile != pos.nFile) {
nLastBlockFile = pos.nFile;
infoLastBlockFile.SetNull();
pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile);
fUpdatedLast = true;
}
} else {
while (infoLastBlockFile.nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
printf("Leaving block file %i: %s\n", nLastBlockFile, infoLastBlockFile.ToString().c_str());
FlushBlockFile(true);
nLastBlockFile++;
infoLastBlockFile.SetNull();
pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile); // check whether data for the new file somehow already exist; can fail just fine
fUpdatedLast = true;
}
pos.nFile = nLastBlockFile;
pos.nPos = infoLastBlockFile.nSize;
}
infoLastBlockFile.nSize += nAddSize;
infoLastBlockFile.AddBlock(nHeight, nTime);
if (!fKnown) {
unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks = (infoLastBlockFile.nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
printf("Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error();
}
}
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return state.Abort(_("Failed to write file info"));
if (fUpdatedLast)
pblocktree->WriteLastBlockFile(nLastBlockFile);
return true;
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize)
{
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
if (nFile == nLastBlockFile) {
pos.nPos = infoLastBlockFile.nUndoSize;
nNewSize = (infoLastBlockFile.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nLastBlockFile, infoLastBlockFile))
return state.Abort(_("Failed to write block info"));
} else {
CBlockFileInfo info;
if (!pblocktree->ReadBlockFileInfo(nFile, info))
return state.Abort(_("Failed to read block info"));
pos.nPos = info.nUndoSize;
nNewSize = (info.nUndoSize += nAddSize);
if (!pblocktree->WriteBlockFileInfo(nFile, info))
return state.Abort(_("Failed to write block info"));
}
unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
printf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
}
else
return state.Error();
}
return true;
}
bool CBlock::CheckBlock(CValidationState &state, bool fCheckPOW, bool fCheckMerkleRoot) const
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
// Size limits
if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return state.DoS(100, error("CheckBlock() : size limits failed"));
// Litecoin: Special short-term limits to avoid 10,000 BDB lock limit:
if (GetBlockTime() < 1376568000) // stop enforcing 15 August 2013 00:00:00
{
// Rule is: #unique txids referenced <= 4,500
// ... to prevent 10,000 BDB lock exhaustion on old clients
set<uint256> setTxIn;
for (size_t i = 0; i < vtx.size(); i++)
{
setTxIn.insert(vtx[i].GetHash());
if (i == 0) continue; // skip coinbase txin
BOOST_FOREACH(const CTxIn& txin, vtx[i].vin)
setTxIn.insert(txin.prevout.hash);
}
size_t nTxids = setTxIn.size();
if (nTxids > 4500)
return error("CheckBlock() : 15 August maxlocks violation");
}
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(GetHash(), nBits))
return state.DoS(50, error("CheckBlock() : proof of work failed"));
// Check timestamp
if (GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60)
return state.Invalid(error("CheckBlock() : block timestamp too far in the future"));
// First transaction must be coinbase, the rest must not be
if (vtx.empty() || !vtx[0].IsCoinBase())
return state.DoS(100, error("CheckBlock() : first tx is not coinbase"));
for (unsigned int i = 1; i < vtx.size(); i++)
if (vtx[i].IsCoinBase())
return state.DoS(100, error("CheckBlock() : more than one coinbase"));
// Check transactions
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.CheckTransaction(state))
return error("CheckBlock() : CheckTransaction failed");
// Build the merkle tree already. We need it anyway later, and it makes the
// block cache the transaction hashes, which means they don't need to be
// recalculated many times during this block's validation.
BuildMerkleTree();
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
set<uint256> uniqueTx;
for (unsigned int i=0; i<vtx.size(); i++) {
uniqueTx.insert(GetTxHash(i));
}
if (uniqueTx.size() != vtx.size())
return state.DoS(100, error("CheckBlock() : duplicate transaction"), true);
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
nSigOps += tx.GetLegacySigOpCount();
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return state.DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"));
// Check merkle root
if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree())
return state.DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"));
return true;
}
bool CBlock::AcceptBlock(CValidationState &state, CDiskBlockPos *dbp)
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("AcceptBlock() : block already in mapBlockIndex"));
// Get prev block index
CBlockIndex* pindexPrev = NULL;
int nHeight = 0;
if (hash != hashGenesisBlock) {
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("AcceptBlock() : prev block not found"));
pindexPrev = (*mi).second;
nHeight = pindexPrev->nHeight+1;
// Check proof of work
if (nBits != GetNextWorkRequired(pindexPrev, this))
return state.DoS(100, error("AcceptBlock() : incorrect proof of work"));
// Check timestamp against prev
if (GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(error("AcceptBlock() : block's timestamp is too early"));
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.IsFinal(nHeight, GetBlockTime()))
return state.DoS(10, error("AcceptBlock() : contains a non-final transaction"));
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckBlock(nHeight, hash))
return state.DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight));
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(100, error("AcceptBlock() : forked chain older than last checkpoint (height %d)", nHeight));
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
if (nVersion < 2)
{
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100)))
{
return state.Invalid(error("AcceptBlock() : rejected nVersion=1 block"));
}
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
if (nVersion >= 2)
{
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100)))
{
CScript expect = CScript() << nHeight;
if (vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin()))
return state.DoS(100, error("AcceptBlock() : block height mismatch in coinbase"));
}
}
}
// Write block to history file
try {
unsigned int nBlockSize = ::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != NULL)
blockPos = *dbp;
if (!FindBlockPos(state, blockPos, nBlockSize+8, nHeight, nTime, dbp != NULL))
return error("AcceptBlock() : FindBlockPos failed");
if (dbp == NULL)
if (!WriteToDisk(blockPos))
return state.Abort(_("Failed to write block"));
if (!AddToBlockIndex(state, blockPos))
return error("AcceptBlock() : AddToBlockIndex failed");
} catch(std::runtime_error &e) {
