mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-18 02:30:08 +00:00
cafd4477d7
Some cards have 2 gpus on board...
413 lines
12 KiB
Plaintext
413 lines
12 KiB
Plaintext
#include <stdio.h>
|
|
#include <memory.h>
|
|
|
|
#include "miner.h"
|
|
|
|
#include "cuda_helper.h"
|
|
|
|
#define USE_SHARED 1
|
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads
|
|
uint32_t *heavy_heftyHashes[MAX_GPUS];
|
|
|
|
/* Hash-Tabellen */
|
|
__constant__ uint32_t hefty_gpu_constantTable[64];
|
|
#if USE_SHARED
|
|
#define heftyLookUp(x) (*((uint32_t*)heftytab + (x)))
|
|
#else
|
|
#define heftyLookUp(x) hefty_gpu_constantTable[x]
|
|
#endif
|
|
|
|
// muss expandiert werden
|
|
__constant__ uint32_t hefty_gpu_blockHeader[16]; // 2x512 Bit Message
|
|
__constant__ uint32_t hefty_gpu_register[8];
|
|
__constant__ uint32_t hefty_gpu_sponge[4];
|
|
|
|
uint32_t hefty_cpu_hashTable[] = {
|
|
0x6a09e667UL,
|
|
0xbb67ae85UL,
|
|
0x3c6ef372UL,
|
|
0xa54ff53aUL,
|
|
0x510e527fUL,
|
|
0x9b05688cUL,
|
|
0x1f83d9abUL,
|
|
0x5be0cd19UL };
|
|
|
|
uint32_t hefty_cpu_constantTable[] = {
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
|
|
};
|
|
|
|
#if 0
|
|
#define S(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
#else
|
|
__host__ __device__
|
|
static uint32_t S(uint32_t x, int n)
|
|
{
|
|
return (((x) >> (n)) | ((x) << (32 - (n))));
|
|
}
|
|
#endif
|
|
|
|
#define R(x, n) ((x) >> (n))
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
|
|
#define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
|
|
#define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
|
|
#define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
|
|
|
|
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
|
|
|
|
// uint8_t
|
|
#define smoosh4(x) ( ((x)>>4) ^ ((x) & 0x0F) )
|
|
|
|
__host__ __forceinline__ __device__
|
|
uint8_t smoosh2(uint32_t x)
|
|
{
|
|
uint16_t w = (x >> 16) ^ (x & 0xffff);
|
|
uint8_t n = smoosh4( (uint8_t)( (w >> 8) ^ (w & 0xFF) ) );
|
|
return 24 - (((n >> 2) ^ (n & 0x03)) << 3);
|
|
}
|
|
// 4 auf einmal
|
|
#define smoosh4Quad(x) ( (((x)>>4) ^ (x)) & 0x0F0F0F0F )
|
|
#define getByte(x,y) ( ((x) >> (y)) & 0xFF )
|
|
|
|
__host__ __forceinline__ __device__
|
|
void Mangle(uint32_t *inp)
|
|
{
|
|
uint32_t r = smoosh4Quad(inp[0]);
|
|
uint32_t inp0org;
|
|
uint32_t tmp0Mask, tmp1Mask;
|
|
uint32_t in1, in2, isAddition;
|
|
int32_t tmp;
|
|
uint8_t b;
|
|
|
|
inp[1] = inp[1] ^ S(inp[0], getByte(r, 24));
|
|
|
|
r += 0x01010101;
|
|
tmp = smoosh2(inp[1]);
|
|
b = getByte(r,tmp);
|
|
inp0org = S(inp[0], b);
|
|
tmp0Mask = (uint32_t) -((tmp >> 3) & 1); // Bit 3 an Position 0
|
|
tmp1Mask = (uint32_t) -((tmp >> 4) & 1); // Bit 4 an Position 0
|
|
|
|
in1 = (inp[2] & ~inp0org) |
|
|
(tmp1Mask & ~inp[2] & inp0org) |
|
|
(~tmp0Mask & ~inp[2] & inp0org);
|
|
in2 = inp[2] += ~inp0org;
|
|
isAddition = ~tmp0Mask & tmp1Mask;
