mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
634 lines
16 KiB
634 lines
16 KiB
/* |
|
* Copyright 2011 ArtForz |
|
* Copyright 2011-2013 pooler |
|
* |
|
* This program is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the Free |
|
* Software Foundation; either version 2 of the License, or (at your option) |
|
* any later version. See COPYING for more details. |
|
*/ |
|
|
|
#include "miner.h" |
|
|
|
#include <string.h> |
|
#include <inttypes.h> |
|
|
|
#if defined(__arm__) && defined(__APCS_32__) |
|
#define EXTERN_SHA256 |
|
#endif |
|
|
|
static const uint32_t sha256_h[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
static const uint32_t sha256_k[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
void sha256_init(uint32_t *state) |
|
{ |
|
memcpy(state, sha256_h, 32); |
|
} |
|
|
|
/* Elementary functions used by SHA256 */ |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n))) |
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) |
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) |
|
|
|
/* SHA256 round function */ |
|
#define RND(a, b, c, d, e, f, g, h, k) \ |
|
do { \ |
|
t0 = h + S1(e) + Ch(e, f, g) + k; \ |
|
t1 = S0(a) + Maj(a, b, c); \ |
|
d += t0; \ |
|
h = t0 + t1; \ |
|
} while (0) |
|
|
|
/* Adjusted round function for rotating state */ |
|
#define RNDr(S, W, i) \ |
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \ |
|
S[(66 - i) % 8], S[(67 - i) % 8], \ |
|
S[(68 - i) % 8], S[(69 - i) % 8], \ |
|
S[(70 - i) % 8], S[(71 - i) % 8], \ |
|
W[i] + sha256_k[i]) |
|
|
|
#ifndef EXTERN_SHA256 |
|
|
|
/* |
|
* SHA256 block compression function. The 256-bit state is transformed via |
|
* the 512-bit input block to produce a new state. |
|
*/ |
|
void sha256_transform(uint32_t *state, const uint32_t *block, int swap) |
|
{ |
|
uint32_t W[64]; |
|
uint32_t S[8]; |
|
uint32_t t0, t1; |
|
int i; |
|
|
|
/* 1. Prepare message schedule W. */ |
|
if (swap) { |
|
for (i = 0; i < 16; i++) |
|
W[i] = swab32(block[i]); |
|
} else |
|
memcpy(W, block, 64); |
|
for (i = 16; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
/* 2. Initialize working variables. */ |
|
memcpy(S, state, 32); |
|
|
|
/* 3. Mix. */ |
|
RNDr(S, W, 0); |
|
RNDr(S, W, 1); |
|
RNDr(S, W, 2); |
|
RNDr(S, W, 3); |
|
RNDr(S, W, 4); |
|
RNDr(S, W, 5); |
|
RNDr(S, W, 6); |
|
RNDr(S, W, 7); |
|
RNDr(S, W, 8); |
|
RNDr(S, W, 9); |
|
RNDr(S, W, 10); |
|
RNDr(S, W, 11); |
|
RNDr(S, W, 12); |
|
RNDr(S, W, 13); |
|
RNDr(S, W, 14); |
|
RNDr(S, W, 15); |
|
RNDr(S, W, 16); |
|
RNDr(S, W, 17); |
|
RNDr(S, W, 18); |
|
RNDr(S, W, 19); |
|
RNDr(S, W, 20); |
|
RNDr(S, W, 21); |
|
RNDr(S, W, 22); |
|
RNDr(S, W, 23); |
|
RNDr(S, W, 24); |
|
RNDr(S, W, 25); |
|
RNDr(S, W, 26); |
|
RNDr(S, W, 27); |
|
RNDr(S, W, 28); |
|
RNDr(S, W, 29); |
|
RNDr(S, W, 30); |
|
RNDr(S, W, 31); |
|
RNDr(S, W, 32); |
|
RNDr(S, W, 33); |
|
RNDr(S, W, 34); |
|
RNDr(S, W, 35); |
|
RNDr(S, W, 36); |
|
RNDr(S, W, 37); |
|
RNDr(S, W, 38); |
|
RNDr(S, W, 39); |
|
RNDr(S, W, 40); |
|
RNDr(S, W, 41); |
|
RNDr(S, W, 42); |
|
RNDr(S, W, 43); |
|
RNDr(S, W, 44); |
|
RNDr(S, W, 45); |
|
RNDr(S, W, 46); |
|
RNDr(S, W, 47); |
|
RNDr(S, W, 48); |
