GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

385 lines
18 KiB

#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
#undef SPH_ROTL32
#define SPH_ROTL32 ROTL32
static uint32_t *d_gnounce[MAX_GPUS];
static uint32_t *d_GNonce[MAX_GPUS];
__constant__ uint64_t pTarget[4];
#define shl(x, n) ((x) << (n))
#define shr(x, n) ((x) >> (n))
#define ss0(x) (shr((x), 1) ^ shl((x), 3) ^ SPH_ROTL32((x), 4) ^ SPH_ROTL32((x), 19))
#define ss1(x) (shr((x), 1) ^ shl((x), 2) ^ __byte_perm(x,0,0x2103) ^ SPH_ROTL32((x), 23))
#define ss2(x) (shr((x), 2) ^ shl((x), 1) ^ SPH_ROTL32((x), 12) ^ SPH_ROTL32((x), 25))
#define ss3(x) (shr((x), 2) ^ shl((x), 2) ^ SPH_ROTL32((x), 15) ^ SPH_ROTL32((x), 29))
#define ss4(x) (shr((x), 1) ^ (x))
#define ss5(x) (shr((x), 2) ^ (x))
#define rs1(x) SPH_ROTL32((x), 3)
#define rs2(x) SPH_ROTL32((x), 7)
#define rs3(x) SPH_ROTL32((x), 13)
#define rs4(x) __byte_perm(x,0,0x1032)
#define rs5(x) SPH_ROTL32((x), 19)
#define rs6(x) SPH_ROTL32((x), 23)
#define rs7(x) SPH_ROTL32((x), 27)
/* Message expansion function 1 */
__forceinline__ __device__ uint32_t expand32_1(int i, uint32_t *M32, const uint32_t *H, uint32_t *Q)
{
return (ss1(Q[i - 16]) + ss2(Q[i - 15]) + ss3(Q[i - 14]) + ss0(Q[i - 13])
+ ss1(Q[i - 12]) + ss2(Q[i - 11]) + ss3(Q[i - 10]) + ss0(Q[i - 9])
+ ss1(Q[i - 8]) + ss2(Q[i - 7]) + ss3(Q[i - 6]) + ss0(Q[i - 5])
+ ss1(Q[i - 4]) + ss2(Q[i - 3]) + ss3(Q[i - 2]) + ss0(Q[i - 1])
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
}
/* Message expansion function 2 */
__forceinline__ __device__ uint32_t expand32_2(const int i, uint32_t *M32, const uint32_t *H, uint32_t *Q)
{
return (
rs2(Q[i - 13]) + rs3(Q[i - 11]) + rs4(Q[i - 9]) + rs1(Q[i - 15]) +
+rs5(Q[i - 7]) + rs6(Q[i - 5]) + rs7(Q[i - 3]) + ss4(Q[i - 2]) + ss5(Q[i - 1]));
}
__forceinline__ __device__ void Compression256(uint32_t M32[16])
{
const uint32_t H[16] = {
(0x40414243), (0x44454647),
(0x48494A4B), (0x4C4D4E4F),
(0x50515253), (0x54555657),
(0x58595A5B), (0x5C5D5E5F),
(0x60616263), (0x64656667),
(0x68696A6B), (0x6C6D6E6F),
(0x70717273), (0x74757677),
(0x78797A7B), (0x7C7D7E7F)
};
M32[8] = 0x80;
M32[14] = 0x100;
// int i;
uint32_t XL32, XH32, Q[32];
Q[0] = (M32[5] ^ H[5]) - (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[13] ^ H[13]) + (M32[14] ^ H[14]);
Q[1] = (M32[6] ^ H[6]) - (M32[8] ^ H[8]) + (M32[11] ^ H[11]) + (M32[14] ^ H[14]) - (M32[15] ^ H[15]);
Q[2] = (M32[0] ^ H[0]) + (M32[7] ^ H[7]) + (M32[9] ^ H[9]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (M32[8] ^ H[8]) - (M32[10] ^ H[10]) + (M32[13] ^ H[13]);
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (M32[9] ^ H[9]) - (M32[11] ^ H[11]) - (M32[14] ^ H[14]);
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (M32[10] ^ H[10]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[6] = (M32[4] ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (M32[11] ^ H[11]) + (M32[13] ^ H[13]);