return state.Abort(_("System error: ") + e.what());
}
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (hashBestChain == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
return true;
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
// Litecoin: temporarily disable v2 block lockin until we are ready for v2 transition
return false;
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool ProcessBlock(CValidationState &state, CNode* pfrom, CBlock* pblock, CDiskBlockPos *dbp)
{
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return state.Invalid(error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().c_str()));
if (mapOrphanBlocks.count(hash))
return state.Invalid(error("ProcessBlock() : already have block (orphan) %s", hash.ToString().c_str()));
// Preliminary checks
if (!pblock->CheckBlock(state))
return error("ProcessBlock() : CheckBlock FAILED");
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && pblock->hashPrevBlock != hashBestChain)
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
int64 deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
if (deltaTime < 0)
{
return state.DoS(100, error("ProcessBlock() : block with timestamp before last checkpoint"));
}
/*CBigNum bnNewBlock;
bnNewBlock.SetCompact(pblock->nBits);
CBigNum bnRequired;
bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime));
if (bnNewBlock > bnRequired)
{
return state.DoS(100, error("ProcessBlock() : block with too little proof-of-work"));
}*/
}
// If we don't already have its previous block, shunt it off to holding area until we get it
if (pblock->hashPrevBlock != 0 && !mapBlockIndex.count(pblock->hashPrevBlock))
{
printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().c_str());
// Accept orphans as long as there is a node to request its parents from
if (pfrom) {
CBlock* pblock2 = new CBlock(*pblock);
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2));
// Ask this guy to fill in what we're missing
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2));
}
return true;
}
// Store to disk
if (!pblock->AcceptBlock(state, dbp))
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, CBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock* pblockOrphan = (*mi).second;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan resolution (that is, feeding people an invalid block based on LegitBlockX in order to get anyone relaying LegitBlockX banned)
CValidationState stateDummy;
if (pblockOrphan->AcceptBlock(stateDummy))
vWorkQueue.push_back(pblockOrphan->GetHash());
mapOrphanBlocks.erase(pblockOrphan->GetHash());
delete pblockOrphan;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
printf("ProcessBlock: ACCEPTED\n");
return true;
}
CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter)
{
header = block.GetBlockHeader();
vector<bool> vMatch;
vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
uint256 hash = block.vtx[i].GetHash();
if (filter.IsRelevantAndUpdate(block.vtx[i], hash))
{
vMatch.push_back(true);
vMatchedTxn.push_back(make_pair(i, hash));
}
else
vMatch.push_back(false);
vHashes.push_back(hash);
}
txn = CPartialMerkleTree(vHashes, vMatch);
}
uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
if (height == 0) {
// hash at height 0 is the txids themself
return vTxid[pos];
} else {
// calculate left hash
uint256 left = CalcHash(height-1, pos*2, vTxid), right;
// calculate right hash if not beyong the end of the array - copy left hash otherwise1
if (pos*2+1 < CalcTreeWidth(height-1))
right = CalcHash(height-1, pos*2+1, vTxid);
else
right = left;
// combine subhashes
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
// determine whether this node is the parent of at least one matched txid
bool fParentOfMatch = false;
for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
fParentOfMatch |= vMatch[p];
// store as flag bit
vBits.push_back(fParentOfMatch);
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, store hash and stop
vHash.push_back(CalcHash(height, pos, vTxid));
} else {
// otherwise, don't store any hash, but descend into the subtrees
TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
if (pos*2+1 < CalcTreeWidth(height-1))
TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
}
}
uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch) {
if (nBitsUsed >= vBits.size()) {
// overflowed the bits array - failure
fBad = true;
return 0;
}
bool fParentOfMatch = vBits[nBitsUsed++];
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, use stored hash and do not descend
if (nHashUsed >= vHash.size()) {
// overflowed the hash array - failure
fBad = true;
return 0;
}
const uint256 &hash = vHash[nHashUsed++];
if (height==0 && fParentOfMatch) // in case of height 0, we have a matched txid
vMatch.push_back(hash);
return hash;
} else {
// otherwise, descend into the subtrees to extract matched txids and hashes
uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch), right;
if (pos*2+1 < CalcTreeWidth(height-1))
right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch);
else
right = left;
// and combine them before returning
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
// reset state
vBits.clear();
vHash.clear();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
}
CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch) {
vMatch.clear();
// An empty set will not work
if (nTransactions == 0)
return 0;
// check for excessively high numbers of transactions
if (nTransactions > MAX_BLOCK_SIZE / 60) // 60 is the lower bound for the size of a serialized CTransaction
return 0;
// there can never be more hashes provided than one for every txid
if (vHash.size() > nTransactions)
return 0;
// there must be at least one bit per node in the partial tree, and at least one node per hash
if (vBits.size() < vHash.size())
return 0;
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
unsigned int nBitsUsed = 0, nHashUsed = 0;
uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch);
// verify that no problems occured during the tree traversal
if (fBad)
return 0;
// verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
return 0;
// verify that all hashes were consumed
if (nHashUsed != vHash.size())
return 0;
return hashMerkleRoot;
}
bool AbortNode(const std::string &strMessage) {
strMiscWarning = strMessage;
printf("*** %s\n", strMessage.c_str());
uiInterface.ThreadSafeMessageBox(strMessage, "", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool CheckDiskSpace(uint64 nAdditionalBytes)
{
uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode(_("Error: Disk space is low!"));
return true;
}
CCriticalSection cs_LastBlockFile;
CBlockFileInfo infoLastBlockFile;
int nLastBlockFile = 0;
FILE* OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly)
{
if (pos.IsNull())
return NULL;