|
RNDr(S, W, 49); |
|
RNDr(S, W, 50); |
|
RNDr(S, W, 51); |
|
RNDr(S, W, 52); |
|
RNDr(S, W, 53); |
|
RNDr(S, W, 54); |
|
RNDr(S, W, 55); |
|
RNDr(S, W, 56); |
|
RNDr(S, W, 57); |
|
RNDr(S, W, 58); |
|
RNDr(S, W, 59); |
|
RNDr(S, W, 60); |
|
RNDr(S, W, 61); |
|
RNDr(S, W, 62); |
|
RNDr(S, W, 63); |
|
|
|
/* 4. Mix local working variables into global state */ |
|
for (i = 0; i < 8; i++) |
|
state[i] += S[i]; |
|
} |
|
|
|
#endif /* EXTERN_SHA256 */ |
|
|
|
|
|
static const uint32_t sha256d_hash1[16] = { |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x80000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000100 |
|
}; |
|
|
|
static void sha256d_80_swap(uint32_t *hash, const uint32_t *data) |
|
{ |
|
uint32_t S[16]; |
|
int i; |
|
|
|
sha256_init(S); |
|
sha256_transform(S, data, 0); |
|
sha256_transform(S, data + 16, 0); |
|
memcpy(S + 8, sha256d_hash1 + 8, 32); |
|
sha256_init(hash); |
|
sha256_transform(hash, S, 0); |
|
for (i = 0; i < 8; i++) |
|
hash[i] = swab32(hash[i]); |
|
} |
|
|
|
void sha256d(unsigned char *hash, const unsigned char *data, int len) |
|
{ |
|
uint32_t S[16], T[16]; |
|
int i, r; |
|
|
|
sha256_init(S); |
|
for (r = len; r > -9; r -= 64) { |
|
if (r < 64) |
|
memset(T, 0, 64); |
|
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r)); |
|
if (r >= 0 && r < 64) |
|
((unsigned char *)T)[r] = 0x80; |
|
for (i = 0; i < 16; i++) |
|
T[i] = be32dec(T + i); |
|
if (r < 56) |
|
T[15] = 8 * len; |
|
sha256_transform(S, T, 0); |
|
} |
|
memcpy(S + 8, sha256d_hash1 + 8, 32); |
|
sha256_init(T); |
|
sha256_transform(T, S, 0); |
|
for (i = 0; i < 8; i++) |
|
be32enc((uint32_t *)hash + i, T[i]); |
|
} |
|
|
|
static inline void sha256d_preextend(uint32_t *W) |
|
{ |
|
W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0]; |
|
W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1]; |
|
W[18] = s1(W[16]) + W[11] + W[ 2]; |
|
W[19] = s1(W[17]) + W[12] + s0(W[ 4]); |
|
W[20] = W[13] + s0(W[ 5]) + W[ 4]; |
|
W[21] = W[14] + s0(W[ 6]) + W[ 5]; |
|
W[22] = W[15] + s0(W[ 7]) + W[ 6]; |
|
W[23] = W[16] + s0(W[ 8]) + W[ 7]; |
|
W[24] = W[17] + s0(W[ 9]) + W[ 8]; |
|
W[25] = s0(W[10]) + W[ 9]; |
|
W[26] = s0(W[11]) + W[10]; |
|
W[27] = s0(W[12]) + W[11]; |
|
W[28] = s0(W[13]) + W[12]; |
|
W[29] = s0(W[14]) + W[13]; |
|
W[30] = s0(W[15]) + W[14]; |
|
W[31] = s0(W[16]) + W[15]; |
|
} |
|
|
|
static inline void sha256d_prehash(uint32_t *S, const uint32_t *W) |
|
{ |
|
uint32_t t0, t1; |
|
RNDr(S, W, 0); |
|
RNDr(S, W, 1); |
|
RNDr(S, W, 2); |
|
} |
|
|
|
#ifdef EXTERN_SHA256 |
|
|
|
void sha256d_ms(uint32_t *hash, uint32_t *W, |
|
const uint32_t *midstate, const uint32_t *prehash); |
|
|
|
#else |
|
|
|
static inline void sha256d_ms(uint32_t *hash, uint32_t *W, |
|
const uint32_t *midstate, const uint32_t *prehash) |
|
{ |
|
uint32_t S[64]; |
|
uint32_t t0, t1; |
|
int i; |
|
|
|
S[18] = W[18]; |
|
S[19] = W[19]; |
|
S[20] = W[20]; |
|
S[22] = W[22]; |
|
S[23] = W[23]; |
|
S[24] = W[24]; |
|
S[30] = W[30]; |
|
S[31] = W[31]; |
|
|
|
W[18] += s0(W[3]); |
|
W[19] += W[3]; |
|
W[20] += s1(W[18]); |
|
W[21] = s1(W[19]); |
|
W[22] += s1(W[20]); |
|
W[23] += s1(W[21]); |
|
