mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
756 lines
24 KiB
756 lines
24 KiB
/* |
|
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2013 pooler |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* This file was originally written by Colin Percival as part of the Tarsnap |
|
* online backup system. |
|
*/ |
|
|
|
#include "cpuminer-config.h" |
|
#include "miner.h" |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <inttypes.h> |
|
|
|
static const uint32_t keypad[12] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 |
|
}; |
|
static const uint32_t innerpad[11] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 |
|
}; |
|
static const uint32_t outerpad[8] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 |
|
}; |
|
static const uint32_t finalblk[16] = { |
|
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 |
|
}; |
|
|
|
static inline void HMAC_SHA256_80_init(const uint32_t *key, |
|
uint32_t *tstate, uint32_t *ostate) |
|
{ |
|
uint32_t ihash[8]; |
|
uint32_t pad[16]; |
|
int i; |
|
|
|
/* tstate is assumed to contain the midstate of key */ |
|
memcpy(pad, key + 16, 16); |
|
memcpy(pad + 4, keypad, 48); |
|
sha256_transform(tstate, pad, 0); |
|
memcpy(ihash, tstate, 32); |
|
|
|
sha256_init(ostate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
sha256_transform(ostate, pad, 0); |
|
|
|
sha256_init(tstate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 16; i++) |
|
pad[i] = 0x36363636; |
|
sha256_transform(tstate, pad, 0); |
|
} |
|
|
|
static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate, |
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t istate[8], ostate2[8]; |
|
uint32_t ibuf[16], obuf[16]; |
|
int i, j; |
|
|
|
memcpy(istate, tstate, 32); |
|
sha256_transform(istate, salt, 0); |
|
|
|
memcpy(ibuf, salt + 16, 16); |
|
memcpy(ibuf + 5, innerpad, 44); |
|
memcpy(obuf + 8, outerpad, 32); |
|
|
|
for (i = 0; i < 4; i++) { |
|
memcpy(obuf, istate, 32); |
|
ibuf[4] = i + 1; |
|
sha256_transform(obuf, ibuf, 0); |
|
|
|
memcpy(ostate2, ostate, 32); |
|
sha256_transform(ostate2, obuf, 0); |
|
for (j = 0; j < 8; j++) |
|
output[8 * i + j] = swab32(ostate2[j]); |
|
} |
|
} |
|
|
|
static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate, |
|
const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t buf[16]; |
|
int i; |
|
|
|
sha256_transform(tstate, salt, 1); |
|
sha256_transform(tstate, salt + 16, 1); |
|
sha256_transform(tstate, finalblk, 0); |
|
memcpy(buf, tstate, 32); |
|
memcpy(buf + 8, outerpad, 32); |
|
|
|
sha256_transform(ostate, buf, 0); |
|
for (i = 0; i < 8; i++) |
|
output[i] = swab32(ostate[i]); |
|
} |
|
|
|
|
|
#if HAVE_SHA256_4WAY |
|
|
|
static const uint32_t keypad_4way[4 * 12] = { |
|
0x80000000, 0x80000000, 0x80000000, 0x80000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000280, 0x00000280, 0x00000280, 0x00000280 |
|
}; |
|
static const uint32_t innerpad_4way[4 * 11] = { |
|
0x80000000, 0x80000000, 0x80000000, 0x80000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x000004a0, 0x000004a0, 0x000004a0, 0x000004a0 |
|
}; |
|