boost::filesystem::path path = GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
boost::filesystem::create_directories(path.parent_path());
FILE* file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly)
file = fopen(path.string().c_str(), "wb+");
if (!file) {
printf("Unable to open file %s\n", path.string().c_str());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
printf("Unable to seek to position %u of %s\n", pos.nPos, path.string().c_str());
fclose(file);
return NULL;
}
}
return file;
}
FILE* OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE* OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
CBlockIndex * InsertBlockIndex(uint256 hash)
{
if (hash == 0)
return NULL;
// Return existing
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
if (!pindexNew)
throw runtime_error("LoadBlockIndex() : new CBlockIndex failed");
mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB()
{
if (!pblocktree->LoadBlockIndexGuts())
return false;
boost::this_thread::interruption_point();
// Calculate nChainWork
vector<pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
BOOST_FOREACH(const PAIRTYPE(uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
BOOST_FOREACH(const PAIRTYPE(int, CBlockIndex*)& item, vSortedByHeight)
{
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + pindex->GetBlockWork().getuint256();
pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS && !(pindex->nStatus & BLOCK_FAILED_MASK))
setBlockIndexValid.insert(pindex);
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
printf("LoadBlockIndexDB(): last block file = %i\n", nLastBlockFile);
if (pblocktree->ReadBlockFileInfo(nLastBlockFile, infoLastBlockFile))
printf("LoadBlockIndexDB(): last block file info: %s\n", infoLastBlockFile.ToString().c_str());
// Load nBestInvalidWork, OK if it doesn't exist
CBigNum bnBestInvalidWork;
pblocktree->ReadBestInvalidWork(bnBestInvalidWork);
nBestInvalidWork = bnBestInvalidWork.getuint256();
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
printf("LoadBlockIndexDB(): transaction index %s\n", fTxIndex ? "enabled" : "disabled");
// Load hashBestChain pointer to end of best chain
pindexBest = pcoinsTip->GetBestBlock();
if (pindexBest == NULL)
return true;
hashBestChain = pindexBest->GetBlockHash();
nBestHeight = pindexBest->nHeight;
nBestChainWork = pindexBest->nChainWork;
// set 'next' pointers in best chain
CBlockIndex *pindex = pindexBest;
while(pindex != NULL && pindex->pprev != NULL) {
CBlockIndex *pindexPrev = pindex->pprev;
pindexPrev->pnext = pindex;
pindex = pindexPrev;
}
printf("LoadBlockIndexDB(): hashBestChain=%s height=%d date=%s\n",
hashBestChain.ToString().c_str(), nBestHeight,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexBest->GetBlockTime()).c_str());
return true;
}
bool VerifyDB(int nCheckLevel, int nCheckDepth)
{
if (pindexBest == NULL || pindexBest->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > nBestHeight)
nCheckDepth = nBestHeight;
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
printf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel);
CCoinsViewCache coins(*pcoinsTip, true);
CBlockIndex* pindexState = pindexBest;
CBlockIndex* pindexFailure = NULL;
int nGoodTransactions = 0;
CValidationState state;
for (CBlockIndex* pindex = pindexBest; pindex && pindex->pprev; pindex = pindex->pprev)
{
boost::this_thread::interruption_point();
if (pindex->nHeight < nBestHeight-nCheckDepth)
break;
CBlock block;
// check level 0: read from disk
if (!block.ReadFromDisk(pindex))
return error("VerifyDB() : *** block.ReadFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
// check level 1: verify block validity
if (nCheckLevel >= 1 && !block.CheckBlock(state))
return error("VerifyDB() : *** found bad block at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
if (!undo.ReadFromDisk(pos, pindex->pprev->GetBlockHash()))
return error("VerifyDB() : *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
}
}
// check level 3: check for inconsistencies during memory-only disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState && (coins.GetCacheSize() + pcoinsTip->GetCacheSize()) <= 2*nCoinCacheSize + 32000) {
bool fClean = true;
if (!block.DisconnectBlock(state, pindex, coins, &fClean))
return error("VerifyDB() : *** irrecoverable inconsistency in block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
}
if (pindexFailure)
return error("VerifyDB() : *** coin database inconsistencies found (last %i blocks, %i good transactions before that)\n", pindexBest->nHeight - pindexFailure->nHeight + 1, nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != pindexBest) {
boost::this_thread::interruption_point();
pindex = pindex->pnext;
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("VerifyDB() : *** block.ReadFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
if (!block.ConnectBlock(state, pindex, coins))
return error("VerifyDB() : *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
}
}
printf("No coin database inconsistencies in last %i blocks (%i transactions)\n", pindexBest->nHeight - pindexState->nHeight, nGoodTransactions);
return true;
}
void UnloadBlockIndex()
{
mapBlockIndex.clear();
setBlockIndexValid.clear();
pindexGenesisBlock = NULL;
nBestHeight = 0;
nBestChainWork = 0;
nBestInvalidWork = 0;
hashBestChain = 0;
pindexBest = NULL;
}
bool LoadBlockIndex()
{
if (fTestNet)
{
pchMessageStart[0] = 0xfa;
pchMessageStart[1] = 0xc4;
pchMessageStart[2] = 0xa7;
pchMessageStart[3] = 0x4b;
hashGenesisBlock = uint256("0x66d320494074f837363642a0c848ead1dbbbc9f7b854f8cda1f3eabbf08eb48c");
}
//
// Load block index from databases
//
if (!fReindex && !LoadBlockIndexDB())
return false;
return true;
}
bool InitBlockIndex() {
// Check whether we're already initialized
if (pindexGenesisBlock != NULL)
return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", false);
pblocktree->WriteFlag("txindex", fTxIndex);
printf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the one already on disk)
if (!fReindex) {
// Genesis block
const char* pszTimestamp = "02/Apr/2017: GOST R 34.11-2012 - orignal";
CTransaction txNew;
txNew.vin.resize(1);
txNew.vout.resize(1);
txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(4) << vector<unsigned char>((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp));
txNew.vout[0].nValue = 0;
txNew.vout[0].scriptPubKey = CScript() << 0x0 << OP_CHECKSIG;
CBlock block;
block.vtx.push_back(txNew);
block.hashPrevBlock = 0;
block.hashMerkleRoot = block.BuildMerkleTree();
block.nVersion = 1;
block.nTime = 1491156549;
block.nBits = 0x1e0ffff0;
/*CBigNum n;
n.SetHex ("0000ffff00000000000000000000000000000000000000000000000000000000"); // 4
block.nBits = n.GetCompact ();
printf("nbits %x\n", block.nBits);*/
block.nNonce = 517725659;
if (fTestNet)
