mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-25 14:04:34 +00:00
a7905e6802
also move vstudio specific cpuminer-config.h in compat/
632 lines
16 KiB
C
632 lines
16 KiB
C
/*
|
|
* Copyright 2011 ArtForz
|
|
* Copyright 2011-2013 pooler
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version. See COPYING for more details.
|
|
*/
|
|
|
|
#include "miner.h"
|
|
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#if defined(__arm__) && defined(__APCS_32__)
|
|
#define EXTERN_SHA256
|
|
#endif
|
|
|
|
static const uint32_t sha256_h[8] = {
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
};
|
|
|
|
static const uint32_t sha256_k[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
void sha256_init(uint32_t *state)
|
|
{
|
|
memcpy(state, sha256_h, 32);
|
|
}
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
do { \
|
|
t0 = h + S1(e) + Ch(e, f, g) + k; \
|
|
t1 = S0(a) + Maj(a, b, c); \
|
|
d += t0; \
|
|
h = t0 + t1; \
|
|
} while (0)
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i] + sha256_k[i])
|
|
|
|
#ifndef EXTERN_SHA256
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
void sha256_transform(uint32_t *state, const uint32_t *block, int swap)
|
|
{
|
|
uint32_t W[64];
|
|
uint32_t S[8];
|
|
uint32_t t0, t1;
|
|
int i;
|
|
|
|
/* 1. Prepare message schedule W. */
|
|
if (swap) {
|
|
for (i = 0; i < 16; i++)
|
|
W[i] = swab32(block[i]);
|
|
} else
|
|
memcpy(W, block, 64);
|
|
for (i = 16; i < 64; i += 2) {
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
|
|
}
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
RNDr(S, W, 0);
|
|
RNDr(S, W, 1);
|
|
RNDr(S, W, 2);
|
|
RNDr(S, W, 3);
|
|
RNDr(S, W, 4);
|
|
RNDr(S, W, 5);
|
|
RNDr(S, W, 6);
|
|
RNDr(S, W, 7);
|
|
RNDr(S, W, 8);
|
|
RNDr(S, W, 9);
|
|
RNDr(S, W, 10);
|
|
RNDr(S, W, 11);
|
|
RNDr(S, W, 12);
|
|
RNDr(S, W, 13);
|
|
RNDr(S, W, 14);
|
|
RNDr(S, W, 15);
|
|
RNDr(S, W, 16);
|
|
RNDr(S, W, 17);
|
|
RNDr(S, W, 18);
|
|
RNDr(S, W, 19);
|
|
RNDr(S, W, 20);
|
|
RNDr(S, W, 21);
|
|
RNDr(S, W, 22);
|
|
RNDr(S, W, 23);
|
|
RNDr(S, W, 24);
|
|
RNDr(S, W, 25);
|
|
RNDr(S, W, 26);
|
|
RNDr(S, W, 27);
|
|
RNDr(S, W, 28);
|
|
RNDr(S, W, 29);
|
|
RNDr(S, W, 30);
|
|
RNDr(S, W, 31);
|
|
RNDr(S, W, 32);
|
|
RNDr(S, W, 33);
|
|
RNDr(S, W, 34);
|
|
RNDr(S, W, 35);
|
|
RNDr(S, W, 36);
|
|
RNDr(S, W, 37);
|
|
RNDr(S, W, 38);
|
|
RNDr(S, W, 39);
|
|
RNDr(S, W, 40);
|
|
RNDr(S, W, 41);
|
|
RNDr(S, W, 42);
|
|
RNDr(S, W, 43);
|
|
RNDr(S, W, 44);
|
|
RNDr(S, W, 45);
|
|
RNDr(S, W, 46);
|
|
RNDr(S, W, 47);
|
|
RNDr(S, W, 48);
|
|
RNDr(S, W, 49);
|
|
RNDr(S, W, 50);
|
|
RNDr(S, W, 51);
|
|
RNDr(S, W, 52);
|
|
RNDr(S, W, 53);
|
|
RNDr(S, W, 54);
|
|
RNDr(S, W, 55);
|
|
RNDr(S, W, 56);
|
|
RNDr(S, W, 57);
|
|
RNDr(S, W, 58);
|
|
RNDr(S, W, 59);
|
|
RNDr(S, W, 60);
|
|
RNDr(S, W, 61);
|
|
RNDr(S, W, 62);
|
|
RNDr(S, W, 63);
|
|
|
|
/* 4. Mix local working variables into global state */
|
|
for (i = 0; i < 8; i++)
|
|
state[i] += S[i];
|
|
}
|
|
|
|
#endif /* EXTERN_SHA256 */
|
|
|
|
|
|
static const uint32_t sha256d_hash1[16] = {