static const uint32_t outerpad_4way[4 * 8] = { |
|
0x80000000, 0x80000000, 0x80000000, 0x80000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000300, 0x00000300, 0x00000300, 0x00000300 |
|
}; |
|
static const uint32_t finalblk_4way[4 * 16] __attribute__((aligned(16))) = { |
|
0x00000001, 0x00000001, 0x00000001, 0x00000001, |
|
0x80000000, 0x80000000, 0x80000000, 0x80000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000620, 0x00000620, 0x00000620, 0x00000620 |
|
}; |
|
|
|
static inline void HMAC_SHA256_80_init_4way(const uint32_t *key, |
|
uint32_t *tstate, uint32_t *ostate) |
|
{ |
|
uint32_t ihash[4 * 8] __attribute__((aligned(16))); |
|
uint32_t pad[4 * 16] __attribute__((aligned(16))); |
|
int i; |
|
|
|
/* tstate is assumed to contain the midstate of key */ |
|
memcpy(pad, key + 4 * 16, 4 * 16); |
|
memcpy(pad + 4 * 4, keypad_4way, 4 * 48); |
|
sha256_transform_4way(tstate, pad, 0); |
|
memcpy(ihash, tstate, 4 * 32); |
|
|
|
sha256_init_4way(ostate); |
|
for (i = 0; i < 4 * 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 4 * 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
sha256_transform_4way(ostate, pad, 0); |
|
|
|
sha256_init_4way(tstate); |
|
for (i = 0; i < 4 * 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 4 * 16; i++) |
|
pad[i] = 0x36363636; |
|
sha256_transform_4way(tstate, pad, 0); |
|
} |
|
|
|
static inline void PBKDF2_SHA256_80_128_4way(const uint32_t *tstate, |
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t istate[4 * 8] __attribute__((aligned(16))); |
|
uint32_t ostate2[4 * 8] __attribute__((aligned(16))); |
|
uint32_t ibuf[4 * 16] __attribute__((aligned(16))); |
|
uint32_t obuf[4 * 16] __attribute__((aligned(16))); |
|
int i, j; |
|
|
|
memcpy(istate, tstate, 4 * 32); |
|
sha256_transform_4way(istate, salt, 0); |
|
|
|
memcpy(ibuf, salt + 4 * 16, 4 * 16); |
|
memcpy(ibuf + 4 * 5, innerpad_4way, 4 * 44); |
|
memcpy(obuf + 4 * 8, outerpad_4way, 4 * 32); |
|
|
|
for (i = 0; i < 4; i++) { |
|
memcpy(obuf, istate, 4 * 32); |
|
ibuf[4 * 4 + 0] = i + 1; |
|
ibuf[4 * 4 + 1] = i + 1; |
|
ibuf[4 * 4 + 2] = i + 1; |
|
ibuf[4 * 4 + 3] = i + 1; |
|
sha256_transform_4way(obuf, ibuf, 0); |
|
|
|
memcpy(ostate2, ostate, 4 * 32); |
|
sha256_transform_4way(ostate2, obuf, 0); |
|
for (j = 0; j < 4 * 8; j++) |
|
output[4 * 8 * i + j] = swab32(ostate2[j]); |
|
} |
|
} |
|
|
|
static inline void PBKDF2_SHA256_128_32_4way(uint32_t *tstate, |
|
uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t buf[4 * 16] __attribute__((aligned(16))); |
|
int i; |
|
|
|
sha256_transform_4way(tstate, salt, 1); |
|
sha256_transform_4way(tstate, salt + 4 * 16, 1); |
|
sha256_transform_4way(tstate, finalblk_4way, 0); |
|
memcpy(buf, tstate, 4 * 32); |
|
memcpy(buf + 4 * 8, outerpad_4way, 4 * 32); |
|
|
|
sha256_transform_4way(ostate, buf, 0); |
|
for (i = 0; i < 4 * 8; i++) |
|
output[i] = swab32(ostate[i]); |
|
} |
|
|
|
#endif /* HAVE_SHA256_4WAY */ |
|
|
|
|
|
#if HAVE_SHA256_8WAY |
|
|
|
static const uint32_t finalblk_8way[8 * 16] __attribute__((aligned(32))) = { |
|