{
block.nTime = 1373625296;
block.nNonce = 346280655;
}
// temporary code for finding nonce for genesis, should be removed later one
/*uint256 hashTarget = CBigNum().SetCompact(block.nBits).getuint256();
printf("hash target %s\n", hashTarget.ToString().c_str());
while(true)
{
auto thash = block.GetHash();
if (thash <= hashTarget)
break;
if ((block.nNonce & 0xFFF) == 0)
{
printf("nonce %08X: hash = %s (target = %s)\n", block.nNonce, thash.ToString().c_str(), hashTarget.ToString().c_str());
}
++block.nNonce;
if (block.nNonce == 0)
{
printf("NONCE WRAPPED, incrementing time\n");
++block.nTime;
}
}
printf("block.nTime = %u \n", block.nTime);
printf("block.nNonce = %u \n", block.nNonce); */
/////////////////////////////////////////////////////////////
//// debug print
uint256 hash = block.GetHash();
printf("hash %s\n", hash.ToString().c_str());
printf("hashGenesisBlock %s\n", hashGenesisBlock.ToString().c_str());
printf("block.hashMerkleRoot %s\n", block.hashMerkleRoot.ToString().c_str());
assert(block.hashMerkleRoot == uint256("0x1cf1e5211650ba5218b5b869c48c4bc480c4fd1bc849fdc1a81d68547b9f4d58"));
block.print();
assert(hash == hashGenesisBlock);
// Start new block file
try {
unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
if (!FindBlockPos(state, blockPos, nBlockSize+8, 0, block.nTime))
return error("LoadBlockIndex() : FindBlockPos failed");
if (!block.WriteToDisk(blockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!block.AddToBlockIndex(state, blockPos))
return error("LoadBlockIndex() : genesis block not accepted");
} catch(std::runtime_error &e) {
return error("LoadBlockIndex() : failed to initialize block database: %s", e.what());
}
}
return true;
}
void PrintBlockTree()
{
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, pindexGenesisBlock));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
printf("| ");
printf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
printf("| ");
printf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
printf("| ");
// print item
CBlock block;
block.ReadFromDisk(pindex);
printf("%d (blk%05u.dat:0x%x) %s tx %" PRIszu "",
pindex->nHeight,
pindex->GetBlockPos().nFile, pindex->GetBlockPos().nPos,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", block.GetBlockTime()).c_str(),
block.vtx.size());
PrintWallets(block);
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (vNext[i]->pnext)
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn, CDiskBlockPos *dbp)
{
int64 nStart = GetTimeMillis();
int nLoaded = 0;
try {
CBufferedFile blkdat(fileIn, 2*MAX_BLOCK_SIZE, MAX_BLOCK_SIZE+8, SER_DISK, CLIENT_VERSION);
uint64 nStartByte = 0;
if (dbp) {
// (try to) skip already indexed part
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(dbp->nFile, info)) {
nStartByte = info.nSize;
blkdat.Seek(info.nSize);
}
}
uint64 nRewind = blkdat.GetPos();
while (blkdat.good() && !blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
nRewind++; // start one byte further next time, in case of failure
blkdat.SetLimit(); // remove former limit
unsigned int nSize = 0;
try {
// locate a header
unsigned char buf[4];
blkdat.FindByte(pchMessageStart[0]);
nRewind = blkdat.GetPos()+1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, pchMessageStart, 4))
continue;
// read size
blkdat >> nSize;
if (nSize < 80 || nSize > MAX_BLOCK_SIZE)
continue;
} catch (std::exception &e) {
// no valid block header found; don't complain
break;
}
try {
// read block
uint64 nBlockPos = blkdat.GetPos();
blkdat.SetLimit(nBlockPos + nSize);
CBlock block;
blkdat >> block;
nRewind = blkdat.GetPos();
// process block
if (nBlockPos >= nStartByte) {
LOCK(cs_main);
if (dbp)
dbp->nPos = nBlockPos;
CValidationState state;
if (ProcessBlock(state, NULL, &block, dbp))
nLoaded++;
if (state.IsError())
break;
}
} catch (std::exception &e) {
printf("%s() : Deserialize or I/O error caught during load\n", __PRETTY_FUNCTION__);
}
}
fclose(fileIn);
} catch(std::runtime_error &e) {
AbortNode(_("Error: system error: ") + e.what());
}
if (nLoaded > 0)
printf("Loaded %i blocks from external file in %" PRI64d "ms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
extern map<uint256, CAlert> mapAlerts;
extern CCriticalSection cs_mapAlerts;
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode"))
strRPC = "test";
if (!CLIENT_VERSION_IS_RELEASE)
strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
// Longer invalid proof-of-work chain
if (pindexBest && nBestInvalidWork > nBestChainWork + (pindexBest->GetBlockWork() * 6).getuint256())
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
{
LOCK(mempool.cs);
txInMap = mempool.exists(inv.hash);
}
return txInMap || mapOrphanTransactions.count(inv.hash) ||
pcoinsTip->HaveCoins(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
// The message start string is designed to be unlikely to occur in normal data.
// The characters are rarely used upper ASCII, not valid as UTF-8, and produce
// a large 4-byte int at any alignment.
unsigned char pchMessageStart[4] = { 0xfa, 0xca, 0xba, 0xda };
void static ProcessGetData(CNode* pfrom)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
vector<CInv> vNotFound;
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// Don't waste work on slow peers until they catch up on the blocks we
// give them. 80 bytes is just the size of a block header - obviously
// the minimum we might return.
if (pfrom->nBlocksRequested * 80 > pfrom->nSendBytes)
break;
const CInv &inv = *it;
{
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
{
bool send = true;
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
pfrom->nBlocksRequested++;
if (mi != mapBlockIndex.end())
{
// If the requested block is at a height below our last
// checkpoint, only serve it if it's in the checkpointed chain
int nHeight = ((*mi).second)->nHeight;
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && nHeight < pcheckpoint->nHeight) {
if (!((*mi).second)->IsInMainChain())
{
printf("ProcessGetData(): ignoring request for old block that isn't in the main chain\n");
send = false;
}
}
} else {
send = false;
}
if (send)
{
// Send block from disk
CBlock block;
block.ReadFromDisk((*mi).second);
if (inv.type == MSG_BLOCK)
pfrom->PushMessage("block", block);
else // MSG_FILTERED_BLOCK)
{
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
{
CMerkleBlock merkleBlock(block, *pfrom->pfilter);
pfrom->PushMessage("merkleblock", merkleBlock);
// CMerkleBlock just contains hashes, so also push any transactions in the block the client did not see
// This avoids hurting performance by pointlessly requiring a round-trip
// Note that there is currently no way for a node to request any single transactions we didnt send here -
// they must either disconnect and retry or request the full block.