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x80000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000100
|
|
};
|
|
|
|
static void sha256d_80_swap(uint32_t *hash, const uint32_t *data)
|
|
{
|
|
uint32_t S[16];
|
|
int i;
|
|
|
|
sha256_init(S);
|
|
sha256_transform(S, data, 0);
|
|
sha256_transform(S, data + 16, 0);
|
|
memcpy(S + 8, sha256d_hash1 + 8, 32);
|
|
sha256_init(hash);
|
|
sha256_transform(hash, S, 0);
|
|
for (i = 0; i < 8; i++)
|
|
hash[i] = swab32(hash[i]);
|
|
}
|
|
|
|
void sha256d(unsigned char *hash, const unsigned char *data, int len)
|
|
{
|
|
uint32_t S[16], T[16];
|
|
int i, r;
|
|
|
|
sha256_init(S);
|
|
for (r = len; r > -9; r -= 64) {
|
|
if (r < 64)
|
|
memset(T, 0, 64);
|
|
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
|
|
if (r >= 0 && r < 64)
|
|
((unsigned char *)T)[r] = 0x80;
|
|
for (i = 0; i < 16; i++)
|
|
T[i] = be32dec(T + i);
|
|
if (r < 56)
|
|
T[15] = 8 * len;
|
|
sha256_transform(S, T, 0);
|
|
}
|
|
memcpy(S + 8, sha256d_hash1 + 8, 32);
|
|
sha256_init(T);
|
|
sha256_transform(T, S, 0);
|
|
for (i = 0; i < 8; i++)
|
|
be32enc((uint32_t *)hash + i, T[i]);
|
|
}
|
|
|
|
static inline void sha256d_preextend(uint32_t *W)
|
|
{
|
|
W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0];
|
|
W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1];
|
|
W[18] = s1(W[16]) + W[11] + W[ 2];
|
|
W[19] = s1(W[17]) + W[12] + s0(W[ 4]);
|
|
W[20] = W[13] + s0(W[ 5]) + W[ 4];
|
|
W[21] = W[14] + s0(W[ 6]) + W[ 5];
|
|
W[22] = W[15] + s0(W[ 7]) + W[ 6];
|
|
W[23] = W[16] + s0(W[ 8]) + W[ 7];
|
|
W[24] = W[17] + s0(W[ 9]) + W[ 8];
|
|
W[25] = s0(W[10]) + W[ 9];
|
|
W[26] = s0(W[11]) + W[10];
|
|
W[27] = s0(W[12]) + W[11];
|
|
W[28] = s0(W[13]) + W[12];
|
|
W[29] = s0(W[14]) + W[13];
|
|
W[30] = s0(W[15]) + W[14];
|
|
W[31] = s0(W[16]) + W[15];
|
|
}
|
|
|
|
static inline void sha256d_prehash(uint32_t *S, const uint32_t *W)
|
|
{
|
|
uint32_t t0, t1;
|
|
RNDr(S, W, 0);
|
|
RNDr(S, W, 1);
|
|
RNDr(S, W, 2);
|
|
}
|
|
|
|
#ifdef EXTERN_SHA256
|
|
|
|
void sha256d_ms(uint32_t *hash, uint32_t *W,
|
|
const uint32_t *midstate, const uint32_t *prehash);
|
|
|
|
#else
|
|
|
|
static inline void sha256d_ms(uint32_t *hash, uint32_t *W,
|
|
const uint32_t *midstate, const uint32_t *prehash)
|
|
{
|
|
uint32_t S[64];
|
|
uint32_t t0, t1;
|
|
int i;
|
|
|
|
S[18] = W[18];
|
|
S[19] = W[19];
|
|
S[20] = W[20];
|
|
S[22] = W[22];
|
|
S[23] = W[23];
|
|
S[24] = W[24];
|
|
S[30] = W[30];
|
|
S[31] = W[31];
|
|
|
|
W[18] += s0(W[3]);
|
|
W[19] += W[3];
|
|
W[20] += s1(W[18]);
|
|
W[21] = s1(W[19]);
|
|
W[22] += s1(W[20]);
|
|
W[23] += s1(W[21]);
|
|
W[24] += s1(W[22]);
|
|
W[25] = s1(W[23]) + W[18];
|
|
W[26] = s1(W[24]) + W[19];
|
|
W[27] = s1(W[25]) + W[20];
|
|
W[28] = s1(W[26]) + W[21];
|
|
W[29] = s1(W[27]) + W[22];
|
|
W[30] += s1(W[28]) + W[23];
|
|
W[31] += s1(W[29]) + W[24];
|
|
for (i = 32; i < 64; i += 2) {
|
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
|
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
|
|
}
|
|
|
|
memcpy(S, prehash, 32);
|
|
|
|
RNDr(S, W, 3);
|
|
RNDr(S, W, 4);