Q[7] = (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[5] ^ H[5]) - (M32[12] ^ H[12]) - (M32[14] ^ H[14]);
Q[8] = (M32[2] ^ H[2]) - (M32[5] ^ H[5]) - (M32[6] ^ H[6]) + (M32[13] ^ H[13]) - (M32[15] ^ H[15]);
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (M32[6] ^ H[6]) - (M32[7] ^ H[7]) + (M32[14] ^ H[14]);
Q[10] = (M32[8] ^ H[8]) - (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[7] ^ H[7]) + (M32[15] ^ H[15]);
Q[11] = (M32[8] ^ H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (M32[5] ^ H[5]) + (M32[9] ^ H[9]);
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[10] ^ H[10]);
Q[13] = (M32[2] ^ H[2]) + (M32[4] ^ H[4]) + (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[11] ^ H[11]);
Q[14] = (M32[3] ^ H[3]) - (M32[5] ^ H[5]) + (M32[8] ^ H[8]) - (M32[11] ^ H[11]) - (M32[12] ^ H[12]);
Q[15] = (M32[12] ^ H[12]) - (M32[4] ^ H[4]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[13] ^ H[13]);
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe.*/
Q[0] = ss0(Q[0]) + H[1];
Q[1] = ss1(Q[1]) + H[2];
Q[2] = ss2(Q[2]) + H[3];
Q[3] = ss3(Q[3]) + H[4];
Q[4] = ss4(Q[4]) + H[5];
Q[5] = ss0(Q[5]) + H[6];
Q[6] = ss1(Q[6]) + H[7];
Q[7] = ss2(Q[7]) + H[8];
Q[8] = ss3(Q[8]) + H[9];
Q[9] = ss4(Q[9]) + H[10];
Q[10] = ss0(Q[10]) + H[11];
Q[11] = ss1(Q[11]) + H[12];
Q[12] = ss2(Q[12]) + H[13];
Q[13] = ss3(Q[13]) + H[14];
Q[14] = ss4(Q[14]) + H[15];
Q[15] = ss0(Q[15]) + H[0];
/* This is the Message expansion or f_1 in the documentation. */
/* It has 16 rounds. */
/* Blue Midnight Wish has two tunable security parameters. */
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
/* The following relation for these parameters should is satisfied: */
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
// #pragma unroll
// for (i = 0; i<2; i++)
// Q[i + 16] = expand32_1(i + 16, M32, H, Q);
Q[16] = ss1(Q[16 - 16]) + ss2(Q[16 - 15]) + ss3(Q[16 - 14]) + ss0(Q[16 - 13])
+ ss1(Q[16 - 12]) + ss2(Q[16 - 11]) + ss3(Q[16 - 10]) + ss0(Q[16 - 9])
+ ss1(Q[16 - 8]) + ss2(Q[16 - 7]) + ss3(Q[16 - 6]) + ss0(Q[16 - 5])
+ ss1(Q[16 - 4]) + ss2(Q[16 - 3]) + ss3(Q[16 - 2]) + ss0(Q[16 - 1])
+ ((16 * (0x05555555ul) + SPH_ROTL32(M32[0], ((16 - 16) % 16) + 1) + SPH_ROTL32(M32[3], ((16 - 13) % 16) + 1)) ^ H[(16 - 16 + 7) % 16]);
Q[17] = ss1(Q[17 - 16]) + ss2(Q[17 - 15]) + ss3(Q[17 - 14]) + ss0(Q[17 - 13])
+ ss1(Q[17 - 12]) + ss2(Q[17 - 11]) + ss3(Q[17 - 10]) + ss0(Q[17 - 9])
+ ss1(Q[17 - 8]) + ss2(Q[17 - 7]) + ss3(Q[17 - 6]) + ss0(Q[17 - 5])
+ ss1(Q[17 - 4]) + ss2(Q[17 - 3]) + ss3(Q[17 - 2]) + ss0(Q[17 - 1])
+ ((17 * (0x05555555ul) + SPH_ROTL32(M32[(17 - 16) % 16], ((17 - 16) % 16) + 1) + SPH_ROTL32(M32[(17 - 13) % 16], ((17 - 13) % 16) + 1)) ^ H[(17 - 16 + 7) % 16]);
uint32_t precalc = Q[18 - 16] + Q[18 - 14] + Q[18 - 12] + Q[18 - 10] + Q[18 - 8] + Q[18 - 6]; //+ Q[18 - 4]
