GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

463 lines
13 KiB

// Auf Groestlcoin spezialisierte Version von Groestl
#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <memory.h>
#define USE_SHARED 1
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// Folgende Definitionen später durch header ersetzen
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
// globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
extern uint32_t *d_resultNonce[8];
// globaler Speicher für unsere Ergebnisse
uint32_t *d_hashGROESTLCOINoutput[8];
__constant__ uint32_t groestlcoin_gpu_state[32];
__constant__ uint32_t groestlcoin_gpu_msg[32];
__constant__ uint32_t sha256coin_gpu_constantTable[64];
__constant__ uint32_t sha256coin_gpu_register[8];
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define PC32up(j, r) ((uint32_t)((j) + (r)))
#define PC32dn(j, r) 0
#define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#define B32_0(x) ((x) & 0xFF)
#define B32_1(x) (((x) >> 8) & 0xFF)
#define B32_2(x) (((x) >> 16) & 0xFF)
#define B32_3(x) ((x) >> 24)
#define SPH_C32(x) ((uint32_t)(x ## U))
#define C32e(x) ((SPH_C32(x) >> 24) \
| ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \
| ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \
| ((SPH_C32(x) << 24) & SPH_C32(0xFF000000)))
#if USE_SHARED
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) (*((uint32_t*)mixtabs + (256+(x))))
#define T1up(x) (*((uint32_t*)mixtabs + (512+(x))))
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
#define T2up(x) (*((uint32_t*)mixtabs + (1024+(x))))
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
#define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x))))
#else
#define T0up(x) tex1Dfetch(t0up1, x)
#define T0dn(x) tex1Dfetch(t0dn1, x)
#define T1up(x) tex1Dfetch(t1up1, x)
#define T1dn(x) tex1Dfetch(t1dn1, x)
#define T2up(x) tex1Dfetch(t2up1, x)
#define T2dn(x) tex1Dfetch(t2dn1, x)
#define T3up(x) tex1Dfetch(t3up1, x)
#define T3dn(x) tex1Dfetch(t3dn1, x)
#endif
texture<unsigned int, 1, cudaReadModeElementType> t0up1;
texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
texture<unsigned int, 1, cudaReadModeElementType> t1up1;
texture<unsigned int, 1, cudaReadModeElementType> t1dn1;
texture<unsigned int, 1, cudaReadModeElementType> t2up1;
texture<unsigned int, 1, cudaReadModeElementType> t2dn1;
texture<unsigned int, 1, cudaReadModeElementType> t3up1;
texture<unsigned int, 1, cudaReadModeElementType> t3dn1;
extern uint32_t T0up_cpu[];
extern uint32_t T0dn_cpu[];
extern uint32_t T1up_cpu[];
extern uint32_t T1dn_cpu[];
extern uint32_t T2up_cpu[];
extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[];
extern uint32_t sha256_cpu_hashTable[];
extern uint32_t sha256_cpu_constantTable[];
#define S(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
__device__ void groestlcoin_perm_P(uint32_t *a, char *mixtabs)
{
uint32_t t[32];
//#pragma unroll 14
for(int r=0;r<14;r++)
{
#pragma unroll 16
for(int k=0;k<16;k++)
{
a[(k*2)+0] ^= PC32up(k * 0x10, r);
//a[(k<<1)+1] ^= PC32dn(k * 0x10, r);
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2)
{
t[k + 0] = T0up( B32_0(a[k & 0x1f]) ) ^
T1up( B32_1(a[(k + 2) & 0x1f]) ) ^
T2up( B32_2(a[(k + 4) & 0x1f]) ) ^
T3up( B32_3(a[(k + 6) & 0x1f]) ) ^
T0dn( B32_0(a[(k + 9) & 0x1f]) ) ^
T1dn( B32_1(a[(k + 11) & 0x1f]) ) ^
T2dn( B32_2(a[(k + 13) & 0x1f]) ) ^
T3dn( B32_3(a[(k + 23) & 0x1f]) );
t[k + 1] = T0dn( B32_0(a[k & 0x1f]) ) ^
T1dn( B32_1(a[(k + 2) & 0x1f]) ) ^
T2dn( B32_2(a[(k + 4) & 0x1f]) ) ^