|
|
RNDr(S, W, 5);
|
|
RNDr(S, W, 6);
|
|
RNDr(S, W, 7);
|
|
RNDr(S, W, 8);
|
|
RNDr(S, W, 9);
|
|
RNDr(S, W, 10);
|
|
RNDr(S, W, 11);
|
|
RNDr(S, W, 12);
|
|
RNDr(S, W, 13);
|
|
RNDr(S, W, 14);
|
|
RNDr(S, W, 15);
|
|
RNDr(S, W, 16);
|
|
RNDr(S, W, 17);
|
|
RNDr(S, W, 18);
|
|
RNDr(S, W, 19);
|
|
RNDr(S, W, 20);
|
|
RNDr(S, W, 21);
|
|
RNDr(S, W, 22);
|
|
RNDr(S, W, 23);
|
|
RNDr(S, W, 24);
|
|
RNDr(S, W, 25);
|
|
RNDr(S, W, 26);
|
|
RNDr(S, W, 27);
|
|
RNDr(S, W, 28);
|
|
RNDr(S, W, 29);
|
|
RNDr(S, W, 30);
|
|
RNDr(S, W, 31);
|
|
RNDr(S, W, 32);
|
|
RNDr(S, W, 33);
|
|
RNDr(S, W, 34);
|
|
RNDr(S, W, 35);
|
|
RNDr(S, W, 36);
|
|
RNDr(S, W, 37);
|
|
RNDr(S, W, 38);
|
|
RNDr(S, W, 39);
|
|
RNDr(S, W, 40);
|
|
RNDr(S, W, 41);
|
|
RNDr(S, W, 42);
|
|
RNDr(S, W, 43);
|
|
RNDr(S, W, 44);
|
|
RNDr(S, W, 45);
|
|
RNDr(S, W, 46);
|
|
RNDr(S, W, 47);
|
|
RNDr(S, W, 48);
|
|
RNDr(S, W, 49);
|
|
RNDr(S, W, 50);
|
|
RNDr(S, W, 51);
|
|
RNDr(S, W, 52);
|
|
RNDr(S, W, 53);
|
|
RNDr(S, W, 54);
|
|
RNDr(S, W, 55);
|
|
RNDr(S, W, 56);
|
|
RNDr(S, W, 57);
|
|
RNDr(S, W, 58);
|
|
RNDr(S, W, 59);
|
|
RNDr(S, W, 60);
|
|
RNDr(S, W, 61);
|
|
RNDr(S, W, 62);
|
|
RNDr(S, W, 63);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
S[i] += midstate[i];
|
|
|
|
W[18] = S[18];
|
|
W[19] = S[19];
|
|
W[20] = S[20];
|
|
W[22] = S[22];
|
|
W[23] = S[23];
|
|
W[24] = S[24];
|
|
W[30] = S[30];
|
|
W[31] = S[31];
|
|
|
|
memcpy(S + 8, sha256d_hash1 + 8, 32);
|
|
S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0];
|
|
S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1];
|
|
S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2];
|
|
S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3];
|
|
S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4];
|
|
S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5];
|
|
S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6];
|
|
S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7];
|
|
S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8];
|
|
S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9];
|
|
S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10];
|
|
S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11];
|
|
S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12];
|
|
S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13];
|
|
S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14];
|
|
S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15];
|
|
for (i = 32; i < 60; i += 2) {
|
|
S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16];
|
|
S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15];
|
|
}
|
|
S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44];
|
|
|
|
sha256_init(hash);
|
|
|
|
RNDr(hash, S, 0);
|
|
RNDr(hash, S, 1);
|
|
RNDr(hash, S, 2);
|
|
RNDr(hash, S, 3);
|
|
RNDr(hash, S, 4);
|
|
RNDr(hash, S, 5);
|
|
RNDr(hash, S, 6);
|
|
RNDr(hash, S, 7);
|
|
RNDr(hash, S, 8);
|
|
RNDr(hash, S, 9);
|
|
RNDr(hash, S, 10);
|
|
RNDr(hash, S, 11);
|
|
RNDr(hash, S, 12);
|
|
RNDr(hash, S, 13);
|
|
RNDr(hash, S, 14);
|
|
RNDr(hash, S, 15);
|