uint32_t precalc2 = Q[19 - 16] + Q[19 - 14] + Q[19 - 12] + Q[19 - 10] + Q[19 - 8] + Q[19 - 6];//+ Q[19 - 4]
// #pragma unroll
// for (i = 2 + 16; i < 16 + 16; i+=2)
// {
precalc = precalc + Q[18 - 4];
precalc2 = precalc2 + Q[18 + 1 - 4];
uint32_t p1 = ((18 * (0x05555555ul) + SPH_ROTL32(M32[2], ((18 - 16) % 16) + 1) + SPH_ROTL32(M32[5], ((18 - 13) % 16) + 1)) ^ H[(18 - 16 + 7) % 16]);
uint32_t p2 = (((18 + 1)*(0x05555555ul) + SPH_ROTL32(M32[3], (((18 + 1) - 16) % 16) + 1) + SPH_ROTL32(M32[6], (((18 + 1) - 13) % 16) + 1)) ^ H[((18 + 1) - 16 + 7) % 16]);
Q[18] = precalc + expand32_2(18, M32, H, Q) + p1;
Q[18 + 1] = precalc2 + expand32_2(18 + 1, M32, H, Q) + p2;
precalc = precalc - Q[18 - 16];
precalc2 = precalc2 - Q[18 + 1 - 16];
precalc = precalc + Q[20 - 4];
precalc2 = precalc2 + Q[20 + 1 - 4];
p1 = ((20 * (0x05555555ul) + SPH_ROTL32(M32[4], ((20 - 16) % 16) + 1) + SPH_ROTL32(M32[7], ((20 - 13) % 16) + 1) - (0x100 << 15)) ^ H[(20 - 16 + 7) % 16]);
p2 = (((20 + 1)*(0x05555555ul) + SPH_ROTL32(M32[5], (((20 + 1) - 16) % 16) + 1) + (0x80 << 9)) ^ H[((20 + 1) - 16 + 7) % 16]);
Q[20] = precalc + expand32_2(20, M32, H, Q) + p1;
Q[20 + 1] = precalc2 + expand32_2(20 + 1, M32, H, Q) + p2;
precalc = precalc - Q[20 - 16];
precalc2 = precalc2 - Q[20 + 1 - 16];
precalc = precalc + Q[22 - 4];
precalc2 = precalc2 + Q[22 + 1 - 4];
p1 = ((22 * (0x05555555ul) + SPH_ROTL32(M32[6], ((22 - 16) % 16) + 1) - SPH_ROTL32(M32[0], ((22 - 6) % 16) + 1)) ^ H[(22 - 16 + 7) % 16]);
p2 = (((22 + 1)*(0x05555555ul) + SPH_ROTL32(M32[7], (((22 + 1) - 16) % 16) + 1) - SPH_ROTL32(M32[1], (((22 + 1) - 6) % 16) + 1)) ^ H[((22 + 1) - 16 + 7) % 16]);
Q[22] = precalc + expand32_2(22, M32, H, Q) + p1;
Q[22 + 1] = precalc2 + expand32_2(22 + 1, M32, H, Q) + p2;
precalc = precalc - Q[22 - 16];
precalc2 = precalc2 - Q[22 + 1 - 16];
precalc = precalc + Q[24 - 4];
precalc2 = precalc2 + Q[24 + 1 - 4];
p1 = ((24 * (0x05555555ul) + (0x80 << 9) - SPH_ROTL32(M32[2], ((24 - 6) % 16) + 1)) ^ H[(24 - 16 + 7) % 16]);
p2 = (((24 + 1)*(0x05555555ul) - SPH_ROTL32(M32[3], (((24 + 1) - 6) % 16) + 1)) ^ H[((24 + 1) - 16 + 7) % 16]);
Q[24] = precalc + expand32_2(24, M32, H, Q) + p1;
Q[24 + 1] = precalc2 + expand32_2(24 + 1, M32, H, Q) + p2;
precalc = precalc - Q[24 - 16];
precalc2 = precalc2 - Q[24 + 1 - 16];
precalc = precalc + Q[26 - 4];
precalc2 = precalc2 + Q[26 + 1 - 4];
p1 = ((26 * (0x05555555ul) - SPH_ROTL32(M32[4], ((26 - 6) % 16) + 1)) ^ H[(26 - 16 + 7) % 16]);
p2 = (((26 + 1)*(0x05555555ul) + (0x100 << 15) - SPH_ROTL32(M32[5], (((26 + 1) - 6) % 16) + 1)) ^ H[((26 + 1) - 16 + 7) % 16]);
Q[26] = precalc + expand32_2(26, M32, H, Q) + p1;
Q[26 + 1] = precalc2 + expand32_2(26 + 1, M32, H, Q) + p2;
precalc = precalc - Q[26 - 16];
precalc2 = precalc2 - Q[26 + 1 - 16];
precalc = precalc + Q[28 - 4];
