mirror of https://github.com/GOSTSec/gostcoin
orignal
8 years ago
5 changed files with 7 additions and 366 deletions
@ -1,323 +0,0 @@
@@ -1,323 +0,0 @@
|
||||
/*
|
||||
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in the |
||||
* documentation and/or other materials provided with the distribution. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
* |
||||
* This file was originally written by Colin Percival as part of the Tarsnap |
||||
* online backup system. |
||||
*/ |
||||
|
||||
#include "scrypt.h" |
||||
#include "util.h" |
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
#include <openssl/sha.h> |
||||
|
||||
static inline uint32_t be32dec(const void *pp) |
||||
{ |
||||
const uint8_t *p = (uint8_t const *)pp; |
||||
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + |
||||
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); |
||||
} |
||||
|
||||
static inline void be32enc(void *pp, uint32_t x) |
||||
{ |
||||
uint8_t *p = (uint8_t *)pp; |
||||
p[3] = x & 0xff; |
||||
p[2] = (x >> 8) & 0xff; |
||||
p[1] = (x >> 16) & 0xff; |
||||
p[0] = (x >> 24) & 0xff; |
||||
} |
||||
|
||||
typedef struct HMAC_SHA256Context { |
||||
SHA256_CTX ictx; |
||||
SHA256_CTX octx; |
||||
} HMAC_SHA256_CTX; |
||||
|
||||
/* Initialize an HMAC-SHA256 operation with the given key. */ |
||||
static void |
||||
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen) |
||||
{ |
||||
unsigned char pad[64]; |
||||
unsigned char khash[32]; |
||||
const unsigned char *K = (const unsigned char *)_K; |
||||
size_t i; |
||||
|
||||
/* If Klen > 64, the key is really SHA256(K). */ |
||||
if (Klen > 64) { |
||||
SHA256_Init(&ctx->ictx); |
||||
SHA256_Update(&ctx->ictx, K, Klen); |
||||
SHA256_Final(khash, &ctx->ictx); |
||||
K = khash; |
||||
Klen = 32; |
||||
} |
||||
|
||||
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ |
||||
SHA256_Init(&ctx->ictx); |
||||
memset(pad, 0x36, 64); |
||||
for (i = 0; i < Klen; i++) |
||||
pad[i] ^= K[i]; |
||||
SHA256_Update(&ctx->ictx, pad, 64); |
||||
|
||||
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ |
||||
SHA256_Init(&ctx->octx); |
||||
memset(pad, 0x5c, 64); |
||||
for (i = 0; i < Klen; i++) |
||||
pad[i] ^= K[i]; |
||||
SHA256_Update(&ctx->octx, pad, 64); |
||||
|
||||
/* Clean the stack. */ |
||||
memset(khash, 0, 32); |
||||
} |
||||
|
||||
/* Add bytes to the HMAC-SHA256 operation. */ |
||||
static void |
||||
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len) |
||||
{ |
||||
/* Feed data to the inner SHA256 operation. */ |
||||
SHA256_Update(&ctx->ictx, in, len); |
||||
} |
||||
|
||||
/* Finish an HMAC-SHA256 operation. */ |
||||
static void |
||||
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx) |
||||
{ |
||||
unsigned char ihash[32]; |
||||
|
||||
/* Finish the inner SHA256 operation. */ |
||||
SHA256_Final(ihash, &ctx->ictx); |
||||
|
||||
/* Feed the inner hash to the outer SHA256 operation. */ |
||||
SHA256_Update(&ctx->octx, ihash, 32); |
||||
|
||||
/* Finish the outer SHA256 operation. */ |
||||
SHA256_Final(digest, &ctx->octx); |
||||
|
||||
/* Clean the stack. */ |
||||
memset(ihash, 0, 32); |
||||
} |
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): |
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and |
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). |
||||
*/ |
||||
void |
||||
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, |
||||
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen) |
||||
{ |
||||
HMAC_SHA256_CTX PShctx, hctx; |
||||
size_t i; |
||||
uint8_t ivec[4]; |
||||
uint8_t U[32]; |
||||
uint8_t T[32]; |