|
|
inp[2] = isAddition ? in2 : in1;
|
|
|
|
r += 0x01010101;
|
|
tmp = smoosh2(inp[1] ^ inp[2]);
|
|
b = getByte(r,tmp);
|
|
inp0org = S(inp[0], b);
|
|
tmp0Mask = (uint32_t) -((tmp >> 3) & 1); // Bit 3 an Position 0
|
|
tmp1Mask = (uint32_t) -((tmp >> 4) & 1); // Bit 4 an Position 0
|
|
|
|
in1 = (inp[3] & ~inp0org) |
|
|
(tmp1Mask & ~inp[3] & inp0org) |
|
|
(~tmp0Mask & ~inp[3] & inp0org);
|
|
in2 = inp[3] += ~inp0org;
|
|
isAddition = ~tmp0Mask & tmp1Mask;
|
|
inp[3] = isAddition ? in2 : in1;
|
|
|
|
inp[0] ^= (inp[1] ^ inp[2]) + inp[3];
|
|
}
|
|
|
|
__host__ __forceinline__ __device__
|
|
void Absorb(uint32_t *inp, uint32_t x)
|
|
{
|
|
inp[0] ^= x;
|
|
Mangle(inp);
|
|
}
|
|
|
|
__host__ __forceinline__ __device__
|
|
uint32_t Squeeze(uint32_t *inp)
|
|
{
|
|
uint32_t y = inp[0];
|
|
Mangle(inp);
|
|
return y;
|
|
}
|
|
|
|
__host__ __forceinline__ __device__
|
|
uint32_t Br(uint32_t *sponge, uint32_t x)
|
|
{
|
|
uint32_t r = Squeeze(sponge);
|
|
uint32_t t = ((r >> 8) & 0x1F);
|
|
uint32_t y = 1 << t;
|
|
|
|
uint32_t a = (((r>>1) & 0x01) << t) & y;
|
|
uint32_t b = ((r & 0x01) << t) & y;
|
|
uint32_t c = x & y;
|
|
|
|
uint32_t retVal = (x & ~y) | (~b & c) | (a & ~c);
|
|
return retVal;
|
|
}
|
|
|
|
__device__ __forceinline__
|
|
void hefty_gpu_round(uint32_t *regs, uint32_t W, uint32_t K, uint32_t *sponge)
|
|
{
|
|
uint32_t tmpBr;
|
|
|
|
uint32_t brG = Br(sponge, regs[6]);
|
|
uint32_t brF = Br(sponge, regs[5]);
|
|
uint32_t tmp1 = Ch(regs[4], brF, brG) + regs[7] + W + K;
|
|
uint32_t brE = Br(sponge, regs[4]);
|
|
uint32_t tmp2 = tmp1 + S1(brE);
|
|
uint32_t brC = Br(sponge, regs[2]);
|
|
uint32_t brB = Br(sponge, regs[1]);
|
|
uint32_t brA = Br(sponge, regs[0]);
|
|
uint32_t tmp3 = Maj(brA, brB, brC);
|
|
tmpBr = Br(sponge, regs[0]);
|
|
uint32_t tmp4 = tmp3 + S0(tmpBr);
|
|
tmpBr = Br(sponge, tmp2);
|
|
|
|
#pragma unroll 7
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
|
regs[0] = tmp2 + tmp4;
|
|
regs[4] += tmpBr;
|
|
}
|
|
|
|
__host__
|
|
void hefty_cpu_round(uint32_t *regs, uint32_t W, uint32_t K, uint32_t *sponge)
|
|
{
|
|
uint32_t tmpBr;
|
|
|
|
uint32_t brG = Br(sponge, regs[6]);
|
|
uint32_t brF = Br(sponge, regs[5]);
|
|
uint32_t tmp1 = Ch(regs[4], brF, brG) + regs[7] + W + K;
|
|
uint32_t brE = Br(sponge, regs[4]);
|
|
uint32_t tmp2 = tmp1 + S1(brE);
|
|
uint32_t brC = Br(sponge, regs[2]);
|
|
uint32_t brB = Br(sponge, regs[1]);
|
|
uint32_t brA = Br(sponge, regs[0]);
|
|
uint32_t tmp3 = Maj(brA, brB, brC);
|
|
tmpBr = Br(sponge, regs[0]);
|
|
uint32_t tmp4 = tmp3 + S0(tmpBr);
|
|
tmpBr = Br(sponge, tmp2);
|
|
|
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
|
regs[0] = tmp2 + tmp4;
|
|
regs[4] += tmpBr;
|
|
}
|
|
|
|
__global__
|
|
void hefty_gpu_hash(int threads, uint32_t startNounce, uint32_t *outputHash)
|
|
{
|
|
#if USE_SHARED
|
|