0x00000001, 0x00000001, 0x00000001, 0x00000001, 0x00000001, 0x00000001, 0x00000001, 0x00000001, |
|
0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000620, 0x00000620, 0x00000620, 0x00000620, 0x00000620, 0x00000620, 0x00000620, 0x00000620 |
|
}; |
|
|
|
static inline void HMAC_SHA256_80_init_8way(const uint32_t *key, |
|
uint32_t *tstate, uint32_t *ostate) |
|
{ |
|
uint32_t ihash[8 * 8] __attribute__((aligned(32))); |
|
uint32_t pad[8 * 16] __attribute__((aligned(32))); |
|
int i; |
|
|
|
/* tstate is assumed to contain the midstate of key */ |
|
memcpy(pad, key + 8 * 16, 8 * 16); |
|
for (i = 0; i < 8; i++) |
|
pad[8 * 4 + i] = 0x80000000; |
|
memset(pad + 8 * 5, 0x00, 8 * 40); |
|
for (i = 0; i < 8; i++) |
|
pad[8 * 15 + i] = 0x00000280; |
|
sha256_transform_8way(tstate, pad, 0); |
|
memcpy(ihash, tstate, 8 * 32); |
|
|
|
sha256_init_8way(ostate); |
|
for (i = 0; i < 8 * 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 8 * 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
sha256_transform_8way(ostate, pad, 0); |
|
|
|
sha256_init_8way(tstate); |
|
for (i = 0; i < 8 * 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 8 * 16; i++) |
|
pad[i] = 0x36363636; |
|
sha256_transform_8way(tstate, pad, 0); |
|
} |
|
|
|
static inline void PBKDF2_SHA256_80_128_8way(const uint32_t *tstate, |
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t istate[8 * 8] __attribute__((aligned(32))); |
|
uint32_t ostate2[8 * 8] __attribute__((aligned(32))); |
|
uint32_t ibuf[8 * 16] __attribute__((aligned(32))); |
|
uint32_t obuf[8 * 16] __attribute__((aligned(32))); |
|
int i, j; |
|
|
|
memcpy(istate, tstate, 8 * 32); |
|
sha256_transform_8way(istate, salt, 0); |
|
|
|
memcpy(ibuf, salt + 8 * 16, 8 * 16); |
|
for (i = 0; i < 8; i++) |
|
ibuf[8 * 5 + i] = 0x80000000; |
|
memset(ibuf + 8 * 6, 0x00, 8 * 36); |
|
for (i = 0; i < 8; i++) |
|
ibuf[8 * 15 + i] = 0x000004a0; |
|
|
|
for (i = 0; i < 8; i++) |
|
obuf[8 * 8 + i] = 0x80000000; |
|
memset(obuf + 8 * 9, 0x00, 8 * 24); |
|
for (i = 0; i < 8; i++) |
|
obuf[8 * 15 + i] = 0x00000300; |
|
|
|
for (i = 0; i < 4; i++) { |
|
memcpy(obuf, istate, 8 * 32); |
|
ibuf[8 * 4 + 0] = i + 1; |
|
ibuf[8 * 4 + 1] = i + 1; |
|
ibuf[8 * 4 + 2] = i + 1; |
|
ibuf[8 * 4 + 3] = i + 1; |
|
ibuf[8 * 4 + 4] = i + 1; |
|
ibuf[8 * 4 + 5] = i + 1; |
|
ibuf[8 * 4 + 6] = i + 1; |
|
ibuf[8 * 4 + 7] = i + 1; |
|
sha256_transform_8way(obuf, ibuf, 0); |
|
|
|
memcpy(ostate2, ostate, 8 * 32); |
|
sha256_transform_8way(ostate2, obuf, 0); |
|
for (j = 0; j < 8 * 8; j++) |
|
output[8 * 8 * i + j] = swab32(ostate2[j]); |
|
} |
|
} |
|
|
|
static inline void PBKDF2_SHA256_128_32_8way(uint32_t *tstate, |
|
uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t buf[8 * 16] __attribute__((aligned(32))); |
|
int i; |
|
|
|
sha256_transform_8way(tstate, salt, 1); |
|
sha256_transform_8way(tstate, salt + 8 * 16, 1); |
|
sha256_transform_8way(tstate, finalblk_8way, 0); |
|
|
|
memcpy(buf, tstate, 8 * 32); |
|
for (i = 0; i < 8; i++) |
|
buf[8 * 8 + i] = 0x80000000; |
|
memset(buf + 8 * 9, 0x00, 8 * 24); |
|
for (i = 0; i < 8; i++) |
|
buf[8 * 15 + i] = 0x00000300; |