// Thus, the protocol spec specified allows for us to provide duplicate txn here,
// however we MUST always provide at least what the remote peer needs
typedef std::pair<unsigned int, uint256> PairType;
BOOST_FOREACH(PairType& pair, merkleBlock.vMatchedTxn)
if (!pfrom->setInventoryKnown.count(CInv(MSG_TX, pair.second)))
pfrom->PushMessage("tx", block.vtx[pair.first]);
}
// else
// no response
}
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, hashBestChain));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
LOCK(mempool.cs);
if (mempool.exists(inv.hash)) {
CTransaction tx = mempool.lookup(inv.hash);
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
pushed = true;
}
}
if (!pushed) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
Inventory(inv.hash);
if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom->PushMessage("notfound", vNotFound);
}
}
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
{
RandAddSeedPerfmon();
if (fDebug)
printf("received: %s (%" PRIszu " bytes)\n", strCommand.c_str(), vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
printf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->Misbehaving(1);
return false;
}
int64 nTime;
CAddress addrMe;
CAddress addrFrom;
uint64 nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion);
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty())
vRecv >> pfrom->strSubVer;
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (!vRecv.empty())
vRecv >> pfrom->fRelayTxes; // set to true after we get the first filter* message
else
pfrom->fRelayTxes = true;
if (pfrom->fInbound && addrMe.IsRoutable())
{
pfrom->addrLocal = addrMe;
SeenLocal(addrMe);
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str());
pfrom->fDisconnect = true;
return true;
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
AddTimeData(pfrom->addr, nTime);
// Change version
pfrom->PushMessage("verack");
pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (pfrom->nServices & NODE_I2P)
pfrom->SetSendStreamType(pfrom->GetSendStreamType() & ~SER_IPADDRONLY);
else
pfrom->SetSendStreamType(pfrom->GetSendStreamType() & SER_IPADDRONLY);
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
pfrom->PushAddress(addr);
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
printf("receive version message: %s: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->strSubVer.c_str(), pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str());
cPeerBlockCounts.input(pfrom->nStartingHeight);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
pfrom->Misbehaving(1);
return false;
}
else if (strCommand == "verack")
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (pfrom->nServices & NODE_I2P)
pfrom->SetRecvStreamType(pfrom->GetRecvStreamType() & ~SER_IPADDRONLY);
else
pfrom->SetRecvStreamType(pfrom->GetRecvStreamType() & SER_IPADDRONLY);
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
pfrom->Misbehaving(20);
return error("message addr size() = %" PRIszu "", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64 nNow = GetAdjustedTime();
int64 nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
boost::this_thread::interruption_point();
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64 hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message inv size() = %" PRIszu "", vInv.size());
}
// find last block in inv vector
unsigned int nLastBlock = (unsigned int)(-1);
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) {
if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) {
nLastBlock = vInv.size() - 1 - nInv;
break;
}
}
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
boost::this_thread::interruption_point();
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(inv);
if (fDebug)
printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave) {
if (!fImporting && !fReindex)
pfrom->AskFor(inv);
} else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash]));
} else if (nInv == nLastBlock) {
// In case we are on a very long side-chain, it is possible that we already have
// the last block in an inv bundle sent in response to getblocks. Try to detect
// this situation and push another getblocks to continue.
pfrom->PushGetBlocks(mapBlockIndex[inv.hash], uint256(0));
if (fDebug)
printf("force request: %s\n", inv.ToString().c_str());
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message getdata size() = %" PRIszu "", vInv.size());
}
if (fDebugNet || (vInv.size() != 1))
printf("received getdata (%" PRIszu " invsz)\n", vInv.size());
if ((fDebugNet && vInv.size() > 0) || (vInv.size() == 1))
printf("received getdata for: %s\n", vInv[0].ToString().c_str());
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom);
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
// Find the last block the caller has in the main chain
CBlockIndex* pindex = locator.GetBlockIndex();
// Send the rest of the chain
if (pindex)
pindex = pindex->pnext;
int nLimit = 500;
printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().c_str(), nLimit);
for (; pindex; pindex = pindex->pnext)
{
if (pindex->GetBlockHash() == hashStop)
{
printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().c_str());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = locator.GetBlockIndex();
if (pindex)
pindex = pindex->pnext;
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx count at the end
vector<CBlock> vHeaders;
int nLimit = 2000;
printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().c_str());
for (; pindex; pindex = pindex->pnext)
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CDataStream vMsg(vRecv);
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
bool fMissingInputs = false;
CValidationState state;
if (tx.AcceptToMemoryPool(state, true, true, &fMissingInputs))
{
RelayTransaction(tx, inv.hash);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
printf("AcceptToMemoryPool: %s %s : accepted %s (poolsz %" PRIszu ")\n",
pfrom->addr.ToString().c_str(), pfrom->strSubVer.c_str(),
tx.GetHash().ToString().c_str(),
mempool.mapTx.size());
// Recursively process any orphan transactions that depended on this one
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (set<uint256>::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin();
mi != mapOrphanTransactionsByPrev[hashPrev].end();
++mi)
{
const uint256& orphanHash = *mi;
const CTransaction& orphanTx = mapOrphanTransactions[orphanHash];
bool fMissingInputs2 = false;
// Use a dummy CValidationState so someone can't setup nodes to counter-DoS based on orphan
// resolution (that is, feeding people an invalid transaction based on LegitTxX in order to get
// anyone relaying LegitTxX banned)
CValidationState stateDummy;
if (tx.AcceptToMemoryPool(stateDummy, true, true, &fMissingInputs2))
{
printf(" accepted orphan tx %s\n", orphanHash.ToString().c_str());
RelayTransaction(orphanTx, orphanHash);
mapAlreadyAskedFor.erase(CInv(MSG_TX, orphanHash));
vWorkQueue.push_back(orphanHash);
vEraseQueue.push_back(orphanHash);
}
else if (!fMissingInputs2)
{
// invalid or too-little-fee orphan
vEraseQueue.push_back(orphanHash);
printf(" removed orphan tx %s\n", orphanHash.ToString().c_str());
}
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx);
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS);
if (nEvicted > 0)
printf("mapOrphan overflow, removed %u tx\n", nEvicted);
}
int nDoS = 0;
if (state.IsInvalid(nDoS))
{
printf("%s from %s %s was not accepted into the memory pool\n", tx.GetHash().ToString().c_str(),
pfrom->addr.ToString().c_str(), pfrom->strSubVer.c_str());
if (nDoS > 0)
pfrom->Misbehaving(nDoS);
}
}
else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
printf("received block %s\n", block.GetHash().ToString().c_str());
// block.print();
CInv inv(MSG_BLOCK, block.GetHash());
pfrom->AddInventoryKnown(inv);
CValidationState state;
if (ProcessBlock(state, pfrom, &block) || state.CorruptionPossible())
mapAlreadyAskedFor.erase(inv);