extern __shared__ unsigned char heftytab[];
|
|
if(threadIdx.x < 64)
|
|
{
|
|
*((uint32_t*)heftytab + threadIdx.x) = hefty_gpu_constantTable[threadIdx.x];
|
|
}
|
|
|
|
__syncthreads();
|
|
#endif
|
|
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
if (thread < threads)
|
|
{
|
|
// bestimme den aktuellen Zähler
|
|
uint32_t nounce = startNounce + thread;
|
|
|
|
// jeder thread in diesem Block bekommt sein eigenes W Array im Shared memory
|
|
// reduktion von 256 byte auf 128 byte
|
|
uint32_t W1[16];
|
|
uint32_t W2[16];
|
|
|
|
// Initialisiere die register a bis h mit der Hash-Tabelle
|
|
uint32_t regs[8];
|
|
uint32_t hash[8];
|
|
uint32_t sponge[4];
|
|
|
|
#pragma unroll 4
|
|
for(int k=0; k < 4; k++)
|
|
sponge[k] = hefty_gpu_sponge[k];
|
|
|
|
// pre
|
|
#pragma unroll 8
|
|
for (int k=0; k < 8; k++)
|
|
{
|
|
regs[k] = hefty_gpu_register[k];
|
|
hash[k] = regs[k];
|
|
}
|
|
|
|
//memcpy(W, &hefty_gpu_blockHeader[0], sizeof(uint32_t) * 16); // verbleibende 20 bytes aus Block 2 plus padding
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++)
|
|
W1[k] = hefty_gpu_blockHeader[k];
|
|
W1[3] = SWAB32(nounce);
|
|
|
|
// 2. Runde
|
|
#pragma unroll 16
|
|
for(int j=0;j<16;j++)
|
|
Absorb(sponge, W1[j] ^ heftyLookUp(j));
|
|
|
|
// Progress W1 (Bytes 0...63)
|
|
#pragma unroll 16
|
|
for(int j=0;j<16;j++)
|
|
{
|
|
Absorb(sponge, regs[3] ^ regs[7]);
|
|
hefty_gpu_round(regs, W1[j], heftyLookUp(j), sponge);
|
|
}
|
|
|
|
// Progress W2 (Bytes 64...127) then W3 (Bytes 128...191) ...
|
|
|
|
#pragma unroll 3
|
|
for(int k=0;k<3;k++)
|
|
{
|
|
#pragma unroll 2
|
|
for(int j=0;j<2;j++)
|
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
|
#pragma unroll 5
|
|
for(int j=2;j<7;j++)
|
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
|
|
|
#pragma unroll 8
|
|
for(int j=7;j<15;j++)
|
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
|
|
|
#pragma unroll 16
|
|
for(int j=0;j<16;j++)
|
|
{
|
|
Absorb(sponge, regs[3] + regs[7]);
|
|
hefty_gpu_round(regs, W2[j], heftyLookUp(j + ((k+1)<<4)), sponge);
|
|
}
|
|
#pragma unroll 16
|
|
for(int j=0;j<16;j++)
|
|
W1[j] = W2[j];
|
|
}
|
|
|
|
#pragma unroll 8
|
|
for(int k=0;k<8;k++)
|
|
hash[k] += regs[k];
|
|
|
|
#pragma unroll 8
|
|
for(int k=0;k<8;k++)
|
|
((uint32_t*)outputHash)[(thread<<3)+k] = SWAB32(hash[k]);
|
|
}
|
|
}
|
|
|
|
__host__
|
|
void hefty_cpu_init(int thr_id, int threads)
|
|
{
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
// Kopiere die Hash-Tabellen in den GPU-Speicher
|
|
cudaMemcpyToSymbol( hefty_gpu_constantTable,
|
|
hefty_cpu_constantTable,
|
|
sizeof(uint32_t) * 64 );
|
|
|
|
// Speicher für alle Hefty1 hashes belegen
|
|
CUDA_SAFE_CALL(cudaMalloc(&heavy_heftyHashes[thr_id], 8 * sizeof(uint32_t) * threads));
|
|
}
|
|
|
|
__host__
|
|
void hefty_cpu_setBlock(int thr_id, int threads, void *data, int len)
|
|
// data muss 80/84-Byte haben!