|
sha256_transform_8way(ostate, buf, 0); |
|
|
|
for (i = 0; i < 8 * 8; i++) |
|
output[i] = swab32(ostate[i]); |
|
} |
|
|
|
#endif /* HAVE_SHA256_8WAY */ |
|
|
|
|
|
#if defined(__x86_64__) |
|
|
|
#define SCRYPT_MAX_WAYS 1 |
|
#define HAVE_SCRYPT_3WAY 0 |
|
#define scrypt_best_throughput() 1 |
|
static void scrypt_core(uint32_t *X, uint32_t *V); |
|
void scrypt_core_3way(uint32_t *X, uint32_t *V); |
|
#if defined(USE_AVX2) |
|
#undef SCRYPT_MAX_WAYS |
|
#define SCRYPT_MAX_WAYS 21 |
|
#define HAVE_SCRYPT_6WAY 0 |
|
void scrypt_core_6way(uint32_t *X, uint32_t *V); |
|
#endif |
|
|
|
#elif defined(__i386__) |
|
|
|
#define SCRYPT_MAX_WAYS 1 |
|
#define scrypt_best_throughput() 1 |
|
static void scrypt_core(uint32_t *X, uint32_t *V); |
|
|
|
#elif defined(__arm__) && defined(__APCS_32__) |
|
|
|
static void scrypt_core(uint32_t *X, uint32_t *V); |
|
#if defined(__ARM_NEON__) |
|
#undef HAVE_SHA256_4WAY |
|
#define SCRYPT_MAX_WAYS 1 |
|
#define HAVE_SCRYPT_3WAY 0 |
|
#define scrypt_best_throughput() 1 |
|
void scrypt_core_3way(uint32_t *X, uint32_t *V); |
|
#endif |
|
|
|
#endif |
|
|
|
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
|
{ |
|
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; |
|
int i; |
|
|
|
x00 = (B[ 0] ^= Bx[ 0]); |
|
x01 = (B[ 1] ^= Bx[ 1]); |
|
x02 = (B[ 2] ^= Bx[ 2]); |
|
x03 = (B[ 3] ^= Bx[ 3]); |
|
x04 = (B[ 4] ^= Bx[ 4]); |
|
x05 = (B[ 5] ^= Bx[ 5]); |
|
x06 = (B[ 6] ^= Bx[ 6]); |
|
x07 = (B[ 7] ^= Bx[ 7]); |
|
x08 = (B[ 8] ^= Bx[ 8]); |
|
x09 = (B[ 9] ^= Bx[ 9]); |
|
x10 = (B[10] ^= Bx[10]); |
|
x11 = (B[11] ^= Bx[11]); |
|
x12 = (B[12] ^= Bx[12]); |
|
x13 = (B[13] ^= Bx[13]); |
|
x14 = (B[14] ^= Bx[14]); |
|
x15 = (B[15] ^= Bx[15]); |
|
for (i = 0; i < 8; i += 2) { |
|
#define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
/* Operate on columns. */ |
|
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); |
|
x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); |
|
|
|
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); |
|
x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); |
|
|
|
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); |
|
x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); |
|
|
|
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); |
|
x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); |
|
|
|
/* Operate on rows. */ |
|
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); |
|
x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); |
|
|
|
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); |
|
x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); |
|
|
|
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); |
|
x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); |
|
|
|
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); |
|
x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); |
|
#undef R |
|
} |
|
B[ 0] += x00; |
|
B[ 1] += x01; |
|
B[ 2] += x02; |
|
B[ 3] += x03; |
|
B[ 4] += x04; |
|
B[ 5] += x05; |
|
B[ 6] += x06; |
|
B[ 7] += x07; |
|
B[ 8] += x08; |
|
B[ 9] += x09; |
|
B[10] += x10; |