W[24] += s1(W[22]); |
|
W[25] = s1(W[23]) + W[18]; |
|
W[26] = s1(W[24]) + W[19]; |
|
W[27] = s1(W[25]) + W[20]; |
|
W[28] = s1(W[26]) + W[21]; |
|
W[29] = s1(W[27]) + W[22]; |
|
W[30] += s1(W[28]) + W[23]; |
|
W[31] += s1(W[29]) + W[24]; |
|
for (i = 32; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
memcpy(S, prehash, 32); |
|
|
|
RNDr(S, W, 3); |
|
RNDr(S, W, 4); |
|
RNDr(S, W, 5); |
|
RNDr(S, W, 6); |
|
RNDr(S, W, 7); |
|
RNDr(S, W, 8); |
|
RNDr(S, W, 9); |
|
RNDr(S, W, 10); |
|
RNDr(S, W, 11); |
|
RNDr(S, W, 12); |
|
RNDr(S, W, 13); |
|
RNDr(S, W, 14); |
|
RNDr(S, W, 15); |
|
RNDr(S, W, 16); |
|
RNDr(S, W, 17); |
|
RNDr(S, W, 18); |
|
RNDr(S, W, 19); |
|
RNDr(S, W, 20); |
|
RNDr(S, W, 21); |
|
RNDr(S, W, 22); |
|
RNDr(S, W, 23); |
|
RNDr(S, W, 24); |
|
RNDr(S, W, 25); |
|
RNDr(S, W, 26); |
|
RNDr(S, W, 27); |
|
RNDr(S, W, 28); |
|
RNDr(S, W, 29); |
|
RNDr(S, W, 30); |
|
RNDr(S, W, 31); |
|
RNDr(S, W, 32); |
|
RNDr(S, W, 33); |
|
RNDr(S, W, 34); |
|
RNDr(S, W, 35); |
|
RNDr(S, W, 36); |
|
RNDr(S, W, 37); |
|
RNDr(S, W, 38); |
|
RNDr(S, W, 39); |
|
RNDr(S, W, 40); |
|
RNDr(S, W, 41); |
|
RNDr(S, W, 42); |
|
RNDr(S, W, 43); |
|
RNDr(S, W, 44); |
|
RNDr(S, W, 45); |
|
RNDr(S, W, 46); |
|
RNDr(S, W, 47); |
|
RNDr(S, W, 48); |
|
RNDr(S, W, 49); |
|
RNDr(S, W, 50); |
|
RNDr(S, W, 51); |
|
RNDr(S, W, 52); |
|
RNDr(S, W, 53); |
|
RNDr(S, W, 54); |
|
RNDr(S, W, 55); |
|
RNDr(S, W, 56); |
|
RNDr(S, W, 57); |
|
RNDr(S, W, 58); |
|
RNDr(S, W, 59); |
|
RNDr(S, W, 60); |
|
RNDr(S, W, 61); |
|
RNDr(S, W, 62); |
|
RNDr(S, W, 63); |
|
|
|
for (i = 0; i < 8; i++) |
|
S[i] += midstate[i]; |
|
|
|
W[18] = S[18]; |
|
W[19] = S[19]; |
|
W[20] = S[20]; |
|
W[22] = S[22]; |
|
W[23] = S[23]; |
|
W[24] = S[24]; |
|
W[30] = S[30]; |
|
W[31] = S[31]; |
|
|
|
memcpy(S + 8, sha256d_hash1 + 8, 32); |
|
S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0]; |
|
S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1]; |
|
S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2]; |
|
S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3]; |
|
S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4]; |
|
S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5]; |
|
S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6]; |
|
S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7]; |
|
S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8]; |
|
S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9]; |
|
S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10]; |
|
S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11]; |
|
S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12]; |
|
S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13]; |
|
S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14]; |
|
S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15]; |
|
for (i = 32; i < 60; i += 2) { |
|
S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16]; |
|
S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15]; |
|
} |
|
S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44]; |
|
|
|
sha256_init(hash); |
|
|
|
RNDr(hash, S, 0); |
|
RNDr(hash, S, 1); |
|
RNDr(hash, S, 2); |
|
RNDr(hash, S, 3); |