||||
uint64_t j; |
||||
int k; |
||||
size_t clen; |
||||
|
||||
/* Compute HMAC state after processing P and S. */ |
||||
HMAC_SHA256_Init(&PShctx, passwd, passwdlen); |
||||
HMAC_SHA256_Update(&PShctx, salt, saltlen); |
||||
|
||||
/* Iterate through the blocks. */ |
||||
for (i = 0; i * 32 < dkLen; i++) { |
||||
/* Generate INT(i + 1). */ |
||||
be32enc(ivec, (uint32_t)(i + 1)); |
||||
|
||||
/* Compute U_1 = PRF(P, S || INT(i)). */ |
||||
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); |
||||
HMAC_SHA256_Update(&hctx, ivec, 4); |
||||
HMAC_SHA256_Final(U, &hctx); |
||||
|
||||
/* T_i = U_1 ... */ |
||||
memcpy(T, U, 32); |
||||
|
||||
for (j = 2; j <= c; j++) { |
||||
/* Compute U_j. */ |
||||
HMAC_SHA256_Init(&hctx, passwd, passwdlen); |
||||
HMAC_SHA256_Update(&hctx, U, 32); |
||||
HMAC_SHA256_Final(U, &hctx); |
||||
|
||||
/* ... xor U_j ... */ |
||||
for (k = 0; k < 32; k++) |
||||
T[k] ^= U[k]; |
||||
} |
||||
|
||||
/* Copy as many bytes as necessary into buf. */ |
||||
clen = dkLen - i * 32; |
||||
if (clen > 32) |
||||
clen = 32; |
||||
memcpy(&buf[i * 32], T, clen); |
||||
} |
||||
|
||||
/* Clean PShctx, since we never called _Final on it. */ |
||||
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); |
||||
} |
||||
|
||||
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
||||
|
||||
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
||||
{ |
||||
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; |
||||
int i; |
||||
|
||||
x00 = (B[ 0] ^= Bx[ 0]); |
||||
x01 = (B[ 1] ^= Bx[ 1]); |
||||
x02 = (B[ 2] ^= Bx[ 2]); |
||||
x03 = (B[ 3] ^= Bx[ 3]); |
||||
x04 = (B[ 4] ^= Bx[ 4]); |
||||
x05 = (B[ 5] ^= Bx[ 5]); |
||||
x06 = (B[ 6] ^= Bx[ 6]); |
||||
x07 = (B[ 7] ^= Bx[ 7]); |
||||
x08 = (B[ 8] ^= Bx[ 8]); |
||||
x09 = (B[ 9] ^= Bx[ 9]); |
||||
x10 = (B[10] ^= Bx[10]); |
||||
x11 = (B[11] ^= Bx[11]); |
||||
x12 = (B[12] ^= Bx[12]); |
||||
x13 = (B[13] ^= Bx[13]); |
||||
x14 = (B[14] ^= Bx[14]); |
||||
x15 = (B[15] ^= Bx[15]); |
||||
for (i = 0; i < 8; i += 2) { |
||||
/* Operate on columns. */ |
||||
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); |
||||
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); |
||||
|
||||
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); |
||||
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); |
||||
|
||||
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); |
||||
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); |
||||
|
||||
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); |
||||
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); |
||||
|
||||
/* Operate on rows. */ |
||||
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); |
||||
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); |
||||
|
||||
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); |
||||
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); |
||||
|
||||
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); |
||||
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); |
||||
|
||||
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); |
||||
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); |
||||
} |
||||
B[ 0] += x00; |
||||
B[ 1] += x01; |
||||
B[ 2] += x02; |
||||
B[ 3] += x03; |
||||
B[ 4] += x04; |
||||
B[ 5] += x05; |
||||
B[ 6] += x06; |
||||
B[ 7] += x07; |
||||
B[ 8] += x08; |
||||
B[ 9] += x09; |
||||
B[10] += x10; |
||||
B[11] += x11; |
||||
B[12] += x12; |
||||
B[13] += x13; |
||||
B[14] += x14; |
||||
B[15] += x15; |
||||
} |
||||
|
||||
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad) |
||||
{ |
||||