|
B[11] += x11; |
|
B[12] += x12; |
|
B[13] += x13; |
|
B[14] += x14; |
|
B[15] += x15; |
|
} |
|
|
|
static inline void scrypt_core(uint32_t *X, uint32_t *V) |
|
{ |
|
uint32_t i, j, k; |
|
|
|
for (i = 0; i < 1024; i++) { |
|
memcpy(&V[i * 32], X, 128); |
|
xor_salsa8(&X[0], &X[16]); |
|
xor_salsa8(&X[16], &X[0]); |
|
} |
|
for (i = 0; i < 1024; i++) { |
|
j = 32 * (X[16] & 1023); |
|
for (k = 0; k < 32; k++) |
|
X[k] ^= V[j + k]; |
|
xor_salsa8(&X[0], &X[16]); |
|
xor_salsa8(&X[16], &X[0]); |
|
} |
|
} |
|
|
|
#ifndef SCRYPT_MAX_WAYS |
|
#define SCRYPT_MAX_WAYS 1 |
|
#define scrypt_best_throughput() 1 |
|
#endif |
|
|
|
#define SCRYPT_BUFFER_SIZE (SCRYPT_MAX_WAYS * 131072 + 63) |
|
|
|
unsigned char *scrypt_buffer_alloc() |
|
{ |
|
return (unsigned char *)malloc(SCRYPT_BUFFER_SIZE); |
|
} |
|
|
|
static void scrypt_1024_1_1_256(const uint32_t *input, uint32_t *output, |
|
uint32_t *midstate, unsigned char *scratchpad) |
|
{ |
|
uint32_t tstate[8], ostate[8]; |
|
uint32_t X[32]; |
|
uint32_t *V; |
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
memcpy(tstate, midstate, 32); |
|
HMAC_SHA256_80_init(input, tstate, ostate); |
|
PBKDF2_SHA256_80_128(tstate, ostate, input, X); |
|
|
|
scrypt_core(X, V); |
|
|
|
PBKDF2_SHA256_128_32(tstate, ostate, X, output); |
|
} |
|
|
|
#if HAVE_SHA256_4WAY |
|
static void scrypt_1024_1_1_256_4way(const uint32_t *input, |
|
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad) |
|
{ |
|
uint32_t tstate[4 * 8] __attribute__((aligned(128))); |
|
uint32_t ostate[4 * 8] __attribute__((aligned(128))); |
|
uint32_t W[4 * 32] __attribute__((aligned(128))); |
|
uint32_t X[4 * 32] __attribute__((aligned(128))); |
|
uint32_t *V; |
|
int i, k; |
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
for (i = 0; i < 20; i++) |
|
for (k = 0; k < 4; k++) |
|
W[4 * i + k] = input[k * 20 + i]; |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 4; k++) |
|
tstate[4 * i + k] = midstate[i]; |
|
HMAC_SHA256_80_init_4way(W, tstate, ostate); |
|
PBKDF2_SHA256_80_128_4way(tstate, ostate, W, W); |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 4; k++) |
|
X[k * 32 + i] = W[4 * i + k]; |
|
scrypt_core(X + 0 * 32, V); |
|
scrypt_core(X + 1 * 32, V); |
|
scrypt_core(X + 2 * 32, V); |
|
scrypt_core(X + 3 * 32, V); |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 4; k++) |
|
W[4 * i + k] = X[k * 32 + i]; |
|
PBKDF2_SHA256_128_32_4way(tstate, ostate, W, W); |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 4; k++) |
|
output[k * 8 + i] = W[4 * i + k]; |
|
} |
|
#endif /* HAVE_SHA256_4WAY */ |
|
|
|
#if HAVE_SCRYPT_3WAY |
|
|
|
static void scrypt_1024_1_1_256_3way(const uint32_t *input, |
|
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad) |
|
{ |
|
uint32_t tstate[3 * 8], ostate[3 * 8]; |
|
uint32_t X[3 * 32] __attribute__((aligned(64))); |
|
uint32_t *V; |
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
memcpy(tstate + 0, midstate, 32); |
|
memcpy(tstate + 8, midstate, 32); |
|
memcpy(tstate + 16, midstate, 32); |
|
HMAC_SHA256_80_init(input + 0, tstate + 0, ostate + 0); |
|