precalc2 = precalc2 + Q[28 + 1 - 4];
p1 = ((28 * (0x05555555ul) - SPH_ROTL32(M32[6], ((28 - 6) % 16) + 1)) ^ H[(28 - 16 + 7) % 16]);
p2 = (((28 + 1)*(0x05555555ul) + SPH_ROTL32(M32[0], (((28 + 1) - 13) % 16) + 1) - SPH_ROTL32(M32[7], (((28 + 1) - 6) % 16) + 1)) ^ H[((28 + 1) - 16 + 7) % 16]);
Q[28] = precalc + expand32_2(28, M32, H, Q) + p1;
Q[28 + 1] = precalc2 + expand32_2(28 + 1, M32, H, Q) + p2;
precalc = precalc - Q[28 - 16];
precalc2 = precalc2 - Q[28 + 1 - 16];
precalc = precalc + Q[30 - 4];
precalc2 = precalc2 + Q[30 + 1 - 4];
p1 = ((30 * (0x05555555ul) + (0x100 << 15) + SPH_ROTL32(M32[1], ((30 - 13) % 16) + 1) - (0x80 << 9)) ^ H[(30 - 16 + 7) % 16]);
p2 = (((30 + 1)*(0x05555555ul) + SPH_ROTL32(M32[2], (((30 + 1) - 13) % 16) + 1)) ^ H[((30 + 1) - 16 + 7) % 16]);
Q[30] = precalc + expand32_2(30, M32, H, Q) + p1;
Q[30 + 1] = precalc2 + expand32_2(30 + 1, M32, H, Q) + p2;
precalc = precalc - Q[30 - 16];
precalc2 = precalc2 - Q[30 + 1 - 16];
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
/* 16 new variables that are prooduced in the Message Expansion part. */
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
/* This part is the function f_2 - in the documentation */
/* Compute the double chaining pipe for the next message block. */
M32[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
M32[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
M32[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
M32[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
M32[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
M32[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
M32[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
M32[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
M32[8] = SPH_ROTL32(M32[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
M32[9] = SPH_ROTL32(M32[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
M32[10] = SPH_ROTL32(M32[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
M32[11] = SPH_ROTL32(M32[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
M32[12] = SPH_ROTL32(M32[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
M32[13] = SPH_ROTL32(M32[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
M32[14] = SPH_ROTL32(M32[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
M32[15] = SPH_ROTL32(M32[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
}
__forceinline__ __device__ void Compression256_2(uint32_t M32[16])
{
const uint32_t H[16] = {
(0xaaaaaaa0), (0xaaaaaaa1), (0xaaaaaaa2),
(0xaaaaaaa3), (0xaaaaaaa4), (0xaaaaaaa5),
(0xaaaaaaa6), (0xaaaaaaa7), (0xaaaaaaa8),
(0xaaaaaaa9), (0xaaaaaaaa), (0xaaaaaaab),
(0xaaaaaaac), (0xaaaaaaad), (0xaaaaaaae),
(0xaaaaaaaf)
};
int i;
uint32_t XL32, XH32, Q[32];
Q[0] = (M32[5] ^ H[5]) - (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[13] ^ H[13]) + (M32[14] ^ H[14]);