T3dn( B32_3(a[(k + 6) & 0x1f]) ) ^
T0up( B32_0(a[(k + 9) & 0x1f]) ) ^
T1up( B32_1(a[(k + 11) & 0x1f]) ) ^
T2up( B32_2(a[(k + 13) & 0x1f]) ) ^
T3up( B32_3(a[(k + 23) & 0x1f]) );
}
#pragma unroll 32
for(int k=0;k<32;k++)
a[k] = t[k];
}
}
__device__ void groestlcoin_perm_Q(uint32_t *a, char *mixtabs)
{
//#pragma unroll 14
for(int r=0;r<14;r++)
{
uint32_t t[32];
#pragma unroll 16
for(int k=0;k<16;k++)
{
a[(k*2)+0] ^= QC32up(k * 0x10, r);
a[(k*2)+1] ^= QC32dn(k * 0x10, r);
}
// RBTT
#pragma unroll 16
for(int k=0;k<32;k+=2)
{
t[k + 0] = T0up( B32_0(a[(k + 2) & 0x1f]) ) ^
T1up( B32_1(a[(k + 6) & 0x1f]) ) ^
T2up( B32_2(a[(k + 10) & 0x1f]) ) ^
T3up( B32_3(a[(k + 22) & 0x1f]) ) ^
T0dn( B32_0(a[(k + 1) & 0x1f]) ) ^
T1dn( B32_1(a[(k + 5) & 0x1f]) ) ^
T2dn( B32_2(a[(k + 9) & 0x1f]) ) ^
T3dn( B32_3(a[(k + 13) & 0x1f]) );
t[k + 1] = T0dn( B32_0(a[(k + 2) & 0x1f]) ) ^
T1dn( B32_1(a[(k + 6) & 0x1f]) ) ^
T2dn( B32_2(a[(k + 10) & 0x1f]) ) ^
T3dn( B32_3(a[(k + 22) & 0x1f]) ) ^
T0up( B32_0(a[(k + 1) & 0x1f]) ) ^
T1up( B32_1(a[(k + 5) & 0x1f]) ) ^
T2up( B32_2(a[(k + 9) & 0x1f]) ) ^
T3up( B32_3(a[(k + 13) & 0x1f]) );
}
#pragma unroll 32
for(int k=0;k<32;k++)
a[k] = t[k];
}
}
#if USE_SHARED
__global__ void __launch_bounds__(256)
#else
__global__ void
#endif
groestlcoin_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *resNounce)
{
#if USE_SHARED
extern __shared__ char mixtabs[];
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
__syncthreads();
#endif
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
/////
///// Lieber groestl, mach, dass es abgeht!!!
/////
// GROESTL
uint32_t message[32];
uint32_t state[32];
// SHA
// jeder thread in diesem Block bekommt sein eigenes W Array im Shared memory
uint32_t g[32];
#pragma unroll 32
for(int k=0;k<32;k++)
{
state[k] = groestlcoin_gpu_state[k];
message[k] = groestlcoin_gpu_msg[k];
}
uint32_t nounce = startNounce + thread;
message[19] = SWAB32(nounce);
#pragma unroll 32
for(int u=0;u<32;u++)
g[u] = message[u] ^ state[u];
// Perm
#if USE_SHARED
groestlcoin_perm_P(g, mixtabs);
groestlcoin_perm_Q(message, mixtabs);
#else
groestlcoin_perm_P(g, NULL);
groestlcoin_perm_Q(message, NULL);
#endif
#pragma unroll 32
for(int u=0;u<32;u++)
{
state[u] ^= g[u] ^ message[u];
g[u] = state[u];
}
#if USE_SHARED
groestlcoin_perm_P(g, mixtabs);
#else
groestlcoin_perm_P(g, NULL);
#endif
#pragma unroll 32
for(int u=0;u<32;u++)
state[u] ^= g[u];
////
//// 2. Runde groestl
////
#pragma unroll 16
for(int k=0;k<16;k++)
message[k] = state[k + 16];
#pragma unroll 32
for(int k=0;k<32;k++)
state[k] = groestlcoin_gpu_state[k];
#pragma unroll 16
for(int k=0;k<16;k++)
message[k+16] = 0;
message[16] = 0x80;
message[31] = 0x01000000;
#pragma unroll 32
for(int u=0;u<32;u++)
g[u] = message[u] ^ state[u];
// Perm
#if USE_SHARED
groestlcoin_perm_P(g, mixtabs);
groestlcoin_perm_Q(message, mixtabs);
#else
groestlcoin_perm_P(g, NULL);
groestlcoin_perm_Q(message, NULL);
#endif
#pragma unroll 32
for(int u=0;u<32;u++)
{
state[u] ^= g[u] ^ message[u];
g[u] = state[u];
}
#if USE_SHARED
groestlcoin_perm_P(g, mixtabs);
#else
groestlcoin_perm_P(g, NULL);
#endif
#pragma unroll 32
for(int u=0;u<32;u++)
state[u] ^= g[u];
/*
#pragma unroll 8
for(int k=0;k<8;k++)
hash[k] = state[k+16];
*/
// kopiere Ergebnis
/*
#pragma unroll 16
for(int k=0;k<16;k++)
((uint32_t*)outputHash)[16*thread+k] = state[k + 16];
*/
int i;
bool rc = true;
for (i = 7; i >= 0; i--) {
if (state[i+16] > pTarget[i]) {
rc = false;
break;
}
if (state[i+16] < pTarget[i]) {
rc = true;
break;
}
}
if(rc == true)
{