HMAC_SHA256_80_init(input + 20, tstate + 8, ostate + 8); |
|
HMAC_SHA256_80_init(input + 40, tstate + 16, ostate + 16); |
|
PBKDF2_SHA256_80_128(tstate + 0, ostate + 0, input + 0, X + 0); |
|
PBKDF2_SHA256_80_128(tstate + 8, ostate + 8, input + 20, X + 32); |
|
PBKDF2_SHA256_80_128(tstate + 16, ostate + 16, input + 40, X + 64); |
|
|
|
scrypt_core_3way(X, V); |
|
|
|
PBKDF2_SHA256_128_32(tstate + 0, ostate + 0, X + 0, output + 0); |
|
PBKDF2_SHA256_128_32(tstate + 8, ostate + 8, X + 32, output + 8); |
|
PBKDF2_SHA256_128_32(tstate + 16, ostate + 16, X + 64, output + 16); |
|
} |
|
|
|
#if HAVE_SHA256_4WAY |
|
static void scrypt_1024_1_1_256_12way(const uint32_t *input, |
|
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad) |
|
{ |
|
uint32_t tstate[12 * 8] __attribute__((aligned(128))); |
|
uint32_t ostate[12 * 8] __attribute__((aligned(128))); |
|
uint32_t W[12 * 32] __attribute__((aligned(128))); |
|
uint32_t X[12 * 32] __attribute__((aligned(128))); |
|
uint32_t *V; |
|
int i, j, k; |
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 20; i++) |
|
for (k = 0; k < 4; k++) |
|
W[128 * j + 4 * i + k] = input[80 * j + k * 20 + i]; |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 4; k++) |
|
tstate[32 * j + 4 * i + k] = midstate[i]; |
|
HMAC_SHA256_80_init_4way(W + 0, tstate + 0, ostate + 0); |
|
HMAC_SHA256_80_init_4way(W + 128, tstate + 32, ostate + 32); |
|
HMAC_SHA256_80_init_4way(W + 256, tstate + 64, ostate + 64); |
|
PBKDF2_SHA256_80_128_4way(tstate + 0, ostate + 0, W + 0, W + 0); |
|
PBKDF2_SHA256_80_128_4way(tstate + 32, ostate + 32, W + 128, W + 128); |
|
PBKDF2_SHA256_80_128_4way(tstate + 64, ostate + 64, W + 256, W + 256); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 4; k++) |
|
X[128 * j + k * 32 + i] = W[128 * j + 4 * i + k]; |
|
scrypt_core_3way(X + 0 * 96, V); |
|
scrypt_core_3way(X + 1 * 96, V); |
|
scrypt_core_3way(X + 2 * 96, V); |
|
scrypt_core_3way(X + 3 * 96, V); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 4; k++) |
|
W[128 * j + 4 * i + k] = X[128 * j + k * 32 + i]; |
|
PBKDF2_SHA256_128_32_4way(tstate + 0, ostate + 0, W + 0, W + 0); |
|
PBKDF2_SHA256_128_32_4way(tstate + 32, ostate + 32, W + 128, W + 128); |
|
PBKDF2_SHA256_128_32_4way(tstate + 64, ostate + 64, W + 256, W + 256); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 4; k++) |
|
output[32 * j + k * 8 + i] = W[128 * j + 4 * i + k]; |
|
} |
|
#endif /* HAVE_SHA256_4WAY */ |
|
|
|
#endif /* HAVE_SCRYPT_3WAY */ |
|
|
|
#if HAVE_SCRYPT_6WAY |
|
static void scrypt_1024_1_1_256_24way(const uint32_t *input, |
|
uint32_t *output, uint32_t *midstate, unsigned char *scratchpad) |
|
{ |
|
uint32_t tstate[24 * 8] __attribute__((aligned(128))); |
|
uint32_t ostate[24 * 8] __attribute__((aligned(128))); |
|
uint32_t W[24 * 32] __attribute__((aligned(128))); |
|
uint32_t X[24 * 32] __attribute__((aligned(128))); |
|
uint32_t *V; |
|
int i, j, k; |
|
|
|
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
|
|
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 20; i++) |
|
for (k = 0; k < 8; k++) |
|
