/* $Id: sph_jh.h 216 2010-06-08 09:46:57Z tp $ */ /** * JH interface. JH is a family of functions which differ by * their output size; this implementation defines JH for output * sizes 224, 256, 384 and 512 bits. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2007-2010 Projet RNRT SAPHIR * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @file sph_jh.h * @author Thomas Pornin */ #ifndef SPH_JH_H__ #define SPH_JH_H__ #ifdef __cplusplus extern "C"{ #endif #include #include "sph_types.h" /** * Output size (in bits) for JH-224. */ #define SPH_SIZE_jh224 224 /** * Output size (in bits) for JH-256. */ #define SPH_SIZE_jh256 256 /** * Output size (in bits) for JH-384. */ #define SPH_SIZE_jh384 384 /** * Output size (in bits) for JH-512. */ #define SPH_SIZE_jh512 512 /** * This structure is a context for JH computations: it contains the * intermediate values and some data from the last entered block. Once * a JH computation has been performed, the context can be reused for * another computation. * * The contents of this structure are private. A running JH computation * can be cloned by copying the context (e.g. with a simple * memcpy()). */ typedef struct { #ifndef DOXYGEN_IGNORE unsigned char buf[64]; /* first field, for alignment */ size_t ptr; union { #if SPH_64 sph_u64 wide[16]; #endif sph_u32 narrow[32]; } H; #if SPH_64 sph_u64 block_count; #else sph_u32 block_count_high, block_count_low; #endif #endif } sph_jh_context; /** * Type for a JH-224 context (identical to the common context). */ typedef sph_jh_context sph_jh224_context; /** * Type for a JH-256 context (identical to the common context). */ typedef sph_jh_context sph_jh256_context; /** * Type for a JH-384 context (identical to the common context). */ typedef sph_jh_context sph_jh384_context; /** * Type for a JH-512 context (identical to the common context). */ typedef sph_jh_context sph_jh512_context; /** * Initialize a JH-224 context. This process performs no memory allocation. * * @param cc the JH-224 context (pointer to a * sph_jh224_context) */ void sph_jh224_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the JH-224 context * @param data the input data * @param len the input data length (in bytes) */ void sph_jh224(void *cc, const void *data, size_t len); /** * Terminate the current JH-224 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (28 bytes). The context is automatically * reinitialized. * * @param cc the JH-224 context * @param dst the destination buffer */ void sph_jh224_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (28 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the JH-224 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_jh224_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a JH-256 context. This process performs no memory allocation. * * @param cc the JH-256 context (pointer to a * sph_jh256_context) */ void sph_jh256_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the JH-256 context * @param data the input data * @param len the input data length (in bytes) */ void sph_jh256(void *cc, const void *data, size_t len); /** * Terminate the current JH-256 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (32 bytes). The context is automatically * reinitialized. * * @param cc the JH-256 context * @param dst the destination buffer */ void sph_jh256_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (32 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the JH-256 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_jh256_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a JH-384 context. This process performs no memory allocation. * * @param cc the JH-384 context (pointer to a * sph_jh384_context) */ void sph_jh384_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the JH-384 context * @param data the input data * @param len the input data length (in bytes) */ void sph_jh384(void *cc, const void *data, size_t len); /** * Terminate the current JH-384 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (48 bytes). The context is automatically * reinitialized. * * @param cc the JH-384 context * @param dst the destination buffer */ void sph_jh384_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (48 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the JH-384 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_jh384_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); /** * Initialize a JH-512 context. This process performs no memory allocation. * * @param cc the JH-512 context (pointer to a * sph_jh512_context) */ void sph_jh512_init(void *cc); /** * Process some data bytes. It is acceptable that len is zero * (in which case this function does nothing). * * @param cc the JH-512 context * @param data the input data * @param len the input data length (in bytes) */ void sph_jh512(void *cc, const void *data, size_t len); /** * Terminate the current JH-512 computation and output the result into * the provided buffer. The destination buffer must be wide enough to * accomodate the result (64 bytes). The context is automatically * reinitialized. * * @param cc the JH-512 context * @param dst the destination buffer */ void sph_jh512_close(void *cc, void *dst); /** * Add a few additional bits (0 to 7) to the current computation, then * terminate it and output the result in the provided buffer, which must * be wide enough to accomodate the result (64 bytes). If bit number i * in ub has value 2^i, then the extra bits are those * numbered 7 downto 8-n (this is the big-endian convention at the byte * level). The context is automatically reinitialized. * * @param cc the JH-512 context * @param ub the extra bits * @param n the number of extra bits (0 to 7) * @param dst the destination buffer */ void sph_jh512_addbits_and_close( void *cc, unsigned ub, unsigned n, void *dst); #ifdef __cplusplus } #endif #endif