|
RNDr(hash, S, 4); |
|
RNDr(hash, S, 5); |
|
RNDr(hash, S, 6); |
|
RNDr(hash, S, 7); |
|
RNDr(hash, S, 8); |
|
RNDr(hash, S, 9); |
|
RNDr(hash, S, 10); |
|
RNDr(hash, S, 11); |
|
RNDr(hash, S, 12); |
|
RNDr(hash, S, 13); |
|
RNDr(hash, S, 14); |
|
RNDr(hash, S, 15); |
|
RNDr(hash, S, 16); |
|
RNDr(hash, S, 17); |
|
RNDr(hash, S, 18); |
|
RNDr(hash, S, 19); |
|
RNDr(hash, S, 20); |
|
RNDr(hash, S, 21); |
|
RNDr(hash, S, 22); |
|
RNDr(hash, S, 23); |
|
RNDr(hash, S, 24); |
|
RNDr(hash, S, 25); |
|
RNDr(hash, S, 26); |
|
RNDr(hash, S, 27); |
|
RNDr(hash, S, 28); |
|
RNDr(hash, S, 29); |
|
RNDr(hash, S, 30); |
|
RNDr(hash, S, 31); |
|
RNDr(hash, S, 32); |
|
RNDr(hash, S, 33); |
|
RNDr(hash, S, 34); |
|
RNDr(hash, S, 35); |
|
RNDr(hash, S, 36); |
|
RNDr(hash, S, 37); |
|
RNDr(hash, S, 38); |
|
RNDr(hash, S, 39); |
|
RNDr(hash, S, 40); |
|
RNDr(hash, S, 41); |
|
RNDr(hash, S, 42); |
|
RNDr(hash, S, 43); |
|
RNDr(hash, S, 44); |
|
RNDr(hash, S, 45); |
|
RNDr(hash, S, 46); |
|
RNDr(hash, S, 47); |
|
RNDr(hash, S, 48); |
|
RNDr(hash, S, 49); |
|
RNDr(hash, S, 50); |
|
RNDr(hash, S, 51); |
|
RNDr(hash, S, 52); |
|
RNDr(hash, S, 53); |
|
RNDr(hash, S, 54); |
|
RNDr(hash, S, 55); |
|
RNDr(hash, S, 56); |
|
|
|
hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5]) |
|
+ S[57] + sha256_k[57]; |
|
hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4]) |
|
+ S[58] + sha256_k[58]; |
|
hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3]) |
|
+ S[59] + sha256_k[59]; |
|
hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2]) |
|
+ S[60] + sha256_k[60] |
|
+ sha256_h[7]; |
|
} |
|
|
|
#endif /* EXTERN_SHA256 */ |
|
|
|
#if HAVE_SHA256_4WAY |
|
|
|
void sha256d_ms_4way(uint32_t *hash, uint32_t *data, |
|
const uint32_t *midstate, const uint32_t *prehash); |
|
|
|
static inline int scanhash_sha256d_4way(int thr_id, uint32_t *pdata, |
|
const uint32_t *ptarget uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
uint32_t data[4 * 64] __attribute__((aligned(128))); |
|
uint32_t hash[4 * 8] __attribute__((aligned(32))); |
|
uint32_t midstate[4 * 8] __attribute__((aligned(32))); |
|
uint32_t prehash[4 * 8] __attribute__((aligned(32))); |
|
uint32_t n = pdata[19] - 1; |
|
const uint32_t first_nonce = pdata[19]; |
|
const uint32_t Htarg = ptarget[7]; |
|
int i, j; |
|
|
|
memcpy(data, pdata + 16, 64); |
|
sha256d_preextend(data); |
|
for (i = 31; i >= 0; i--) |
|
for (j = 0; j < 4; j++) |
|
data[i * 4 + j] = data[i]; |
|
|
|
sha256_init(midstate); |
|
sha256_transform(midstate, pdata, 0); |
|
memcpy(prehash, midstate, 32); |
|
sha256d_prehash(prehash, pdata + 16); |
|
for (i = 7; i >= 0; i--) { |
|
for (j = 0; j < 4; j++) { |
|
midstate[i * 4 + j] = midstate[i]; |
|
prehash[i * 4 + j] = prehash[i]; |
|
} |
|
} |
|
|
|
do { |
|
for (i = 0; i < 4; i++) |
|
data[4 * 3 + i] = ++n; |
|
|
|
sha256d_ms_4way(hash, data, midstate, prehash); |
|
|
|
for (i = 0; i < 4; i++) { |
|
if (swab32(hash[4 * 7 + i]) <= Htarg) { |
|
pdata[19] = data[4 * 3 + i]; |
|
sha256d_80_swap(hash, pdata); |
|
if (fulltest(hash, ptarget)) { |
|
work_set_target_ratio(work, hash); |
|
*hashes_done = n - first_nonce + 1; |
|
return 1; |