W[8 * 32 * j + 8 * i + k] = input[8 * 20 * j + k * 20 + i]; |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 8; k++) |
|
tstate[8 * 8 * j + 8 * i + k] = midstate[i]; |
|
HMAC_SHA256_80_init_8way(W + 0, tstate + 0, ostate + 0); |
|
HMAC_SHA256_80_init_8way(W + 256, tstate + 64, ostate + 64); |
|
HMAC_SHA256_80_init_8way(W + 512, tstate + 128, ostate + 128); |
|
PBKDF2_SHA256_80_128_8way(tstate + 0, ostate + 0, W + 0, W + 0); |
|
PBKDF2_SHA256_80_128_8way(tstate + 64, ostate + 64, W + 256, W + 256); |
|
PBKDF2_SHA256_80_128_8way(tstate + 128, ostate + 128, W + 512, W + 512); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 8; k++) |
|
X[8 * 32 * j + k * 32 + i] = W[8 * 32 * j + 8 * i + k]; |
|
scrypt_core_6way(X + 0 * 32, V); |
|
scrypt_core_6way(X + 6 * 32, V); |
|
scrypt_core_6way(X + 12 * 32, V); |
|
scrypt_core_6way(X + 18 * 32, V); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 32; i++) |
|
for (k = 0; k < 8; k++) |
|
W[8 * 32 * j + 8 * i + k] = X[8 * 32 * j + k * 32 + i]; |
|
PBKDF2_SHA256_128_32_8way(tstate + 0, ostate + 0, W + 0, W + 0); |
|
PBKDF2_SHA256_128_32_8way(tstate + 64, ostate + 64, W + 256, W + 256); |
|
PBKDF2_SHA256_128_32_8way(tstate + 128, ostate + 128, W + 512, W + 512); |
|
for (j = 0; j < 3; j++) |
|
for (i = 0; i < 8; i++) |
|
for (k = 0; k < 8; k++) |
|
output[8 * 8 * j + k * 8 + i] = W[8 * 32 * j + 8 * i + k]; |
|
} |
|
#endif /* HAVE_SCRYPT_6WAY */ |
|
|
|
int scanhash_scrypt(int thr_id, uint32_t *pdata, |
|
unsigned char *scratchbuf, const uint32_t *ptarget, |
|
uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
uint32_t data[SCRYPT_MAX_WAYS * 20], hash[SCRYPT_MAX_WAYS * 8]; |
|
uint32_t midstate[8]; |
|
uint32_t n = pdata[19] - 1; |
|
const uint32_t Htarg = ptarget[7]; |
|
int throughput = scrypt_best_throughput(); |
|
int i; |
|
|
|
#if HAVE_SHA256_4WAY |
|
if (sha256_use_4way()) |
|
throughput *= 4; |
|
#endif |
|
|
|
for (i = 0; i < throughput; i++) |
|
memcpy(data + i * 20, pdata, 80); |
|
|
|
sha256_init(midstate); |
|
sha256_transform(midstate, data, 0); |
|
|
|
do { |
|
for (i = 0; i < throughput; i++) |
|
data[i * 20 + 19] = ++n; |
|
|
|
#if HAVE_SHA256_4WAY |
|
if (throughput == 4) |
|
scrypt_1024_1_1_256_4way(data, hash, midstate, scratchbuf); |
|
else |
|
#endif |
|
#if HAVE_SCRYPT_3WAY && HAVE_SHA256_4WAY |
|
if (throughput == 12) |
|
scrypt_1024_1_1_256_12way(data, hash, midstate, scratchbuf); |
|
else |
|
#endif |
|
#if HAVE_SCRYPT_6WAY |
|
if (throughput == 24) |
|
scrypt_1024_1_1_256_24way(data, hash, midstate, scratchbuf); |
|
else |
|
#endif |
|
#if HAVE_SCRYPT_3WAY |
|
if (throughput == 3) |
|
scrypt_1024_1_1_256_3way(data, hash, midstate, scratchbuf); |
|
else |
|
#endif |
|
scrypt_1024_1_1_256(data, hash, midstate, scratchbuf); |
|
|
|
for (i = 0; i < throughput; i++) { |
|
if (hash[i * 8 + 7] <= Htarg && fulltest(hash + i * 8, ptarget)) { |
|
*hashes_done = n - pdata[19] + 1; |
|
pdata[19] = data[i * 20 + 19]; |
|
return 1; |
|
} |
|
} |
|
} while (n < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = n - pdata[19] + 1; |
|
pdata[19] = n; |
|
return 0; |
|
}
|
|
|