|
RNDr(hash, S, 16);
|
|
RNDr(hash, S, 17);
|
|
RNDr(hash, S, 18);
|
|
RNDr(hash, S, 19);
|
|
RNDr(hash, S, 20);
|
|
RNDr(hash, S, 21);
|
|
RNDr(hash, S, 22);
|
|
RNDr(hash, S, 23);
|
|
RNDr(hash, S, 24);
|
|
RNDr(hash, S, 25);
|
|
RNDr(hash, S, 26);
|
|
RNDr(hash, S, 27);
|
|
RNDr(hash, S, 28);
|
|
RNDr(hash, S, 29);
|
|
RNDr(hash, S, 30);
|
|
RNDr(hash, S, 31);
|
|
RNDr(hash, S, 32);
|
|
RNDr(hash, S, 33);
|
|
RNDr(hash, S, 34);
|
|
RNDr(hash, S, 35);
|
|
RNDr(hash, S, 36);
|
|
RNDr(hash, S, 37);
|
|
RNDr(hash, S, 38);
|
|
RNDr(hash, S, 39);
|
|
RNDr(hash, S, 40);
|
|
RNDr(hash, S, 41);
|
|
RNDr(hash, S, 42);
|
|
RNDr(hash, S, 43);
|
|
RNDr(hash, S, 44);
|
|
RNDr(hash, S, 45);
|
|
RNDr(hash, S, 46);
|
|
RNDr(hash, S, 47);
|
|
RNDr(hash, S, 48);
|
|
RNDr(hash, S, 49);
|
|
RNDr(hash, S, 50);
|
|
RNDr(hash, S, 51);
|
|
RNDr(hash, S, 52);
|
|
RNDr(hash, S, 53);
|
|
RNDr(hash, S, 54);
|
|
RNDr(hash, S, 55);
|
|
RNDr(hash, S, 56);
|
|
|
|
hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5])
|
|
+ S[57] + sha256_k[57];
|
|
hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4])
|
|
+ S[58] + sha256_k[58];
|
|
hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3])
|
|
+ S[59] + sha256_k[59];
|
|
hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2])
|
|
+ S[60] + sha256_k[60]
|
|
+ sha256_h[7];
|
|
}
|
|
|
|
#endif /* EXTERN_SHA256 */
|
|
|
|
#if HAVE_SHA256_4WAY
|
|
|
|
void sha256d_ms_4way(uint32_t *hash, uint32_t *data,
|
|
const uint32_t *midstate, const uint32_t *prehash);
|
|
|
|
static inline int scanhash_sha256d_4way(int thr_id, uint32_t *pdata,
|
|
const uint32_t *ptarget uint32_t max_nonce, unsigned long *hashes_done)
|
|
{
|
|
uint32_t data[4 * 64] __attribute__((aligned(128)));
|
|
uint32_t hash[4 * 8] __attribute__((aligned(32)));
|
|
uint32_t midstate[4 * 8] __attribute__((aligned(32)));
|
|
uint32_t prehash[4 * 8] __attribute__((aligned(32)));
|
|
uint32_t n = pdata[19] - 1;
|
|
const uint32_t first_nonce = pdata[19];
|
|
const uint32_t Htarg = ptarget[7];
|
|
int i, j;
|
|
|
|
memcpy(data, pdata + 16, 64);
|
|
sha256d_preextend(data);
|
|
for (i = 31; i >= 0; i--)
|
|
for (j = 0; j < 4; j++)
|
|
data[i * 4 + j] = data[i];
|
|
|
|
sha256_init(midstate);
|
|
sha256_transform(midstate, pdata, 0);
|
|
memcpy(prehash, midstate, 32);
|
|
sha256d_prehash(prehash, pdata + 16);
|
|
for (i = 7; i >= 0; i--) {
|
|
for (j = 0; j < 4; j++) {
|
|
midstate[i * 4 + j] = midstate[i];
|
|
prehash[i * 4 + j] = prehash[i];
|
|
}
|
|
}
|
|
|
|
do {
|
|
for (i = 0; i < 4; i++)
|
|
data[4 * 3 + i] = ++n;
|
|
|
|
sha256d_ms_4way(hash, data, midstate, prehash);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (swab32(hash[4 * 7 + i]) <= Htarg) {
|
|
pdata[19] = data[4 * 3 + i];
|
|
sha256d_80_swap(hash, pdata);
|
|
if (fulltest(hash, ptarget)) {
|
|
work_set_target_ratio(work, hash);
|
|
*hashes_done = n - first_nonce + 1;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
} while (n < max_nonce && !work_restart[thr_id].restart);
|
|
|
|
*hashes_done = n - first_nonce + 1;
|
|