|
} |
|
} |
|
} |
|
} while (n < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = n - first_nonce + 1; |
|
pdata[19] = n; |
|
return 0; |
|
} |
|
|
|
#endif /* HAVE_SHA256_4WAY */ |
|
|
|
#if HAVE_SHA256_8WAY |
|
|
|
void sha256d_ms_8way(uint32_t *hash, uint32_t *data, |
|
const uint32_t *midstate, const uint32_t *prehash); |
|
|
|
static inline int scanhash_sha256d_8way(int thr_id, uint32_t *pdata, |
|
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
uint32_t data[8 * 64] __attribute__((aligned(128))); |
|
uint32_t hash[8 * 8] __attribute__((aligned(32))); |
|
uint32_t midstate[8 * 8] __attribute__((aligned(32))); |
|
uint32_t prehash[8 * 8] __attribute__((aligned(32))); |
|
uint32_t n = pdata[19] - 1; |
|
const uint32_t first_nonce = pdata[19]; |
|
const uint32_t Htarg = ptarget[7]; |
|
int i, j; |
|
|
|
memcpy(data, pdata + 16, 64); |
|
sha256d_preextend(data); |
|
for (i = 31; i >= 0; i--) |
|
for (j = 0; j < 8; j++) |
|
data[i * 8 + j] = data[i]; |
|
|
|
sha256_init(midstate); |
|
sha256_transform(midstate, pdata, 0); |
|
memcpy(prehash, midstate, 32); |
|
sha256d_prehash(prehash, pdata + 16); |
|
for (i = 7; i >= 0; i--) { |
|
for (j = 0; j < 8; j++) { |
|
midstate[i * 8 + j] = midstate[i]; |
|
prehash[i * 8 + j] = prehash[i]; |
|
} |
|
} |
|
|
|
do { |
|
for (i = 0; i < 8; i++) |
|
data[8 * 3 + i] = ++n; |
|
|
|
sha256d_ms_8way(hash, data, midstate, prehash); |
|
|
|
for (i = 0; i < 8; i++) { |
|
if (swab32(hash[8 * 7 + i]) <= Htarg) { |
|
pdata[19] = data[8 * 3 + i]; |
|
sha256d_80_swap(hash, pdata); |
|
if (fulltest(hash, ptarget)) { |
|
*hashes_done = n - first_nonce + 1; |
|
return 1; |
|
} |
|
} |
|
} |
|
} while (n < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = n - first_nonce + 1; |
|
pdata[19] = n; |
|
return 0; |
|
} |
|
|
|
#endif /* HAVE_SHA256_8WAY */ |
|
|
|
#if 0 |
|
int scanhash_sha256d(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
uint32_t _ALIGN(128) data[64]; |
|
uint32_t hash[8]; |
|
uint32_t midstate[8]; |
|
uint32_t prehash[8]; |
|
uint32_t *pdata = work->data; |
|
uint32_t *ptarget = work->target; |
|
uint32_t n = pdata[19] - 1; |
|
const uint32_t first_nonce = pdata[19]; |
|
const uint32_t Htarg = ptarget[7]; |
|
|
|
#if HAVE_SHA256_8WAY |
|
if (sha256_use_8way()) |
|
return scanhash_sha256d_8way(thr_id, pdata, ptarget, |
|
max_nonce, hashes_done); |
|
#endif |
|
#if HAVE_SHA256_4WAY |
|
if (sha256_use_4way()) |
|
return scanhash_sha256d_4way(thr_id, pdata, ptarget, |
|
max_nonce, hashes_done); |
|
#endif |
|
|
|
memcpy(data, pdata + 16, 64); |
|
sha256d_preextend(data); |
|
|
|
sha256_init(midstate); |
|
sha256_transform(midstate, pdata, 0); |
|
memcpy(prehash, midstate, 32); |
|
sha256d_prehash(prehash, pdata + 16); |
|
|
|
do { |
|
data[3] = ++n; |
|
sha256d_ms(hash, data, midstate, prehash); |
|
if (swab32(hash[7]) <= Htarg) { |
|
pdata[19] = data[3]; |
|
sha256d_80_swap(hash, pdata); |
|
if (fulltest(hash, ptarget)) { |
|
*hashes_done = n - first_nonce + 1; |
|
return 1; |
|
} |
|
} |
|
} while (n < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = n - first_nonce + 1; |
|
pdata[19] = n; |
|
return 0; |
|
} |
|
|
|
#endif
|
|
|