|
|
{
|
|
// Nachricht expandieren und setzen
|
|
uint32_t msgBlock[32];
|
|
|
|
memset(msgBlock, 0, sizeof(msgBlock));
|
|
memcpy(&msgBlock[0], data, len);
|
|
if (len == 84) {
|
|
msgBlock[21] |= 0x80;
|
|
msgBlock[31] = 672; // bitlen
|
|
} else if (len == 80) {
|
|
msgBlock[20] |= 0x80;
|
|
msgBlock[31] = 640; // bitlen
|
|
}
|
|
|
|
for(int i=0;i<31;i++) // Byteorder drehen
|
|
msgBlock[i] = SWAB32(msgBlock[i]);
|
|
|
|
// die erste Runde wird auf der CPU durchgeführt, da diese für
|
|
// alle Threads gleich ist. Der Hash wird dann an die Threads
|
|
// übergeben
|
|
|
|
// Erstelle expandierten Block W
|
|
uint32_t W[64];
|
|
memcpy(W, &msgBlock[0], sizeof(uint32_t) * 16);
|
|
for(int j=16;j<64;j++)
|
|
W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16];
|
|
|
|
// Initialisiere die register a bis h mit der Hash-Tabelle
|
|
uint32_t regs[8];
|
|
uint32_t hash[8];
|
|
uint32_t sponge[4];
|
|
|
|
// pre
|
|
memset(sponge, 0, sizeof(uint32_t) * 4);
|
|
for (int k=0; k < 8; k++)
|
|
{
|
|
regs[k] = hefty_cpu_hashTable[k];
|
|
hash[k] = regs[k];
|
|
}
|
|
|
|
// 1. Runde
|
|
for(int j=0;j<16;j++)
|
|
Absorb(sponge, W[j] ^ hefty_cpu_constantTable[j]);
|
|
|
|
for(int j=0;j<16;j++)
|
|
{
|
|
Absorb(sponge, regs[3] ^ regs[7]);
|
|
hefty_cpu_round(regs, W[j], hefty_cpu_constantTable[j], sponge);
|
|
}
|
|
|
|
for(int j=16;j<64;j++)
|
|
{
|
|
Absorb(sponge, regs[3] + regs[7]);
|
|
hefty_cpu_round(regs, W[j], hefty_cpu_constantTable[j], sponge);
|
|
}
|
|
|
|
for(int k=0;k<8;k++)
|
|
hash[k] += regs[k];
|
|
|
|
// sponge speichern
|
|
cudaMemcpyToSymbol(hefty_gpu_sponge, sponge, 16);
|
|
// hash speichern
|
|
cudaMemcpyToSymbol(hefty_gpu_register, hash, 32);
|
|
// Blockheader setzen (korrekte Nonce fehlt da drin noch)
|
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(hefty_gpu_blockHeader, &msgBlock[16], 64));
|
|
}
|
|
|
|
__host__
|
|
void hefty_cpu_hash(int thr_id, int threads, int startNounce)
|
|
{
|
|
int threadsperblock = 256;
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock);
|
|
dim3 block(threadsperblock);
|
|
|
|
// Größe des dynamischen Shared Memory Bereichs
|
|
#if USE_SHARED
|
|
int shared_size = 8 * 64 * sizeof(uint32_t);
|
|
#else
|
|
int shared_size = 0;
|
|
#endif
|
|
|
|
hefty_gpu_hash <<< grid, block, shared_size >>> (threads, startNounce, heavy_heftyHashes[thr_id]);
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
|
MyStreamSynchronize(NULL, 0, thr_id);
|
|
}
|