Q[1] = (M32[6] ^ H[6]) - (M32[8] ^ H[8]) + (M32[11] ^ H[11]) + (M32[14] ^ H[14]) - (M32[15] ^ H[15]);
Q[2] = (M32[0] ^ H[0]) + (M32[7] ^ H[7]) + (M32[9] ^ H[9]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (M32[8] ^ H[8]) - (M32[10] ^ H[10]) + (M32[13] ^ H[13]);
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (M32[9] ^ H[9]) - (M32[11] ^ H[11]) - (M32[14] ^ H[14]);
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (M32[10] ^ H[10]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
Q[6] = (M32[4] ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (M32[11] ^ H[11]) + (M32[13] ^ H[13]);
Q[7] = (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[5] ^ H[5]) - (M32[12] ^ H[12]) - (M32[14] ^ H[14]);
Q[8] = (M32[2] ^ H[2]) - (M32[5] ^ H[5]) - (M32[6] ^ H[6]) + (M32[13] ^ H[13]) - (M32[15] ^ H[15]);
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (M32[6] ^ H[6]) - (M32[7] ^ H[7]) + (M32[14] ^ H[14]);
Q[10] = (M32[8] ^ H[8]) - (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[7] ^ H[7]) + (M32[15] ^ H[15]);
Q[11] = (M32[8] ^ H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (M32[5] ^ H[5]) + (M32[9] ^ H[9]);
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[10] ^ H[10]);
Q[13] = (M32[2] ^ H[2]) + (M32[4] ^ H[4]) + (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[11] ^ H[11]);
Q[14] = (M32[3] ^ H[3]) - (M32[5] ^ H[5]) + (M32[8] ^ H[8]) - (M32[11] ^ H[11]) - (M32[12] ^ H[12]);
Q[15] = (M32[12] ^ H[12]) - (M32[4] ^ H[4]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[13] ^ H[13]);
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe.*/
Q[0] = ss0(Q[0]) + H[1];
Q[1] = ss1(Q[1]) + H[2];
Q[2] = ss2(Q[2]) + H[3];
Q[3] = ss3(Q[3]) + H[4];
Q[4] = ss4(Q[4]) + H[5];
Q[5] = ss0(Q[5]) + H[6];
Q[6] = ss1(Q[6]) + H[7];
Q[7] = ss2(Q[7]) + H[8];
Q[8] = ss3(Q[8]) + H[9];
Q[9] = ss4(Q[9]) + H[10];
Q[10] = ss0(Q[10]) + H[11];
Q[11] = ss1(Q[11]) + H[12];
Q[12] = ss2(Q[12]) + H[13];
Q[13] = ss3(Q[13]) + H[14];
Q[14] = ss4(Q[14]) + H[15];
Q[15] = ss0(Q[15]) + H[0];
/* This is the Message expansion or f_1 in the documentation. */
/* It has 16 rounds. */
/* Blue Midnight Wish has two tunable security parameters. */
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
/* The following relation for these parameters should is satisfied: */
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
#pragma unroll
for (i = 0; i<2; i++)
Q[i + 16] = expand32_1(i + 16, M32, H, Q);
/* #pragma unroll
for (i = 2; i<16; i++)
Q[i + 16] = expand32_2(i + 16, M32, H, Q);
*/
uint32_t precalc = Q[18 - 16] + Q[18 - 14] + Q[18 - 12] + Q[18 - 10] + Q[18 - 8] + Q[18 - 6]; //+ Q[18 - 4]
uint32_t precalc2 = Q[19 - 16] + Q[19 - 14] + Q[19 - 12] + Q[19 - 10] + Q[19 - 8] + Q[19 - 6];//+ Q[19 - 4]
#pragma unroll
for (i = 2 + 16; i < 16 + 16; i += 2)
{
precalc = precalc + Q[i - 4];
precalc2 = precalc2 + Q[i + 1 - 4];