if(resNounce[0] > nounce)
{
resNounce[0] = nounce;
/*
#pragma unroll 8
for(int k=0;k<8;k++)
((uint32_t*)outputHash)[k] = (hash[k]);
*/
}
}
}
}
#define texDef(texname, texmem, texsource, texsize) \
unsigned int *texmem; \
cudaMalloc(&texmem, texsize); \
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
texname.normalized = 0; \
texname.filterMode = cudaFilterModePoint; \
texname.addressMode[0] = cudaAddressModeClamp; \
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \
// Setup-Funktionen
__host__ void groestlcoin_cpu_init(int thr_id, int threads)
{
cudaSetDevice(thr_id);
cudaDeviceSetCacheConfig( cudaFuncCachePreferShared );
// Texturen mit obigem Makro initialisieren
texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
texDef(t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256);
texDef(t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256);
texDef(t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256);
texDef(t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256);
texDef(t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256);
texDef(t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256);
// Kopiere die Hash-Tabellen in den GPU-Speicher
cudaMemcpyToSymbol( sha256coin_gpu_constantTable,
sha256_cpu_constantTable,
sizeof(uint32_t) * 64 );
// Startvektor
cudaMemcpyToSymbol( sha256coin_gpu_register,
sha256_cpu_hashTable,
sizeof(uint32_t) * 8 );
// setze register
uint32_t groestl_state_init[32];
memset(groestl_state_init, 0, sizeof(uint32_t) * 32);
groestl_state_init[31] = 0x20000;
// state speichern
cudaMemcpyToSymbol( groestlcoin_gpu_state,
groestl_state_init,
128);
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
// Speicher für alle Ergebnisse belegen (nur für Debug)
cudaMalloc(&d_hashGROESTLCOINoutput[thr_id], 8 * sizeof(uint32_t) * threads);
}
__host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{
// Nachricht expandieren und setzen
uint32_t msgBlock[32];
memset(msgBlock, 0, sizeof(uint32_t) * 32);
memcpy(&msgBlock[0], data, 80);
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
// Unsere Nachricht hat 80 Byte
msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000;
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
// auf der GPU ausgeführt)
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
cudaMemcpyToSymbol( groestlcoin_gpu_msg,
msgBlock,
128);
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
cudaMemcpyToSymbol( pTarget,
pTargetIn,
sizeof(uint32_t) * 8 );
}
__host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
{
#if USE_SHARED
const int threadsperblock = 256; // Alignment mit mixtab Grösse. NICHT ÄNDERN
#else
const int threadsperblock = 512; // so einstellen wie gewünscht ;-)
#endif
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Größe des dynamischen Shared Memory Bereichs (abhängig von der Threadanzahl)
#if USE_SHARED
size_t shared_size = 8 * 256 * sizeof(uint32_t);
#else
size_t shared_size = 0;
#endif
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
//fprintf(stderr, "ThrID: %d\n", thr_id);
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
groestlcoin_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hashGROESTLCOINoutput[thr_id], d_resultNonce[thr_id]);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, 0, thr_id);
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
/// Debug
//cudaMemcpy(outputHashes, d_hashGROESTLCOINoutput[thr_id], 8 * sizeof(uint32_t) * threads, cudaMemcpyDeviceToHost);
// Nounce
//cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
}