Browse Source

excluded scrypt

pull/5/head
orignal 8 years ago
parent
commit
1e65b09756
  1. 9
      src/main.cpp
  2. 4
      src/main.h
  3. 323
      src/scrypt.cpp
  4. 35
      src/scrypt.h
  5. 2
      unioncoin-qt.pro

9
src/main.cpp

@ -4754,7 +4754,8 @@ void static LitecoinMiner(CWallet *pwallet) @@ -4754,7 +4754,8 @@ void static LitecoinMiner(CWallet *pwallet)
unsigned int nHashesDone = 0;
uint256 thash;
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
// TODO:
//char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
loop
{
#if defined(USE_SSE2)
@ -4762,14 +4763,14 @@ void static LitecoinMiner(CWallet *pwallet) @@ -4762,14 +4763,14 @@ void static LitecoinMiner(CWallet *pwallet)
// it is faster to use directly than to use a function pointer or conditional.
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
// Always SSE2: x86_64 or Intel MacOS X
scrypt_1024_1_1_256_sp_sse2(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
// scrypt_1024_1_1_256_sp_sse2(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
#else
// Detect SSE2: 32bit x86 Linux or Windows
scrypt_1024_1_1_256_sp(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
//scrypt_1024_1_1_256_sp(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
#endif
#else
// Generic scrypt
scrypt_1024_1_1_256_sp_generic(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
//scrypt_1024_1_1_256_sp_generic(BEGIN(pblock->nVersion), BEGIN(thash), scratchpad);
#endif
if (thash <= hashTarget)

4
src/main.h

@ -9,7 +9,6 @@ @@ -9,7 +9,6 @@
#include "sync.h"
#include "net.h"
#include "script.h"
#include "scrypt.h"
#include <list>
@ -1362,7 +1361,8 @@ public: @@ -1362,7 +1361,8 @@ public:
uint256 GetPoWHash() const
{
uint256 thash;
scrypt_1024_1_1_256(BEGIN(nVersion), BEGIN(thash));
// TODO:
// scrypt_1024_1_1_256(BEGIN(nVersion), BEGIN(thash));
return thash;
}

323
src/scrypt.cpp

@ -1,323 +0,0 @@ @@ -1,323 +0,0 @@
/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "scrypt.h"
#include "util.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <openssl/sha.h>
static inline uint32_t be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void be32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/* Initialize an HMAC-SHA256 operation with the given key. */
static void
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char *K = (const unsigned char *)_K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
static void
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
static void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
int i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad)
{
uint8_t B[128];
uint32_t X[32];
uint32_t *V;
uint32_t i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128);
for (k = 0; k < 32; k++)
X[k] = le32dec(&B[4 * k]);
for (i = 0; i < 1024; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (i = 0; i < 1024; i++) {
j = 32 * (X[16] & 1023);
for (k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (k = 0; k < 32; k++)
le32enc(&B[4 * k], X[k]);
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32);
}
#if defined(USE_SSE2)
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
/* Always SSE2 */
void scrypt_detect_sse2(unsigned int cpuid_edx)
{
printf("scrypt: using scrypt-sse2 as built.\n");
}
#else
/* Detect SSE2 */
void (*scrypt_1024_1_1_256_sp)(const char *input, char *output, char *scratchpad);
void scrypt_detect_sse2(unsigned int cpuid_edx)
{
if (cpuid_edx & 1<<26)
{
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_sse2;
printf("scrypt: using scrypt-sse2 as detected.\n");
}
else
{
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_generic;
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n");
}
}
#endif
#endif
void scrypt_1024_1_1_256(const char *input, char *output)
{
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
#if defined(USE_SSE2)
// Detection would work, but in cases where we KNOW it always has SSE2,
// it is faster to use directly than to use a function pointer or conditional.
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
// Always SSE2: x86_64 or Intel MacOS X
scrypt_1024_1_1_256_sp_sse2(input, output, scratchpad);
#else
// Detect SSE2: 32bit x86 Linux or Windows
scrypt_1024_1_1_256_sp(input, output, scratchpad);
#endif
#else
// Generic scrypt
scrypt_1024_1_1_256_sp_generic(input, output, scratchpad);
#endif
}

35
src/scrypt.h

@ -1,35 +0,0 @@ @@ -1,35 +0,0 @@
#ifndef SCRYPT_H
#define SCRYPT_H
#include <stdlib.h>
#include <stdint.h>
static const int SCRYPT_SCRATCHPAD_SIZE = 131072 + 63;
void scrypt_1024_1_1_256(const char *input, char *output);
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad);
#if defined(USE_SSE2)
extern void scrypt_detect_sse2(unsigned int cpuid_edx);
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad);
extern void (*scrypt_1024_1_1_256_sp)(const char *input, char *output, char *scratchpad);
#endif
void
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen);
static inline uint32_t le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void le32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
#endif

2
unioncoin-qt.pro

@ -213,7 +213,6 @@ HEADERS += src/qt/bitcoingui.h \ @@ -213,7 +213,6 @@ HEADERS += src/qt/bitcoingui.h \
src/qt/rpcconsole.h \
src/irc.h \
src/i2p.h \
src/scrypt.h \
src/version.h \
src/netbase.h \
src/clientversion.h \
@ -294,7 +293,6 @@ SOURCES += src/qt/anoncoin.cpp \ @@ -294,7 +293,6 @@ SOURCES += src/qt/anoncoin.cpp \
src/qt/rpcconsole.cpp \
src/irc.cpp \
src/i2p.cpp \
src/scrypt.cpp \
src/noui.cpp \
src/leveldb.cpp \
src/txdb.cpp \

Loading…
Cancel
Save