1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-18 02:30:08 +00:00
ccminer/Algo256/cuda_blake256.cu
Tanguy Pruvot c5b349e079 Add Lyra2 algo, based on Vertcoin published code
Seems to be djm34 work, i recognize the code style ;)

Code was cleaned/indented and adapted to my fork...

Only usable on the test pool until 16 december 2014!
2014-12-06 11:28:26 +01:00

251 lines
6.1 KiB
Plaintext

/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Nov. 2014
*/
extern "C" {
#include "sph/sph_blake.h"
}
#include "cuda_helper.h"
#include <memory.h>
static __device__ uint64_t cuda_swab32ll(uint64_t x) {
return MAKE_ULONGLONG(cuda_swab32(_LOWORD(x)), cuda_swab32(_HIWORD(x)));
}
__constant__ static uint32_t c_data[20];
__constant__ static uint32_t sigma[16][16];
static uint32_t c_sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
static const uint32_t c_IV256[8] = {
0x6A09E667, 0xBB67AE85,
0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C,
0x1F83D9AB, 0x5BE0CD19
};
__device__ __constant__ static uint32_t cpu_h[8];
__device__ __constant__ static uint32_t u256[16];
static const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3,
0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0,
0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377,
0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD,
0x3F84D5B5, 0xB5470917
};
#define GS2(a,b,c,d,x) { \
const uint32_t idx1 = sigma[r][x]; \
const uint32_t idx2 = sigma[r][x+1]; \
v[a] += (m[idx1] ^ u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ u256[idx1]) + v[b]; \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
//#define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n)))
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define hostGS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[r][x]; \
const uint32_t idx2 = c_sigma[r][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = ROTR32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
v[d] = ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \
}
/* Second part (64-80) msg never change, store it */
__device__ __constant__ static const uint32_t c_Padding[16] = {
0, 0, 0, 0,
0x80000000, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__host__ __forceinline__
static void blake256_compress1st(uint32_t *h, const uint32_t *block, const uint32_t T0)
{
uint32_t m[16];
uint32_t v[16];
for (int i = 0; i < 16; i++) {
m[i] = block[i];
}
for (int i = 0; i < 8; i++)
v[i] = h[i];
v[8] = c_u256[0];
v[9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
for (int r = 0; r < 14; r++) {
/* column step */
hostGS(0, 4, 0x8, 0xC, 0x0);
hostGS(1, 5, 0x9, 0xD, 0x2);
hostGS(2, 6, 0xA, 0xE, 0x4);
hostGS(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
hostGS(0, 5, 0xA, 0xF, 0x8);
hostGS(1, 6, 0xB, 0xC, 0xA);
hostGS(2, 7, 0x8, 0xD, 0xC);
hostGS(3, 4, 0x9, 0xE, 0xE);
}
for (int i = 0; i < 16; i++) {
int j = i & 7;
h[j] ^= v[i];
}
}
__device__ __forceinline__
static void blake256_compress2nd(uint32_t *h, const uint32_t *block, const uint32_t T0)
{
uint32_t m[16];
uint32_t v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
#pragma unroll
for (int i = 4; i < 16; i++) {
m[i] = c_Padding[i];
}
#pragma unroll 8
for (int i = 0; i < 8; i++)
v[i] = h[i];
v[8] = u256[0];
v[9] = u256[1];
v[10] = u256[2];
v[11] = u256[3];
v[12] = u256[4] ^ T0;
v[13] = u256[5] ^ T0;
v[14] = u256[6];
v[15] = u256[7];
#pragma unroll 14
for (int r = 0; r < 14; r++) {
/* column step */
GS2(0, 4, 0x8, 0xC, 0x0);
GS2(1, 5, 0x9, 0xD, 0x2);
GS2(2, 6, 0xA, 0xE, 0x4);
GS2(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
GS2(0, 5, 0xA, 0xF, 0x8);
GS2(1, 6, 0xB, 0xC, 0xA);
GS2(2, 7, 0x8, 0xD, 0xC);
GS2(3, 4, 0x9, 0xE, 0xE);
}
#pragma unroll 16
for (int i = 0; i < 16; i++) {
int j = i & 7;
h[j] ^= v[i];
}
}
__global__ __launch_bounds__(256,3)
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint64_t * Hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t h[8];
uint32_t input[4];
#pragma unroll 8
for (int i = 0; i<8; i++) { h[i] = cpu_h[i];}
#pragma unroll 3
for (int i = 0; i < 3; ++i) input[i] = c_data[16 + i];
input[3] = nonce;
blake256_compress2nd(h, input, 640);
#pragma unroll
for (int i = 0; i<4; i++) {
Hash[i*threads + thread] = cuda_swab32ll(MAKE_ULONGLONG(h[2 * i], h[2*i+1]));
}
}
}
__host__
void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
blake256_gpu_hash_80 <<<grid, block>>> (threads, startNonce, Hash);
MyStreamSynchronize(NULL, order, thr_id);
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata)
{
uint32_t h[8];
uint32_t data[20];
memcpy(data, pdata, 80);
for (int i = 0; i<8; i++) {
h[i] = c_IV256[i];
}
blake256_compress1st(h, pdata, 512);
cudaMemcpyToSymbol(cpu_h, h, sizeof(h), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice);
}
__host__
void blake256_cpu_init(int thr_id, int threads)
{
cudaMemcpyToSymbol(u256, c_u256, sizeof(c_u256), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(sigma, c_sigma, sizeof(c_sigma), 0, cudaMemcpyHostToDevice);
}