/* $Id: sph_shavite.h 208 2010-06-02 20:33:00Z tp $ */ /** * SHAvite-3 interface. This code implements SHAvite-3 with the * recommended parameters for SHA-3, with outputs of 224, 256, 384 and * 512 bits. In the following, we call the function "SHAvite" (without * the "-3" suffix), thus "SHAvite-224" is "SHAvite-3 with a 224-bit * output". * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2007-2010 Projet RNRT SAPHIR * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @file sph_shavite.h * @author Thomas Pornin */ #ifndef SPH_SHAVITE_H__ #define SPH_SHAVITE_H__ #include #include "sph_types.h" #ifdef __cplusplus extern "C"{ #endif /** * Output size (in bits) for SHAvite-224. */ #define SPH_SIZE_shavite224 224 /** * Output size (in bits) for SHAvite-256. */ #define SPH_SIZE_shavite256 256 /** * Output size (in bits) for SHAvite-384. */ #define SPH_SIZE_shavite384 384 /** * Output size (in bits) for SHAvite-512. */ #define SPH_SIZE_shavite512 512 /** * This structure is a context for SHAvite-224 and SHAvite-256 computations: * it contains the intermediate values and some data from the last * entered block. Once a SHAvite computation has been performed, the * context can be reused for another computation. * * The contents of this structure are private. A running SHAvite * computation can be cloned by copying the context (e.g. with a simple * memcpy()). */ typedef struct { #ifndef DOXYGEN_IGNORE unsigned char buf[64]; /* first field, for alignment */ size_t ptr; sph_u32 h[8]; sph_u32 count0, count1; #endif } sph_shavite_small_context; /** * This structure is a context for SHAvite-224 computations. It is * identical to the common sph_shavite_small_context. */ typedef sph_shavite_small_context sph_shavite224_context; /** * This structure is a context for SHAvite-256 computations. It is * identical to the common sph_shavite_small_context. */ typedef sph_shavite_small_context sph_shavite256_context; /** * This structure is a context for SHAvite-384 and SHAvite-512 computations: * it contains the intermediate values and some data from the last * entered block. Once a SHAvite computation has been performed, the * context can be reused for another computation. * * The contents of this structure are private. A running SHAvite * computation can be cloned by copying the context (e.g. with a simple * memcpy()). */ typedef struct { #ifndef DOXYGEN_IGNORE unsigned char buf[128]; /* first field, for alignment */ size_t ptr; sph_u32 h[16]; sph_u32 count0, count1, count2, count3; #endif } sph_shavite_big_context; /** * This structure is a context for SHAvite-384 computations. It is * identical to the common sph_shavite_small_context. */ typedef sph_shavite_big_context sph_shavite384_context; /** * This structure is a context for SHAvite-512 computations. It is * identical to the common sph_shavite_small_context. */ typedef sph_shavite_big_context sph_shavite512_context; /** * Initialize a SHAvite-224 context. This process performs no memory allocation. * * @param cc the SHAvite-224 context (pointer to a * sph_shavite224_context) */ void sph_shavite224_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the SHAvite-224 context * @param data the input data * @param len the input data length (in bytes) */ void sph_shavite224(void *cc, const void *data, size_t len); /** * Terminate the current SHAvite-224 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (28 bytes). The context is automatically * reinitialized. * * @param cc the SHAvite-224 context * @param dst the destination buffer */ void sph_shavite224_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (28 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the SHAvite-224 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_shavite224_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a SHAvite-256 context. This process performs no memory allocation. * * @param cc the SHAvite-256 context (pointer to a * sph_shavite256_context) */ void sph_shavite256_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the SHAvite-256 context * @param data the input data * @param len the input data length (in bytes) */ void sph_shavite256(void *cc, const void *data, size_t len); /** * Terminate the current SHAvite-256 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (32 bytes). The context is automatically * reinitialized. * * @param cc the SHAvite-256 context * @param dst the destination buffer */ void sph_shavite256_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (32 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the SHAvite-256 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_shavite256_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a SHAvite-384 context. This process performs no memory allocation. * * @param cc the SHAvite-384 context (pointer to a * sph_shavite384_context) */ void sph_shavite384_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the SHAvite-384 context * @param data the input data * @param len the input data length (in bytes) */ void sph_shavite384(void *cc, const void *data, size_t len); /** * Terminate the current SHAvite-384 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (48 bytes). The context is automatically * reinitialized. * * @param cc the SHAvite-384 context * @param dst the destination buffer */ void sph_shavite384_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (48 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the SHAvite-384 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_shavite384_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a SHAvite-512 context. This process performs no memory allocation. * * @param cc the SHAvite-512 context (pointer to a * sph_shavite512_context) */ void sph_shavite512_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the SHAvite-512 context * @param data the input data * @param len the input data length (in bytes) */ void sph_shavite512(void *cc, const void *data, size_t len); /** * Terminate the current SHAvite-512 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (64 bytes). The context is automatically * reinitialized. * * @param cc the SHAvite-512 context * @param dst the destination buffer */ void sph_shavite512_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (64 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the SHAvite-512 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_shavite512_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); #ifdef __cplusplus } #endif #endif