int nDoS = 0;
if (state.IsInvalid(nDoS))
if (nDoS > 0)
pfrom->Misbehaving(nDoS);
}
else if (strCommand == "getaddr")
{
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
std::vector<uint256> vtxid;
LOCK2(mempool.cs, pfrom->cs_filter);
mempool.queryHashes(vtxid);
vector<CInv> vInv;
BOOST_FOREACH(uint256& hash, vtxid) {
CInv inv(MSG_TX, hash);
if ((pfrom->pfilter && pfrom->pfilter->IsRelevantAndUpdate(mempool.lookup(hash), hash)) ||
(!pfrom->pfilter))
vInv.push_back(inv);
if (vInv.size() == MAX_INV_SZ)
break;
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64 nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
pfrom->Misbehaving(10);
}
}
}
else if (!fBloomFilters &&
(strCommand == "filterload" ||
strCommand == "filteradd" ||
strCommand == "filterclear"))
{
pfrom->CloseSocketDisconnect();
return error("peer %s attempted to set a bloom filter even though we do not advertise that service",
pfrom->addr.ToString().c_str());
}
else if (strCommand == "filterload")
{
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints())
// There is no excuse for sending a too-large filter
pfrom->Misbehaving(100);
else
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter(filter);
pfrom->pfilter->UpdateEmptyFull();
}
pfrom->fRelayTxes = true;
}
else if (strCommand == "filteradd")
{
vector<unsigned char> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a script data object,
// and thus, the maximum size any matched object can have) in a filteradd message
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE)
{
pfrom->Misbehaving(100);
} else {
LOCK(pfrom->cs_filter);
if (pfrom->pfilter)
pfrom->pfilter->insert(vData);
else
pfrom->Misbehaving(100);
}
}
else if (strCommand == "filterclear")
{
LOCK(pfrom->cs_filter);
delete pfrom->pfilter;
pfrom->pfilter = new CBloomFilter();
pfrom->fRelayTxes = true;
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
// requires LOCK(cs_vRecvMsg)
bool ProcessMessages(CNode* pfrom)
{
//if (fDebug)
// printf("ProcessMessages(%zu messages)\n", pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom);
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// printf("ProcessMessages(message %u msgsz, %zu bytes, complete:%s)\n",
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, pchMessageStart, sizeof(pchMessageStart)) != 0) {
printf("\n\nPROCESSMESSAGE: INVALID MESSAGESTART\n\n");
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid())
{
printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Process message
bool fRet = false;
try
{
{
LOCK(cs_main);
fRet = ProcessMessage(pfrom, strCommand, vRecv);
}
boost::this_thread::interruption_point();
}
catch (std::ios_base::failure& e)
{
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (boost::thread_interrupted) {
throw;
}
catch (std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
TRY_LOCK(cs_main, lockMain);
if (lockMain) {
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
// Keep-alive ping. We send a nonce of zero because we don't use it anywhere
// right now.
if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSendMsg.empty()) {
uint64 nonce = 0;
if (pto->nVersion > BIP0031_VERSION)
pto->PushMessage("ping", nonce);
else
pto->PushMessage("ping");
}
// Start block sync
if (pto->fStartSync && !fImporting && !fReindex) {
pto->fStartSync = false;
pto->PushGetBlocks(pindexBest, uint256(0));
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
ResendWalletTransactions();
}
// Address refresh broadcast
static int64 nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
if (!fNoListen)
{
CAddress addr = GetLocalAddress(&pnode->addr);
if (addr.IsRoutable())
pnode->PushAddress(addr);
}
}
}
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
// always trickle our own transactions
if (!fTrickleWait)
{
CWalletTx wtx;
if (GetTransaction(inv.hash, wtx))
if (wtx.fFromMe)
fTrickleWait = true;
}
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
//
// Message: getdata
//
vector<CInv> vGetData;
int64 nNow = GetTime() * 1000000;
while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(inv))
{
if (fDebugNet)
printf("sending getdata: %s\n", inv.ToString().c_str());
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
//
// LitecoinMiner
//
int static FormatHashBlocks(void* pbuffer, unsigned int len)
{
unsigned char* pdata = (unsigned char*)pbuffer;
unsigned int blocks = 1 + ((len + 8) / 64);
unsigned char* pend = pdata + 64 * blocks;
memset(pdata + len, 0, 64 * blocks - len);
pdata[len] = 0x80;
unsigned int bits = len * 8;
pend[-1] = (bits >> 0) & 0xff;
pend[-2] = (bits >> 8) & 0xff;
pend[-3] = (bits >> 16) & 0xff;
pend[-4] = (bits >> 24) & 0xff;
return blocks;
}
// Some explaining would be appreciated
class COrphan
{
public:
CTransaction* ptx;
set<uint256> setDependsOn;
double dPriority;
double dFeePerKb;
COrphan(CTransaction* ptxIn)
{
ptx = ptxIn;
dPriority = dFeePerKb = 0;
}
void print() const
{
printf("COrphan(hash=%s, dPriority=%.1f, dFeePerKb=%.1f)\n",
ptx->GetHash().ToString().c_str(), dPriority, dFeePerKb);
BOOST_FOREACH(uint256 hash, setDependsOn)
printf(" setDependsOn %s\n", hash.ToString().c_str());
}
};
uint64 nLastBlockTx = 0;
uint64 nLastBlockSize = 0;
// We want to sort transactions by priority and fee, so:
typedef boost::tuple<double, double, CTransaction*> TxPriority;
class TxPriorityCompare
{
bool byFee;
public:
TxPriorityCompare(bool _byFee) : byFee(_byFee) { }
bool operator()(const TxPriority& a, const TxPriority& b)
{
if (byFee)
{
if (a.get<1>() == b.get<1>())
return a.get<0>() < b.get<0>();
return a.get<1>() < b.get<1>();
}
else
{
if (a.get<0>() == b.get<0>())
return a.get<1>() < b.get<1>();
return a.get<0>() < b.get<0>();
}
}
};
CBlockTemplate* CreateNewBlock(const CScript& scriptPubKeyIn)
{
// Create new block
auto_ptr<CBlockTemplate> pblocktemplate(new CBlockTemplate());
if(!pblocktemplate.get())
return NULL;
CBlock *pblock = &pblocktemplate->block; // pointer for convenience
// Create coinbase tx
CTransaction txNew;
txNew.vin.resize(1);
txNew.vin[0].prevout.SetNull();
txNew.vout.resize(1);
txNew.vout[0].scriptPubKey = scriptPubKeyIn;
// Add our coinbase tx as first transaction
pblock->vtx.push_back(txNew);
pblocktemplate->vTxFees.push_back(-1); // updated at end
pblocktemplate->vTxSigOps.push_back(-1); // updated at end
// Largest block you're willing to create:
unsigned int nBlockMaxSize = GetArg("-blockmaxsize", MAX_BLOCK_SIZE_GEN/4);
// Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity:
nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize));
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", 27000);
nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);
// Minimum block size you want to create; block will be filled with free transactions
// until there are no more or the block reaches this size:
unsigned int nBlockMinSize = GetArg("-blockminsize", 0);
nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize);
// Collect memory pool transactions into the block
int64 nFees = 0;
{
LOCK2(cs_main, mempool.cs);
CBlockIndex* pindexPrev = pindexBest;
CCoinsViewCache view(*pcoinsTip, true);
// Priority order to process transactions
list<COrphan> vOrphan; // list memory doesn't move
map<uint256, vector<COrphan*> > mapDependers;
bool fPrintPriority = GetBoolArg("-printpriority");
// This vector will be sorted into a priority queue:
vector<TxPriority> vecPriority;
vecPriority.reserve(mempool.mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi)
{
CTransaction& tx = (*mi).second;
if (tx.IsCoinBase() || !tx.IsFinal())
continue;
COrphan* porphan = NULL;
double dPriority = 0;
int64 nTotalIn = 0;
bool fMissingInputs = false;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Read prev transaction
if (!view.HaveCoins(txin.prevout.hash))
{
// This should never happen; all transactions in the memory
// pool should connect to either transactions in the chain
// or other transactions in the memory pool.
