1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-24 21:45:04 +00:00
ccminer/Algo256/blake256.cu
Tanguy Pruvot 355b835ae0 benchmark: enhance the mem leak detection
reduce "false" warnings, and ignore unrelated/small ones <= 1 MB

On windows the gpu memory can be allocated by other processes

+ some cleanup in algos... (free/gpulog)
2015-10-16 22:04:30 +02:00

509 lines
13 KiB
Plaintext

/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Nov. 2014
*/
#define PRECALC64 1
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
//extern int blake256_rounds;
}
#include <stdint.h>
#include <memory.h>
/* threads per block and throughput (intensity) */
#define TPB 128
/* hash by cpu with blake 256 */
extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14)
{
uchar hash[64];
sph_blake256_context ctx;
sph_blake256_set_rounds(rounds);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
#if PRECALC64
__constant__ uint32_t _ALIGN(32) d_data[12];
#else
__constant__ static uint32_t _ALIGN(32) c_data[20];
/* midstate hash cache, this algo is run on 2 parts */
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
/* crc32.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
#endif
/* 8 adapters max */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
/* max count of found nonces in one call */
#define NBN 2
static uint32_t extra_results[NBN] = { UINT32_MAX };
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
__constant__
static uint32_t _ALIGN(32) c_sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
#if !PRECALC64
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
#endif
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[r][x]; \
const uint32_t idx2 = c_sigma[r][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
/* Second part (64-80) msg never change, store it */
__device__ __constant__
static const uint32_t __align__(32) c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds)
{
uint32_t /*_ALIGN(8)*/ m[16];
uint32_t v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
for (uint32_t i = 4; i < 16; i++) {
#if PRECALC64
m[i] = c_Padding[i];
#else
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
#endif
}
//#pragma unroll 8
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u256[0];
v[ 9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
for (int r = 0; r < rounds; r++) {
/* column step */
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(2, 6, 0xA, 0xE, 0x4);
GS(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
#if PRECALC64
// only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U];
#else
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i % 8U;
h[j] ^= v[i];
}
#endif
}
#if !PRECALC64 /* original method */
__global__
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int crcsum, const int rounds)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t h[8];
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = c_IV256[i];
}
if (crcsum != prevsum) {
prevsum = crcsum;
blake256_compress(h, c_data, 512, rounds);
#pragma unroll
for(int i=0; i<8; i++) {
cache[i] = h[i];
}
} else {
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = cache[i];
}
}
// ------ Close: Bytes 64 to 80 ------
uint32_t ending[4];
ending[0] = c_data[16];
ending[1] = c_data[17];
ending[2] = c_data[18];
ending[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
// not sure why, h[7] is ok
h[6] = cuda_swab32(h[6]);
// compare count of leading zeros h[6] + h[7]
uint64_t high64 = ((uint64_t*)h)[3];
if (high64 <= highTarget)
#if NBN == 2
/* keep the smallest nonce, + extra one if found */
if (resNonce[0] > nonce) {
// printf("%llx %llx \n", high64, highTarget);
resNonce[1] = resNonce[0];
resNonce[0] = nonce;
}
else
resNonce[1] = nonce;
#else
resNonce[0] = nonce;
#endif
}
}
__host__
uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const uint32_t crcsum, const int8_t rounds)
{
const uint32_t threadsperblock = TPB;
uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNonce, d_resNonce[thr_id], highTarget, crcsum, (int) rounds);
MyStreamSynchronize(NULL, 0, thr_id);
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
uint32_t data[20];
memcpy(data, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
}
#else
/* ############################################################################################################################### */
/* Precalculated 1st 64-bytes block (midstate) method */
__global__
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,
const uint64_t highTarget, const int rounds, const bool trace)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t _ALIGN(16) h[8];
#pragma unroll
for(int i=0; i < 8; i++) {
h[i] = d_data[i];
}
// ------ Close: Bytes 64 to 80 ------
uint32_t _ALIGN(16) ending[4];
ending[0] = d_data[8];
ending[1] = d_data[9];
ending[2] = d_data[10];
ending[3] = nonce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) {
#if NBN == 2
/* keep the smallest nonce, + extra one if found */
if (resNonce[0] > nonce) {
resNonce[1] = resNonce[0];
resNonce[0] = nonce;
}
else
resNonce[1] = nonce;
#else
resNonce[0] = nonce;
#endif
#ifdef _DEBUG
if (trace) {
uint64_t high64 = ((uint64_t*)h)[3];
printf("gpu: %16llx\n", high64);
printf("gpu: %08x.%08x\n", h[7], h[6]);
printf("tgt: %16llx\n", highTarget);
}
#endif
}
}
}
__host__
static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const int8_t rounds)
{
const uint32_t threadsperblock = TPB;
uint32_t result = UINT32_MAX;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int) rounds, opt_tracegpu);
MyStreamSynchronize(NULL, 0, thr_id);
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(rounds);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 64);
memcpy(output, (void*)ctx.H, 32);
}
__host__
void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t _ALIGN(64) data[11];
memcpy(data, midstate, 32);
data[8] = penddata[0];
data[9] = penddata[1];
data[10]= penddata[2];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice));
}
#endif
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{
uint32_t _ALIGN(64) endiandata[20];
#if PRECALC64
uint32_t _ALIGN(64) midstate[8];
#else
uint32_t crcsum;
#endif
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 20;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
if (opt_benchmark) {
ptarget[7] = 0;
ptarget[6] = swab32(0xff);
targetHigh = 0xffULL << 32;
}
if (opt_tracegpu) {
/* test call from util.c */
throughput = 1;
for (int k = 0; k < 20; k++)
pdata[k] = swab32(pdata[k]);
}
if (!init[thr_id]) {
cudaSetDevice(device_map[thr_id]);
CUDA_LOG_ERROR();
cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t));
cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t));
CUDA_LOG_ERROR();
init[thr_id] = true;
}
#if PRECALC64
for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]);
blake256mid(midstate, endiandata, blakerounds);
blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget);
#else
blake256_cpu_setBlock_80(pdata, ptarget);
crcsum = crc32_u32t(pdata, 64);
#endif /* PRECALC64 */
do {
uint32_t foundNonce =
#if PRECALC64
// GPU HASH (second block only, first is midstate)
blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds);
#else
// GPU FULL HASH
blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
#endif
*hashes_done = pdata[19] - first_nonce + throughput;
if (foundNonce != UINT32_MAX)
{
uint32_t vhashcpu[8];
uint32_t Htarg = (uint32_t)targetHigh;
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], foundNonce);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget))
{
rc = 1;
work_set_target_ratio(work, vhashcpu);
pdata[19] = foundNonce;
#if NBN > 1
if (extra_results[0] != UINT32_MAX) {
be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
pdata[21] = extra_results[0];
applog(LOG_BLUE, "1:%x 2:%x", foundNonce, extra_results[0]);
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio)
work_set_target_ratio(work, vhashcpu);
rc = 2;
}
extra_results[0] = UINT32_MAX;
}
#endif
return rc;
}
else if (vhashcpu[7] > ptarget[7] && opt_debug) {
applog_hash((uchar*)ptarget);
applog_compare_hash((uchar*)vhashcpu, (uchar*)ptarget);
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
}
}
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
return rc;
}
// cleanup
extern "C" void free_blake256(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}