uint8_t B[128]; |
||||
uint32_t X[32]; |
||||
uint32_t *V; |
||||
uint32_t i, j, k; |
||||
|
||||
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128); |
||||
|
||||
for (k = 0; k < 32; k++) |
||||
X[k] = le32dec(&B[4 * k]); |
||||
|
||||
for (i = 0; i < 1024; i++) { |
||||
memcpy(&V[i * 32], X, 128); |
||||
xor_salsa8(&X[0], &X[16]); |
||||
xor_salsa8(&X[16], &X[0]); |
||||
} |
||||
for (i = 0; i < 1024; i++) { |
||||
j = 32 * (X[16] & 1023); |
||||
for (k = 0; k < 32; k++) |
||||
X[k] ^= V[j + k]; |
||||
xor_salsa8(&X[0], &X[16]); |
||||
xor_salsa8(&X[16], &X[0]); |
||||
} |
||||
|
||||
for (k = 0; k < 32; k++) |
||||
le32enc(&B[4 * k], X[k]); |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32); |
||||
} |
||||
|
||||
#if defined(USE_SSE2) |
||||
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__)) |
||||
/* Always SSE2 */ |
||||
void scrypt_detect_sse2(unsigned int cpuid_edx) |
||||
{ |
||||
printf("scrypt: using scrypt-sse2 as built.\n"); |
||||
} |
||||
#else |
||||
/* Detect SSE2 */ |
||||
void (*scrypt_1024_1_1_256_sp)(const char *input, char *output, char *scratchpad); |
||||
|
||||
void scrypt_detect_sse2(unsigned int cpuid_edx) |
||||
{ |
||||
if (cpuid_edx & 1<<26) |
||||
{ |
||||
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_sse2; |
||||
printf("scrypt: using scrypt-sse2 as detected.\n"); |
||||
} |
||||
else |
||||
{ |
||||
scrypt_1024_1_1_256_sp = &scrypt_1024_1_1_256_sp_generic; |
||||
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n"); |
||||
} |
||||
} |
||||
#endif |
||||
#endif |
||||
|
||||
void scrypt_1024_1_1_256(const char *input, char *output) |
||||
{ |
||||
char scratchpad[SCRYPT_SCRATCHPAD_SIZE]; |
||||
#if defined(USE_SSE2) |
||||
// Detection would work, but in cases where we KNOW it always has SSE2,
|
||||
// it is faster to use directly than to use a function pointer or conditional.
|
||||
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__)) |
||||
// Always SSE2: x86_64 or Intel MacOS X
|
||||
scrypt_1024_1_1_256_sp_sse2(input, output, scratchpad); |
||||
#else |
||||
// Detect SSE2: 32bit x86 Linux or Windows
|
||||
scrypt_1024_1_1_256_sp(input, output, scratchpad); |
||||
#endif |
||||
#else |
||||
// Generic scrypt
|
||||
scrypt_1024_1_1_256_sp_generic(input, output, scratchpad); |
||||
#endif |
||||
} |
@ -1,35 +0,0 @@
@@ -1,35 +0,0 @@
|
||||
#ifndef SCRYPT_H |
||||
#define SCRYPT_H |
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
static const int SCRYPT_SCRATCHPAD_SIZE = 131072 + 63; |
||||
|
||||
void scrypt_1024_1_1_256(const char *input, char *output); |
||||
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad); |
||||
|
||||
#if defined(USE_SSE2) |
||||
extern void scrypt_detect_sse2(unsigned int cpuid_edx); |
||||
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad); |
||||
extern void (*scrypt_1024_1_1_256_sp)(const char *input, char *output, char *scratchpad); |
||||
#endif |
||||
|
||||
void |
||||
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, |
||||
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen); |
||||
|
||||
static inline uint32_t le32dec(const void *pp) |
||||
{ |
||||
const uint8_t *p = (uint8_t const *)pp; |
||||
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + |
||||
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); |
||||
} |
||||
|
||||
static inline void le32enc(void *pp, uint32_t x) |
||||
{ |
||||
uint8_t *p = (uint8_t *)pp; |
||||
p[0] = x & 0xff; |
||||
p[1] = (x >> 8) & 0xff; |
||||
p[2] = (x >> 16) & 0xff; |
||||
p[3] = (x >> 24) & 0xff; |
||||
} |
||||
#endif |
Loading…
Reference in new issue