if (!mempool.mapTx.count(txin.prevout.hash))
{
printf("ERROR: mempool transaction missing input\n");
if (fDebug) assert("mempool transaction missing input" == 0);
fMissingInputs = true;
if (porphan)
vOrphan.pop_back();
break;
}
// Has to wait for dependencies
if (!porphan)
{
// Use list for automatic deletion
vOrphan.push_back(COrphan(&tx));
porphan = &vOrphan.back();
}
mapDependers[txin.prevout.hash].push_back(porphan);
porphan->setDependsOn.insert(txin.prevout.hash);
nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue;
continue;
}
const CCoins &coins = view.GetCoins(txin.prevout.hash);
int64 nValueIn = coins.vout[txin.prevout.n].nValue;
nTotalIn += nValueIn;
int nConf = pindexPrev->nHeight - coins.nHeight + 1;
dPriority += (double)nValueIn * nConf;
}
if (fMissingInputs) continue;
// Priority is sum(valuein * age) / txsize
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
dPriority /= nTxSize;
// This is a more accurate fee-per-kilobyte than is used by the client code, because the
// client code rounds up the size to the nearest 1K. That's good, because it gives an
// incentive to create smaller transactions.
double dFeePerKb = double(nTotalIn-tx.GetValueOut()) / (double(nTxSize)/1000.0);
if (porphan)
{
porphan->dPriority = dPriority;
porphan->dFeePerKb = dFeePerKb;
}
else
vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second));
}
// Collect transactions into block
uint64 nBlockSize = 1000;
uint64 nBlockTx = 0;
int nBlockSigOps = 100;
bool fSortedByFee = (nBlockPrioritySize <= 0);
TxPriorityCompare comparer(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
while (!vecPriority.empty())
{
// Take highest priority transaction off the priority queue:
double dPriority = vecPriority.front().get<0>();
double dFeePerKb = vecPriority.front().get<1>();
CTransaction& tx = *(vecPriority.front().get<2>());
std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer);
vecPriority.pop_back();
// Size limits
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
if (nBlockSize + nTxSize >= nBlockMaxSize)
continue;
// Legacy limits on sigOps:
unsigned int nTxSigOps = tx.GetLegacySigOpCount();
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
// Skip free transactions if we're past the minimum block size:
if (fSortedByFee && (dFeePerKb < CTransaction::nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize))
continue;
// Prioritize by fee once past the priority size or we run out of high-priority
// transactions:
if (!fSortedByFee &&
((nBlockSize + nTxSize >= nBlockPrioritySize) || (dPriority < COIN * 420 / 250)))
{
fSortedByFee = true;
comparer = TxPriorityCompare(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
if (!tx.HaveInputs(view))
continue;
int64 nTxFees = tx.GetValueIn(view)-tx.GetValueOut();
nTxSigOps += tx.GetP2SHSigOpCount(view);
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
CValidationState state;
if (!tx.CheckInputs(state, view, true, SCRIPT_VERIFY_P2SH))
continue;
CTxUndo txundo;
uint256 hash = tx.GetHash();
tx.UpdateCoins(state, view, txundo, pindexPrev->nHeight+1, hash);
// Added
pblock->vtx.push_back(tx);
pblocktemplate->vTxFees.push_back(nTxFees);
pblocktemplate->vTxSigOps.push_back(nTxSigOps);
nBlockSize += nTxSize;
++nBlockTx;
nBlockSigOps += nTxSigOps;
nFees += nTxFees;
if (fPrintPriority)
{
printf("priority %.1f feeperkb %.1f txid %s\n",
dPriority, dFeePerKb, tx.GetHash().ToString().c_str());
}
// Add transactions that depend on this one to the priority queue
if (mapDependers.count(hash))
{
BOOST_FOREACH(COrphan* porphan, mapDependers[hash])
{
if (!porphan->setDependsOn.empty())
{
porphan->setDependsOn.erase(hash);
if (porphan->setDependsOn.empty())
{
vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx));
std::push_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
}
}
}
}
nLastBlockTx = nBlockTx;
nLastBlockSize = nBlockSize;
printf("CreateNewBlock(): total size %" PRI64u "\n", nBlockSize);
pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees);
pblocktemplate->vTxFees[0] = -nFees;
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
pblock->UpdateTime(pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock);
pblock->nNonce = 0;
pblock->vtx[0].vin[0].scriptSig = CScript() << OP_0 << OP_0;
pblocktemplate->vTxSigOps[0] = pblock->vtx[0].GetLegacySigOpCount();
CBlockIndex indexDummy(*pblock);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
CCoinsViewCache viewNew(*pcoinsTip, true);
CValidationState state;
if (!pblock->ConnectBlock(state, &indexDummy, viewNew, true))
throw std::runtime_error("CreateNewBlock() : ConnectBlock failed");
}
return pblocktemplate.release();
}
CBlockTemplate* CreateNewBlockWithKey(CReserveKey& reservekey)
{
CPubKey pubkey;
if (!reservekey.GetReservedKey(pubkey))
return NULL;
CScript scriptPubKey = CScript() << pubkey << OP_CHECKSIG;
return CreateNewBlock(scriptPubKey);
}
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS;
assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100);
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
}
void FormatHashBuffers(CBlock* pblock, char* pdata, char* phash1)
{
//
// Pre-build hash buffers
//
struct
{
struct unnamed2
{
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
}
block;
unsigned char pchPadding0[64];
uint256 hash1;
unsigned char pchPadding1[64];
}
tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.block.nVersion = pblock->nVersion;
tmp.block.hashPrevBlock = pblock->hashPrevBlock;
tmp.block.hashMerkleRoot = pblock->hashMerkleRoot;
tmp.block.nTime = pblock->nTime;
tmp.block.nBits = pblock->nBits;
