Cryptocurrency with GOST R 34.11-2012 algo, GOST R 34.10-2012 signature
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
8.8 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ALLOCATORS_H
#define BITCOIN_ALLOCATORS_H
#include <string.h>
#include <string>
#include <boost/thread/mutex.hpp>
#include <map>
#include <openssl/crypto.h> // for OPENSSL_cleanse()
#ifdef WIN32
#ifdef _WIN32_WINNT
#undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN 1
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
// This is used to attempt to keep keying material out of swap
// Note that VirtualLock does not provide this as a guarantee on Windows,
// but, in practice, memory that has been VirtualLock'd almost never gets written to
// the pagefile except in rare circumstances where memory is extremely low.
#else
#include <sys/mman.h>
#include <limits.h> // for PAGESIZE
#include <unistd.h> // for sysconf
#endif
/**
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages.
*
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page.
*
* @note By using a map from each page base address to lock count, this class is optimized for
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations,
* something like an interval tree would be the preferred data structure.
*/
template <class Locker> class LockedPageManagerBase
{
public:
LockedPageManagerBase(size_t page_size):
page_size(page_size)
{
// Determine bitmask for extracting page from address
assert(!(page_size & (page_size-1))); // size must be power of two
page_mask = ~(page_size - 1);
}
// For all pages in affected range, increase lock count
void LockRange(void *p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if(!size) return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for(size_t page = start_page; page <= end_page; page += page_size)
{
Histogram::iterator it = histogram.find(page);
if(it == histogram.end()) // Newly locked page
{
locker.Lock(reinterpret_cast<void*>(page), page_size);
histogram.insert(std::make_pair(page, 1));
}
else // Page was already locked; increase counter
{
it->second += 1;
}
}
}
// For all pages in affected range, decrease lock count
void UnlockRange(void *p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if(!size) return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for(size_t page = start_page; page <= end_page; page += page_size)
{
Histogram::iterator it = histogram.find(page);
assert(it != histogram.end()); // Cannot unlock an area that was not locked
// Decrease counter for page, when it is zero, the page will be unlocked
it->second -= 1;
if(it->second == 0) // Nothing on the page anymore that keeps it locked
{
// Unlock page and remove the count from histogram
locker.Unlock(reinterpret_cast<void*>(page), page_size);
histogram.erase(it);
}
}
}
// Get number of locked pages for diagnostics
int GetLockedPageCount()
{
boost::mutex::scoped_lock lock(mutex);
return histogram.size();
}
private:
Locker locker;
boost::mutex mutex;
size_t page_size, page_mask;
// map of page base address to lock count
typedef std::map<size_t,int> Histogram;
Histogram histogram;
};
/** Determine system page size in bytes */
static inline size_t GetSystemPageSize()
{
size_t page_size;
#if defined(WIN32)
SYSTEM_INFO sSysInfo;
GetSystemInfo(&sSysInfo);
page_size = sSysInfo.dwPageSize;
#elif defined(PAGESIZE) // defined in limits.h
page_size = PAGESIZE;
#else // assume some POSIX OS
page_size = sysconf(_SC_PAGESIZE);
#endif
return page_size;
}
/**
* OS-dependent memory page locking/unlocking.
* Defined as policy class to make stubbing for test possible.
*/
class MemoryPageLocker
{
public:
/** Lock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Lock(const void *addr, size_t len)
{
#ifdef WIN32
return VirtualLock(const_cast<void*>(addr), len);
#else
return mlock(addr, len) == 0;
#endif
}
/** Unlock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Unlock(const void *addr, size_t len)
{
#ifdef WIN32
return VirtualUnlock(const_cast<void*>(addr), len);
#else
return munlock(addr, len) == 0;
#endif
}
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in
* std::allocator templates.
*/
class LockedPageManager: public LockedPageManagerBase<MemoryPageLocker>
{
public:
static LockedPageManager instance; // instantiated in util.cpp
private:
LockedPageManager():
LockedPageManagerBase<MemoryPageLocker>(GetSystemPageSize())
{}
};
//
// Functions for directly locking/unlocking memory objects.
// Intended for non-dynamically allocated structures.
//
template<typename T> void LockObject(const T &t) {
LockedPageManager::instance.LockRange((void*)(&t), sizeof(T));
}
template<typename T> void UnlockObject(const T &t) {
OPENSSL_cleanse((void*)(&t), sizeof(T));
LockedPageManager::instance.UnlockRange((void*)(&t), sizeof(T));
}
//
// Allocator that locks its contents from being paged
// out of memory and clears its contents before deletion.
//
template<typename T>
struct secure_allocator : public std::allocator<T>
{
// MSVC8 default copy constructor is broken
typedef std::allocator<T> base;
typedef typename base::size_type size_type;
typedef typename base::difference_type difference_type;
typedef typename base::pointer pointer;
typedef typename base::const_pointer const_pointer;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::value_type value_type;
secure_allocator() throw() {}
secure_allocator(const secure_allocator& a) throw() : base(a) {}
template <typename U>
secure_allocator(const secure_allocator<U>& a) throw() : base(a) {}
~secure_allocator() throw() {}
template<typename _Other> struct rebind
{ typedef secure_allocator<_Other> other; };
T* allocate(std::size_t n, const void *hint = 0)
{
T *p;
p = std::allocator<T>::allocate(n, hint);
if (p != NULL)
LockedPageManager::instance.LockRange(p, sizeof(T) * n);
return p;
}
void deallocate(T* p, std::size_t n)
{
if (p != NULL)
{
OPENSSL_cleanse(p, sizeof(T) * n);
LockedPageManager::instance.UnlockRange(p, sizeof(T) * n);
}
std::allocator<T>::deallocate(p, n);
}
};
//
// Allocator that clears its contents before deletion.
//
template<typename T>
struct zero_after_free_allocator : public std::allocator<T>
{
// MSVC8 default copy constructor is broken
typedef std::allocator<T> base;
typedef typename base::size_type size_type;
typedef typename base::difference_type difference_type;
typedef typename base::pointer pointer;
typedef typename base::const_pointer const_pointer;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::value_type value_type;
zero_after_free_allocator() throw() {}
zero_after_free_allocator(const zero_after_free_allocator& a) throw() : base(a) {}
template <typename U>
zero_after_free_allocator(const zero_after_free_allocator<U>& a) throw() : base(a) {}
~zero_after_free_allocator() throw() {}
template<typename _Other> struct rebind
{ typedef zero_after_free_allocator<_Other> other; };
void deallocate(T* p, std::size_t n)
{
if (p != NULL)
OPENSSL_cleanse(p, sizeof(T) * n);
std::allocator<T>::deallocate(p, n);
}
};
// This is exactly like std::string, but with a custom allocator.
typedef std::basic_string<char, std::char_traits<char>, secure_allocator<char> > SecureString;
#endif