GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
 
 
 
 
 

278 lines
9.2 KiB

#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
// globaler Speicher für alle HeftyHashes aller Threads
extern uint32_t *d_heftyHashes[8];
extern uint32_t *d_nonceVector[8];
// globaler Speicher für unsere Ergebnisse
uint32_t *d_hash3output[8];
extern uint32_t *d_hash4output[8];
extern uint32_t *d_hash5output[8];
// der Keccak512 State nach der ersten Runde (72 Bytes)
__constant__ uint64_t c_State[25];
// die Message (72 Bytes) für die zweite Runde auf der GPU
__constant__ uint32_t c_PaddedMessage2[18]; // 44 bytes of remaining message (Nonce at offset 4) plus padding
// ---------------------------- BEGIN CUDA keccak512 functions ------------------------------------
#include "cuda_helper.h"
#define U32TO64_LE(p) \
(((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32))
#define U64TO32_LE(p, v) \
*p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32);
static __device__ void mycpy72(uint32_t *d, const uint32_t *s) {
#pragma unroll 18
for (int k=0; k < 18; ++k) d[k] = s[k];
}
static __device__ void mycpy32(uint32_t *d, const uint32_t *s) {
#pragma unroll 8
for (int k=0; k < 8; ++k) d[k] = s[k];
}
typedef struct keccak_hash_state_t {
uint64_t state[25]; // 25*2
uint32_t buffer[72/4]; // 72
} keccak_hash_state;
__device__ void statecopy(uint64_t *d, uint64_t *s)
{
#pragma unroll 25
for (int i=0; i < 25; ++i)
d[i] = s[i];
}
static const uint64_t host_keccak_round_constants[24] = {
0x0000000000000001ull, 0x0000000000008082ull,
0x800000000000808aull, 0x8000000080008000ull,
0x000000000000808bull, 0x0000000080000001ull,
0x8000000080008081ull, 0x8000000000008009ull,
0x000000000000008aull, 0x0000000000000088ull,
0x0000000080008009ull, 0x000000008000000aull,
0x000000008000808bull, 0x800000000000008bull,
0x8000000000008089ull, 0x8000000000008003ull,
0x8000000000008002ull, 0x8000000000000080ull,
0x000000000000800aull, 0x800000008000000aull,
0x8000000080008081ull, 0x8000000000008080ull,
0x0000000080000001ull, 0x8000000080008008ull
};
__constant__ uint64_t c_keccak_round_constants[24];
__host__ __device__ void
keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_constants) {
size_t i;
uint64_t t[5], u[5], v, w;
/* absorb input */
for (i = 0; i < 9 /* 72/8 */; i++, in += 2)
s[i] ^= U32TO64_LE(in);
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROTL64(t[1], 1);
u[1] = t[0] ^ ROTL64(t[2], 1);
u[2] = t[1] ^ ROTL64(t[3], 1);
u[3] = t[2] ^ ROTL64(t[4], 1);
u[4] = t[3] ^ ROTL64(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[ 1];
s[ 1] = ROTL64(s[ 6], 44);
s[ 6] = ROTL64(s[ 9], 20);
s[ 9] = ROTL64(s[22], 61);
s[22] = ROTL64(s[14], 39);
s[14] = ROTL64(s[20], 18);
s[20] = ROTL64(s[ 2], 62);
s[ 2] = ROTL64(s[12], 43);
s[12] = ROTL64(s[13], 25);
s[13] = ROTL64(s[19], 8);
s[19] = ROTL64(s[23], 56);
s[23] = ROTL64(s[15], 41);
s[15] = ROTL64(s[ 4], 27);
s[ 4] = ROTL64(s[24], 14);
s[24] = ROTL64(s[21], 2);
s[21] = ROTL64(s[ 8], 55);
s[ 8] = ROTL64(s[16], 45);
s[16] = ROTL64(s[ 5], 36);
s[ 5] = ROTL64(s[ 3], 28);
s[ 3] = ROTL64(s[18], 21);
s[18] = ROTL64(s[17], 15);
s[17] = ROTL64(s[11], 10);
s[11] = ROTL64(s[ 7], 6);
s[ 7] = ROTL64(s[10], 3);
s[10] = ROTL64( v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w;
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= keccak_round_constants[i];
}
}
// Die Hash-Funktion
template <int BLOCKSIZE> __global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// bestimme den aktuellen Zähler
//uint32_t nounce = startNounce + thread;
uint32_t nounce = nonceVector[thread];