tmp.block.nNonce = pblock->nNonce;
FormatHashBlocks(&tmp.block, sizeof(tmp.block));
FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1));
// Byte swap all the input buffer
for (unsigned int i = 0; i < sizeof(tmp)/4; i++)
((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]);
memcpy(pdata, &tmp.block, 128);
memcpy(phash1, &tmp.hash1, 64);
}
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey)
{
uint256 hash = pblock->GetHash();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
if (hash > hashTarget)
return false;
//// debug print
printf("AnoncoinMiner:\n");
printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str());
pblock->print();
printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str());
// Found a solution
{
LOCK(cs_main);
if (pblock->hashPrevBlock != hashBestChain)
return error("AnoncoinMiner : generated block is stale");
// Remove key from key pool
reservekey.KeepKey();
// Track how many getdata requests this block gets
{
LOCK(wallet.cs_wallet);
wallet.mapRequestCount[pblock->GetHash()] = 0;
}
// Process this block the same as if we had received it from another node
CValidationState state;
if (!ProcessBlock(state, NULL, pblock))
return error("AnoncoinMiner : ProcessBlock, block not accepted");
}
return true;
}
void static GostcoinMiner(CWallet *pwallet)
{
printf("GostcoinMiner started\n");
SetThreadPriority(THREAD_PRIORITY_LOWEST);
RenameThread("gostcoin-miner");
// Each thread has its own key and counter
CReserveKey reservekey(pwallet);
unsigned int nExtraNonce = 0;
try
{
loop
{
while (vNodes.empty())
MilliSleep(1000);
//
// Create new block
//
unsigned int nTransactionsUpdatedLast = nTransactionsUpdated;
CBlockIndex* pindexPrev = pindexBest;
auto_ptr<CBlockTemplate> pblocktemplate(CreateNewBlockWithKey(reservekey));
if (!pblocktemplate.get())
return;
CBlock *pblock = &pblocktemplate->block;
RAND_bytes ((uint8_t *)&pblock->nNonce, 4);
IncrementExtraNonce(pblock, pindexPrev, nExtraNonce);
printf("Running GostcoinMiner with %" PRIszu " transactions in block (%u bytes)\n", pblock->vtx.size(),
::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION));
//
// Solve
//
int64 nStart = GetTime();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
loop
{
unsigned int nHashesDone = 0;
loop
{
if (pblock->GetHash() <= hashTarget)
{
// Found a solution
SetThreadPriority(THREAD_PRIORITY_NORMAL);
CheckWork(pblock, *pwallet, reservekey);
SetThreadPriority(THREAD_PRIORITY_LOWEST);
break;
}
pblock->nNonce += 1;
nHashesDone += 1;
if ((pblock->nNonce & 0xFF) == 0)
break;
}
// Meter hashes/sec
static int64 nHashCounter;
if (nHPSTimerStart == 0)
{
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
}
else
nHashCounter += nHashesDone;
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
static CCriticalSection cs;
{
LOCK(cs);
if (GetTimeMillis() - nHPSTimerStart > 4000)
{
dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart);
nHPSTimerStart = GetTimeMillis();
nHashCounter = 0;
static int64 nLogTime;
if (GetTime() - nLogTime > 30 * 60)
{
nLogTime = GetTime();
printf("hashmeter %6.0f khash/s\n", dHashesPerSec/1000.0);
}
}
}
}
// Check for stop or if block needs to be rebuilt
boost::this_thread::interruption_point();
if (vNodes.empty())
break;
if (pblock->nNonce >= 0xffff0000)
break;
if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60)
break;
if (pindexPrev != pindexBest)
break;
// Update nTime every few seconds
pblock->UpdateTime(pindexPrev);
}
}
}
catch (boost::thread_interrupted)
{
printf("GostcoinMiner terminated\n");
throw;
}
}
void GenerateBitcoins(bool fGenerate, CWallet* pwallet)
{
static boost::thread_group* minerThreads = NULL;
int nThreads = GetArg("-genproclimit", 1);
/* if (nThreads < 0)
nThreads = boost::thread::hardware_concurrency();*/
if (minerThreads != NULL)
{
minerThreads->interrupt_all();
delete minerThreads;
minerThreads = NULL;
}
if (nThreads == 0 || !fGenerate)
return;
minerThreads = new boost::thread_group();
for (int i = 0; i < nThreads; i++)
minerThreads->create_thread(boost::bind(&GostcoinMiner, pwallet));
}
// Amount compression:
// * If the amount is 0, output 0
// * first, divide the amount (in base units) by the largest power of 10 possible; call the exponent e (e is max 9)
// * if e<9, the last digit of the resulting number cannot be 0; store it as d, and drop it (divide by 10)
// * call the result n
// * output 1 + 10*(9*n + d - 1) + e
// * if e==9, we only know the resulting number is not zero, so output 1 + 10*(n - 1) + 9
// (this is decodable, as d is in [1-9] and e is in [0-9])
uint64 CTxOutCompressor::CompressAmount(uint64 n)
{
if (n == 0)
return 0;
int e = 0;
while (((n % 10) == 0) && e < 9) {
n /= 10;
e++;
}
if (e < 9) {
int d = (n % 10);
assert(d >= 1 && d <= 9);
n /= 10;
return 1 + (n*9 + d - 1)*10 + e;
} else {
return 1 + (n - 1)*10 + 9;
}
}
uint64 CTxOutCompressor::DecompressAmount(uint64 x)
{
// x = 0 OR x = 1+10*(9*n + d - 1) + e OR x = 1+10*(n - 1) + 9
if (x == 0)
return 0;
x--;
// x = 10*(9*n + d - 1) + e
int e = x % 10;
x /= 10;
uint64 n = 0;
if (e < 9) {
// x = 9*n + d - 1
int d = (x % 9) + 1;
x /= 9;
// x = n
n = x*10 + d;
} else {
n = x+1;
}
while (e) {
n *= 10;
e--;
}
return n;
}
class CMainCleanup
{
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
std::map<uint256, CBlockIndex*>::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
// orphan blocks
std::map<uint256, CBlock*>::iterator it2 = mapOrphanBlocks.begin();
for (; it2 != mapOrphanBlocks.end(); it2++)
delete (*it2).second;
mapOrphanBlocks.clear();
// orphan transactions
mapOrphanTransactions.clear();
}
} instance_of_cmaincleanup;