pdata[19] = n;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_SHA256_4WAY */
|
|
|
|
#if HAVE_SHA256_8WAY
|
|
|
|
void sha256d_ms_8way(uint32_t *hash, uint32_t *data,
|
|
const uint32_t *midstate, const uint32_t *prehash);
|
|
|
|
static inline int scanhash_sha256d_8way(int thr_id, uint32_t *pdata,
|
|
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done)
|
|
{
|
|
uint32_t data[8 * 64] __attribute__((aligned(128)));
|
|
uint32_t hash[8 * 8] __attribute__((aligned(32)));
|
|
uint32_t midstate[8 * 8] __attribute__((aligned(32)));
|
|
uint32_t prehash[8 * 8] __attribute__((aligned(32)));
|
|
uint32_t n = pdata[19] - 1;
|
|
const uint32_t first_nonce = pdata[19];
|
|
const uint32_t Htarg = ptarget[7];
|
|
int i, j;
|
|
|
|
memcpy(data, pdata + 16, 64);
|
|
sha256d_preextend(data);
|
|
for (i = 31; i >= 0; i--)
|
|
for (j = 0; j < 8; j++)
|
|
data[i * 8 + j] = data[i];
|
|
|
|
sha256_init(midstate);
|
|
sha256_transform(midstate, pdata, 0);
|
|
memcpy(prehash, midstate, 32);
|
|
sha256d_prehash(prehash, pdata + 16);
|
|
for (i = 7; i >= 0; i--) {
|
|
for (j = 0; j < 8; j++) {
|
|
midstate[i * 8 + j] = midstate[i];
|
|
prehash[i * 8 + j] = prehash[i];
|
|
}
|
|
}
|
|
|
|
do {
|
|
for (i = 0; i < 8; i++)
|
|
data[8 * 3 + i] = ++n;
|
|
|
|
sha256d_ms_8way(hash, data, midstate, prehash);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (swab32(hash[8 * 7 + i]) <= Htarg) {
|
|
pdata[19] = data[8 * 3 + i];
|
|
sha256d_80_swap(hash, pdata);
|
|
if (fulltest(hash, ptarget)) {
|
|
*hashes_done = n - first_nonce + 1;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
} while (n < max_nonce && !work_restart[thr_id].restart);
|
|
|
|
*hashes_done = n - first_nonce + 1;
|
|
pdata[19] = n;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_SHA256_8WAY */
|
|
|
|
int scanhash_sha256d(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
|
|
{
|
|
uint32_t _ALIGN(128) data[64];
|
|
uint32_t hash[8];
|
|
uint32_t midstate[8];
|
|
uint32_t prehash[8];
|
|
uint32_t *pdata = work->data;
|
|
uint32_t *ptarget = work->target;
|
|
uint32_t n = pdata[19] - 1;
|
|
const uint32_t first_nonce = pdata[19];
|
|
const uint32_t Htarg = ptarget[7];
|
|
|
|
#if HAVE_SHA256_8WAY
|
|
if (sha256_use_8way())
|
|
return scanhash_sha256d_8way(thr_id, pdata, ptarget,
|
|
max_nonce, hashes_done);
|
|
#endif
|
|
#if HAVE_SHA256_4WAY
|
|
if (sha256_use_4way())
|
|
return scanhash_sha256d_4way(thr_id, pdata, ptarget,
|
|
max_nonce, hashes_done);
|
|
#endif
|
|
|
|
memcpy(data, pdata + 16, 64);
|
|
sha256d_preextend(data);
|
|
|
|
sha256_init(midstate);
|
|
sha256_transform(midstate, pdata, 0);
|
|
memcpy(prehash, midstate, 32);
|
|
sha256d_prehash(prehash, pdata + 16);
|
|
|
|
do {
|
|
data[3] = ++n;
|
|
sha256d_ms(hash, data, midstate, prehash);
|
|
if (swab32(hash[7]) <= Htarg) {
|
|
pdata[19] = data[3];
|
|
sha256d_80_swap(hash, pdata);
|
|
if (fulltest(hash, ptarget)) {
|
|
*hashes_done = n - first_nonce + 1;
|
|
return 1;
|
|
}
|
|
}
|
|
} while (n < max_nonce && !work_restart[thr_id].restart);
|
|
|
|
*hashes_done = n - first_nonce + 1;
|
|
pdata[19] = n;
|
|
return 0;
|
|
}
|