// Index-Position des Hashes in den Hash Puffern bestimmen (Hefty1 und outputHash)
uint32_t hashPosition = nounce - startNounce;
// erstmal den State der ersten Runde holen
uint64_t keccak_gpu_state[25];
#pragma unroll 25
for (int i=0; i < 25; ++i)
keccak_gpu_state[i] = c_State[i];
// Message2 in den Puffer holen
uint32_t msgBlock[18];
mycpy72(msgBlock, c_PaddedMessage2);
// die individuelle Nonce einsetzen
msgBlock[1] = nounce;
// den individuellen Hefty1 Hash einsetzen
mycpy32(&msgBlock[(BLOCKSIZE-72)/sizeof(uint32_t)], &heftyHashes[8 * hashPosition]);
// den Block einmal gut durchschütteln
keccak_block(keccak_gpu_state, msgBlock, c_keccak_round_constants);
// das Hash erzeugen
uint32_t hash[16];
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]);
}
// und ins Global Memory rausschreiben
#pragma unroll 16
for(int k=0;k<16;k++)
((uint32_t*)outputHash)[16*hashPosition+k] = hash[k];
}
}
// ---------------------------- END CUDA keccak512 functions ------------------------------------
// Setup-Funktionen
__host__ void keccak512_cpu_init(int thr_id, int threads)
{
// Kopiere die Hash-Tabellen in den GPU-Speicher
cudaMemcpyToSymbol( c_keccak_round_constants,
host_keccak_round_constants,
sizeof(host_keccak_round_constants),
0, cudaMemcpyHostToDevice);
// Speicher für alle Ergebnisse belegen
cudaMalloc(&d_hash3output[thr_id], 16 * sizeof(uint32_t) * threads);
}
// ----------------BEGIN keccak512 CPU version from scrypt-jane code --------------------
#define SCRYPT_HASH_DIGEST_SIZE 64
#define SCRYPT_KECCAK_F 1600
#define SCRYPT_KECCAK_C (SCRYPT_HASH_DIGEST_SIZE * 8 * 2) /* 1024 */
#define SCRYPT_KECCAK_R (SCRYPT_KECCAK_F - SCRYPT_KECCAK_C) /* 576 */
#define SCRYPT_HASH_BLOCK_SIZE (SCRYPT_KECCAK_R / 8) /* 72 */
// --------------- END keccak512 CPU version from scrypt-jane code --------------------
static int BLOCKSIZE = 84;
__host__ void keccak512_cpu_setBlock(void *data, int len)
// data muss 80 oder 84-Byte haben!
// heftyHash hat 32-Byte
{
// CH
// state init
uint64_t keccak_cpu_state[25];
memset(keccak_cpu_state, 0, sizeof(keccak_cpu_state));
// erste Runde
keccak_block((uint64_t*)&keccak_cpu_state, (const uint32_t*)data, host_keccak_round_constants);
// state kopieren
cudaMemcpyToSymbol( c_State, keccak_cpu_state, 25*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
// keccak hat 72-Byte blöcke, d.h. in unserem Fall zwei Blöcke
// zu jeweils
uint32_t msgBlock[18];
memset(msgBlock, 0, 18 * sizeof(uint32_t));
// kopiere die restlichen Daten rein (aber nur alles nach Byte 72)
if (len == 84)
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 12);
else if (len == 80)
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 8);
// Nachricht abschließen
if (len == 84)
msgBlock[11] = 0x01;
else if (len == 80)
msgBlock[10] = 0x01;
msgBlock[17] = 0x80000000;
// Message 2 ins Constant Memory kopieren (die variable Nonce und
// der Hefty1 Anteil muss aber auf der GPU erst noch ersetzt werden)
cudaMemcpyToSymbol( c_PaddedMessage2, msgBlock, 18*sizeof(uint32_t), 0, cudaMemcpyHostToDevice );
BLOCKSIZE = len;
}
__host__ void keccak512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy)
{
// Hefty1 Hashes kopieren
if (copy) cudaMemcpy( d_heftyHashes[thr_id], heftyHashes, 8 * sizeof(uint32_t) * threads, cudaMemcpyHostToDevice );
//else cudaThreadSynchronize();
}
__host__ void keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
{
const int threadsperblock = 128;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
if (BLOCKSIZE==84)
keccak512_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE==80)
keccak512_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}