uint32_t p1 = ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]);
uint32_t p2 = (((i + 1)*(0x05555555ul) + SPH_ROTL32(M32[((i + 1) - 16) % 16], (((i + 1) - 16) % 16) + 1) + SPH_ROTL32(M32[((i + 1) - 13) % 16], (((i + 1) - 13) % 16) + 1) - SPH_ROTL32(M32[((i + 1) - 6) % 16], (((i + 1) - 6) % 16) + 1)) ^ H[((i + 1) - 16 + 7) % 16]);
Q[i] = precalc + expand32_2(i, M32, H, Q) + p1;
Q[i + 1] = precalc2 + expand32_2(i + 1, M32, H, Q) + p2;
precalc = precalc - Q[i - 16];
precalc2 = precalc2 - Q[i + 1 - 16];
}
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
/* 16 new variables that are prooduced in the Message Expansion part. */
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
M32[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
M32[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
M32[14] = SPH_ROTL32(M32[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
M32[15] = SPH_ROTL32(M32[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
}
#define TPB 512
__global__ __launch_bounds__(TPB, 2)
void bmw256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash, uint32_t *const __restrict__ nonceVector, uint32_t Target)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 message[8] = { 0 };
message[0] = __ldg(&g_hash[thread + 0 * threads]);
message[1] = __ldg(&g_hash[thread + 1 * threads]);
message[2] = __ldg(&g_hash[thread + 2 * threads]);
message[3] = __ldg(&g_hash[thread + 3 * threads]);
//LOHI(message[2], message[3], __ldg(&g_hash[thread + 1 * threads]));
//LOHI(message[4], message[5], __ldg(&g_hash[thread + 2 * threads]));
//LOHI(message[6], message[7], __ldg(&g_hash[thread + 3 * threads]));
message[4].x = 0x80;
message[7].x = 0x100;
Compression256((uint32_t*)message);
Compression256_2((uint32_t*)message);
if (message[7].y <= Target)
{
uint32_t tmp = atomicExch(&nonceVector[0], startNounce + thread);
if (tmp != 0)
nonceVector[1] = tmp;
}
}
}
__host__
void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces, uint32_t Target)
{
const uint32_t threadsperblock = TPB;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
cudaMemset(d_GNonce[thr_id], 0, 2 * sizeof(uint32_t));
bmw256_gpu_hash_32 << <grid, block >> >(threads, startNounce, (uint2*)g_hash, d_GNonce[thr_id], Target);
cudaMemcpy(d_gnounce[thr_id], d_GNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
resultnonces[0] = *(d_gnounce[thr_id]);
resultnonces[1] = *(d_gnounce[thr_id] + 1);
}
__host__
void bmw256_cpu_init(int thr_id, uint32_t threads)
{
cudaMalloc(&d_GNonce[thr_id], 2 * sizeof(uint32_t));
cudaMallocHost(&d_gnounce[thr_id], 2 * sizeof(uint32_t));
}
__host__
void bmw256_cpu_free(int thr_id)
{
cudaFree(d_GNonce[thr_id]);
cudaFreeHost(d_gnounce[thr_id]);
}
/*
__host__
void bmw256_setTarget(const void *pTargetIn)
{
cudaMemcpyToSymbol(pTarget, pTargetIn, 32, 0, cudaMemcpyHostToDevice);
}
*/